Approved for Public Release; Distribution Unlimited
Case # 06-0055

I ntegration Workbench: Integrating Schema Integration Tools

Peter Mork, Arnon Rosenthal, Len Seligman, Joel Korb, Ken Samuel
The MITRE Corporation
McLean, VA, USA
{pmork, arnie, seligman, jkorb, ksamuel} @mitre.org

Abstract

A key aspect of any data integration endeavor is estab-
lishing a transformation that translates instances of one
or more source schemata into instances of a target
schema. This schema integration task must be tackled
regardless of the integration architecture or mapping
formalism. In this paper we provide a task model for
schema integration. We use this breakdown to motivate a
workbench for schema integration in which multiple tools
share a common knowledge repository.

In particular, the workbench facilitates the interopera-
tion of research prototypes for schema matching (which
automatically identify likely semantic correspondences)
with commercial schema mapping tools (which help pro-
duce instance-level transformations). Currently, each of
these tools provides its own ad hoc representation of
schemata and mappings, combining these tools requires
aligning these representations. The workbench provides a
common representation so that these tools can more rap-
idly be combined.

1. Introduction

Schema integration is an integral aspect of ang ohat
tegration endeavor. The goal of this paper is ganize
the strategies and tools used in schema integrattona
consistent framework. Based on this framework, we p
pose an open, extensible integration workbenclac¢dif
tate tool interoperation.

We view the development of a data integration smtut
to consist of three main steps: schema integraitstance
integration and deployment. This paper focusescbersa
integration, which generates a transformation thets-
lates source instances into target instances.

This task involves first identifying, at a high &ythe
semantic correspondences between (at least) twe- sch
mata, a task we refer to @ashema matching. Second,
these correspondences are used to establish pteaise
formations that define aschema mapping from the
source(s) to the target.

Researchers have built many systems to semi-
automatically perform schema matching [1]. Schema
mapping tools generally provide the user with gbieal
interface in which lines connecting related ersitend
attributes can be annotated with functions or dodger-
form any necessary transformations. From these map-
pings, they synthesize transformations for entatblases
or documents. These tools have been developedy co
mercial vendors (including Altova’s MapForce, BEA’s
Aqualogic, and Stylus Studio’s XQuery Mapper) and
research projects (such as Clio [2], COMA++ [3] dhd
wrapper toolkit in TSIMMIS [4]).

Currently an integration engineer can choose to em-
brace a specific development environment. The esgin
benefits from the automated support provided by iba-
dor, but cannot leverage new tools as they becormait a
able. The alternative is to splice together a nunife
tools, each of which has its own internal represtémn for
schemata and mappings. In one case, we neededifour
ferent pieces of software to transform a mappiogifone
tool’s representation into another.

By adopting an open, extensible workbench, integra-
tion engineers can more easily leverage automatad as
they become available and choose the best toothimr
problem at hand.

1.1. Contributions

First, we describe pragmatic considerations that ar
important to the design of schema matchers: 1)rapnto
conventional wisdom, many real-world schemata agt w
documented, so linguistic processing of text desioms
is important, 2) in several real-world scenarioshesna
integration must be performed without the benefiine
stance data, and 3) domain values are often alaitatd
could be better exploited by schema matchers.

Second, we establish a task model for schema axtegr
tion based on a review of the literature and t@wid on
observations of engineers solving real-world iné¢ign
problems. We presented our task model to threerexpe
enced integration engineers to verify that the rhade
cluded all of the subtasks they had encountered.

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 06-0055

The task model is important because it allows us to
make comparisons: Among integration problems, we ca
ask which of the tasks are unnecessary becausmpli-s
fying conditions in the problem instance. Amonglsoave
can ask what each tool contributes to each taskgaad-
tify the impact in realistic settings.

Third, we describe how the task model and pragmatic
considerations guide the development of a speuifie-
gration tool, in our case Harmony, a prototype sthe
matcher, which bundles a variety of match algorghwith
a graphical user interface.

Our fourth contribution is to articulate the neeat f
data integration among schema integration tools—our
community can benefit in insight and utility by ptiging
what we preach. We propose a candidate collectfon o
interfaces that constitute an integration workbemdfich
allows multiple integration tools to interoperatedgpro-
vides a common knowledge repository for schemath an
mappings. One outcome of the integration workbesch
that integration engineers can more easily chodsehw
match algorithms (or suites thereof [5]) to use mvkelv-
ing real integration problems. We offer this progoss a
discussion starter, which could ultimately leacatoopen
standard for interoperation of integration tools.

1.2. Outline

This paper is organized as follows: Section 2 dosta
our observations regarding schema integration tsfioer-
formed on behalf of the federal government. In Bac8
we describe a task model for integration probldm&ec-
tion 4 we present design desiderata based on 8ie ta

instances may be extremely hard to obtain (the ebeitd,
but are not available to the engineer) for at I¢éastrea-
sons.

e Security/sensitivity: Data instances are often more
sensitive than their corresponding schemata—e.g.,
in defense applications, an integration engineer
may have access to schemata but may lack suffi-
cient clearances to access instances. Sometimes, an
agency that owns the data is willing to share them
with another agency, but not with the contracting
integration engineers responsible for developing
the initial mappings. Wider release of schema in-
formation is less problematic.

» Conceptual schemata: One may begin creating
important mappings to and from a new system,
even before it has any data or running applications
For example, the U.S. Federal Aviation Admini-
stration developed a mapping of some of its sys-
tems to a conceptual model for the new European
Air Traffic Control System, before that system was
implemented or had any instance data. As a general
phenomenon, when one builds a data warehouse,
the mappings from data sources are the actual
means for populating it.

Thus, we have observed that it is not safe to asshm
availability of instance data in enterprises. ladte
schema integration tools must use whatever infaomas
available. Instance data, thesauri, etc. are somasti
available and sometimes not.

While instance data are often unavailable, we have
found that many government (and probably many other
enterprises’) schemata are well documented. Eviléoc

model and describe how the Harmony schema matchinghis claim will now be presented.

tool addresses these desiderata. Finally, Sectiate-5
scribes the interfaces that constitute the intégmawork-
bench and Section 6 discusses future work.

2. Pragmatic Considerations

We obtained a collection of 265 conceptual (ER) mod
els from the Department of Defense metadata rggistr
(which contains schemata only, no instances!). This
pository contains 13,049 elements (entities ortigxa
ships) and 163,736 attributes. As indicated in &dblthe
vast majority of these items contain a definitidmaughly

Conventional wisdom suggests that schema matching®N€ sentence.

should focus on data instances because instanees ar

common and documentation is sparse (or even indprre

This registry also explicitly enumerates domairueal
for which documentation is also available. For epbana

Whereas these phenomena may be observed in some g§chema for air traffic control introduces codingnames

mains, particularly web-based sources, it is oftehthe
case for schemata developed for or by the US fédexa
ernment (or, we suspect, other large enterprises).

From the perspective of an integration engineeta da

for types of aircraft, runways and airports. Unfioitely,
this documentation is often lost when a logicalesoh is
converted into SQL. The standard approach is teesto
each coding scheme in its own relation, and eadk es a

Table 1. Frequency and length of documentation in the DoD Metadata Registry

ltem Item #With % With Word Words/ Wor.d.s.per
Count Definition | Definition Count Item Definition
Element 13,049 12,946 ~99% 143,31b6 ~11.0 ~11.1
Attribute 163,736 135,686 ~83% 2,228,691 ~13.6 416.
Domain 282,331 282,128 ~100% 1,036,822 ~3.67 ~3.68

string or integer valuesans documentation.

This approach is good for referential integrityt bad
for integration efforts. A better solution would be de-
fine semantic domains for each coding scheme sb
integration tools could more easily identify domadorre-
spondences. In fact, when we asked integratiomergs
to describe how they approach an integration probke
recurring pattern emerged. They first identifiedviolbis
top-level entity correspondences. But then, instefgulo-
ceeding to sub-elements or attributes, they thenuaity

not in a format compatible with the platform, tetep also
includes any necessary syntactic transformations.
2) Obtain or develop the target schema. If per-

thaformed, this step is analogous to the previous. step

many cases, the target schema is defined by tHagmno
specification (e.g., translate data into the follmgvmes-
sage format). In other cases, the target schema Ipeus
developed based on the queries to be supporteth or
combine the data from multiple sources. This sgepp-
tional because the target schema may be derived the

inspected the domain values to find correspondencescorrespondences identified among the source scheamt

From this low-level, they then worked their way te
schema hierarchy to attributes, sub-elements, suadlyf
back to top-level entities. Our task breakdown wlas
signed to support this pattern.

3. Task Model for Data I ntegration

To better understand how schema integration ta®ls a
sist an integration engineer, we enumerated théaskd
involved in schema integration. We started withaakt
model based on input from 147 survey participaatsilf
iar with schema integration from a research or frak
perspective [6]. We extended that model to incltiue
subtasks addressed by a variety of systems ([3;148])
and then presented it to three experienced iniegran-
gineers for validation. Based on their feedback, exe
tended the model to include subtasks not direatly- s
ported by any system.

At a high level, we consider 13 fine grained ingggm

is assumed in [8].

In both cases, one may enrich the schemata, §.de-b
fining coding schemes as domains, or documenting co
straints that are not documented in the actuaksysei-
ther because the system does not support the needed
structs, or because nobody took the time to dorkas,
the integration platform may enable richer desmips
than the underlying systems. One also needs a means
keep the metadata in synch, as the actual systeange.

3.2. Schema Matching

The second phase establishes high-level correspon-
dences among schema elements. There is a semantic ¢
respondence between two schema elements if ingarice
one schema element imply the existence of correpgn
instances of the other [14].

If a target schema has been identified, these sjpore
dences establish relationships between each source

tasks, grouped into five phases: schema preparationschema and the target. As noted in [8], in the rtsef a

schema matching, schema mapping, instance integrati
and finally system implementation. During schemapgpr
ration, the source and target schemata are icexhtsb
that a set of correspondences can be identifieshgltine

target schema, correspondences can also be dstablis
between pairs of (or across sets of) source sdaema

For example, to publish data stored in a relatiatzal
tabase into an XML message format, some correspon-

matching phase. These semantic correspondences ar@ences indicate that tuples from the source relatid be

formalized in the third phase as explicit logicappings.
Once schema integration is complete, instance ratieg
reconciles any remaining discrepancies. In thd finase
the integration solution is deployed.

In this section, we describe each phase in detdilde-
scribe how we evaluated the task model’'s completene

3.1. Schema Preparation

The first phase of schema (or data) integrationiurap
knowledge about the source and target schematacito
tate the subsequent matching and mapping phasdsnit
tifies the target schema, and organizes the sosche-
mata. The specific subtasks are:

1) Obtain the source schemata. This step gathers
available documentation and imports the sourcersate
into the integration platform. If the source sch&anare

used to generate XML elements. Additional correspon
dences indicate which attributes will be used toegate
data values. For example, multiple relations migtre-
spond to a single element because a join is neéaled
populate the element’s attributes, or a singleticelamay
correspond to multiple elements to match nestiregqmt

in the target.

3) Generate semantic correspondences. This step de-
termines which schema elements loosely correspmittkt
same real world concepts. These correspondencais- est
lish a weak semantic link in that they indicatettia
stances of one element can be used to generasmadpst
of the other.

Whereas this phase consists of a single step, we co
sider matching to be its own phase because omii-
tance and the research attention it has receiveel eXact
transformations implied by a correspondence araildet
in the mapping phase.

3.3. Schema M apping

establishing parent/child relationships in a nestesta-
model. For arbitrarily assigned identifiers (sushrgernal

The schema mapping phase establishes, at a logicapbject identifiers), Skolem functions are commogly-

level, the rules needed to transform instancekefburce
schemata into instances of the target. The mappmgs
generate results that adhere to the target schemthnd
target must be modified to reflect accurately trang-
formed data).

The first four subtasks below establish piecentagst
formations, and are not performed in a particulateo
Each transformation indicates the precise mechabigm
which source data is used to generate target dltte
that at times these transformations cross
schemal/instance boundary [15].
have been established for each schema elementatbey
aggregated into a logical mapping and verified.

4) Develop domain transfor mations. For each pair of
corresponding domains, a transformation must besldev
oped that relates values from the source domavalizes
in the target domain. In the simplest case, theedirect
correspondence (i.e., no transformation is need¢olv-
ever, it is often the case that an algorithmicgfarmation
must be developed, for example, to convert from fee
meters, or from first- and last-name to full-narhe.the
most detailed case, the transformation can besexse
pressed using a lookup table (e.g., to convert foore
coding scheme to a related coding scheme). Context
diation techniques can then be applied [16, 17].

5) Develop attribute transformations. The previous

ployed (see, for example, [2]).

These four subtasks interact with schema matching b
cause establishing transformations is an itergiheeess.
For example, in the first pass, we might estabdighans-
formation from Professor to Employee (since instgnof
the former are also instances of the latter). Wiibeking
on the Course/Grade sub-schema, we might realieith
some cases, Students are also Employees. Thismew i
sight requires us to refine the Employee mappingther

thewords, the previously identified correspondencey &
Once transformationsboth imprecise and incomplete.

The remaining mapping subtasks produce an executa-
ble mapping.

8) Create logical mappings. The next step is to aggre-
gate the piecemeal mappings, which all concerndd in
vidual elements, into an explicit mapping for emtitata-
bases or documents. Humans may need to specify addi
tional information (e.g., to distinguish join froouterjoin)
before automated tools can sew the pieces togelher.
most cases, this requires writing a query (overstharce
schemata) that generates instances of the tarbetmsg
although in the local-as-view formalism [18] theuste
schemata are expressed as views over the targahach

9) Verify mappings against target schema. If the in-
tegration task included a specific target schetma,final
step is to verify that the transformations are goteed to

step handled the case where the same property was e generate valid data instances (i.e., all conssang satis-

coded using different domains. This step deals pitp-
erties that are different but derivable. Sometimes pro-
vides a transformation from source to target valeéker
scalar (e.g., Age from Birthdate), or by aggregafiie.g.,
AverageSalaryByDepartment from Salary). Other trans

fied). In some cases, the only solution may be talifg
the target schema to reflect how it will be popedhatlf a
target schema was not specified, the final stép gener-
ate the target schema based on the logical mappings

forms we have seen include pushing metadata down to 3.4. Instance Integration

data (e.g., to populate a type attribute or tintap)a and
populating a comment (in the target) to store st
tribute information that has no corresponding laitite.

6) Develop entity transformations. The next step is to
determine the structural transformations necessaggen-
erate instances of the target schema. In the sihgdese, a
direct 1:1 mapping can be established. Alternativelul-
tiple entities may need to be combined (e.g., ugitgor
union) to generate a single target entity. Ornglsi entity
may need to be split into multiple entities (elzgased on
the value of some attribute), which effectively vales
data in the source to metadata in the target.

7) Determine object identity. For each entity in the
target, the next step is to determine how unigeetiflers
will be generated. In the simplest case, expliei kttrib-
utes in the source can be used to generate kegs/au
the target. This may include populating implicityke
(such as those inherited from a parent entityjzaorectly

At this point, the tasks involved in schema intéigra
are complete, and we turn our attention to instante
gration.

10) Link instance elements. Two instance elements
(with different unique identifiers) may represen¢ tsame
real-world object. This subtask merges these el&msto
a single element.

11) Clean the data. This subtask removes erroneous
values from instance elements. A value may be eoos
because it violates a domain constraint or becausm-
tradicts information from a more reliable source.

3.5. System I mplementation

Finally we are ready to develop and deploy a system
that addresses operational constraints—factorsrettey
schema and instance elements. Examples include- dete

mining the frequency and granularity of updates tred
policy that governs exceptional conditions.

12) Implement a solution. The integration system de-
signed in this phase must address any operaticomal c
straints. The significance of these constraintsreal-
world integration systems was stressed by the liatieg
engineers who reviewed the task model.

13) Deploy the application. This step does not receive
much research attention, but ease of deploymean im-
portant concern.

This task model guided our development of the Har-

mony schema matching tool.

4. Harmony

Harmony is a schema matching tool that combines

multiple match algorithms with a graphical useeiface
for viewing and modifying the identified correspemdes.
The architecture for Harmony is shown in Figure-Har-
mony’s contributions include adding linguistic pessing
of textual documentation to conventional schemachmat
techniques, learning from the input of a humantie t
loop, and GUI support for removing clutter and atére

dence, +1 indicates a definite correspondence andio
cates complete uncertainty.

Givenk match voters, the vote merger combineskhe
values for each pair into a single confidence scote
vote merger weights each matcher’s confidence based
its magnitude—a score close to O indicates thatrthech
voter did not see enough evidence to make a stpogg
diction. The vote merger also weights each matiohtto
based on past performance (see Section 4.3).

A version of similarity flooding [22] adjusts therfi-
dence scores based on structural information. iResit
confidence scores propagate up the schema gragh (e.
from attributes to entities), and negative confikercores
trickle down the schema graph. Intuitively, tworiatites
are unlikely to match if their parent entities du match.

Finally, these confidence scores are shown grajphica
as color-coded lines connecting source and tarlget e
ments. The GUI provides various mechanisms for mani
lating these lines, based on our design desiderata.

4.1. Design Goals

The considerations presented in Section 2 sughast t

development, as discussed in following sections. schema matching algorithms.should not assume thg ab
Harmony currently supports XML schemata, entity- sence of .usable documenta’qon. Many of the carglidat
relationship schemata from ERWin, a popular mogelin matchers in the Harmony engine perform naturaluage

tool, and will soon support relational schemataheBeata
are normalized into a canonical graph represemtatio

processing and comparisons on this documentatioout
experience these matchers have good recall, althieiy

The Harmony match engine adopts a conventional precision is less impressive.

schema integration architecture [5, 19-21]. It begwith
linguistic preprocessing (e.g., tokenization, stapd
removal, and stemming) of element names and armgiass
ated documentation. Then, sevenatch voters are in-
voked, each of which identifies correspondencesgusi
different strategy. For example, one matcher coegptre
words appearing in the elements’ definitions. Awroth
matcher expands the elements’ names using a thssaur
For each [source element, target element] paih eaich
voter establishes a confidence score in the rantje+1)
where —1 indicates that there is definitely no espon-

Loader /
Normalizer

I Learning

GUI

Match Engine

Match Voters

Bag of Words:

Normalized - — ds:
Schemas Linguistic Names and Definitions

Preprocessing

Bag of Words with
Thesaurus Expansion

Vote Edit Distance (Names)

Merger [
l Acronym Matcher

Structural
Matcher
Thesaurus Abbreviation:
Thesauri

Figure 1: Architectural Overview of Harmony

v

Mapping
Matrix

Acronyms/

The task model in Section 3 suggests additionagdes
desiderata. First, the integration engineer needsetable
to focus at different levels of granularity. Foraexple, a
common first step is to establish correspondenoamng
conceptual sub-schemata. In the air traffic flownage-
ment domain, these sub-schemata might includeitfesil
(airports and runways), weather, and routing. Niog¢ the
hierarchical and decomposable nature of XML Schema
makes it easier to identify sub-schemata.

After establishing these high-level correspondences
the integration engineer focuses on one sub-sclatnaa
time and delves into the details of the domainseagpg
in that sub-schema. The engineer wants to be disttdy
neither correspondences pertaining to other subrsata
nor those at intermediate levels of granularity.

A related goal is that the software tools must supp
iterative refinement. This desideratum is one aof oti-
vations for developing the integration workbench de
scribed in Section 5. If data cannot flow freely cang
components, the engineer has little control overdtder
in which tasks will be completed.

The final desideratum is that all sub-tasks invdlue
schema integration must be supported. The comntigrcia
available tools naturally take this requirement enseri-
ously than do research tools, such as Harmony. ¥glsdt

is an interesting research problem to identify sgina
correspondences, this contribution alone does restly
assist the integration engineer. Because Harmoriisély
does not currently support schema mapping, we defer
ther consideration of this desideratum to SectioWe

matcher can learn from the user’s choices andeedimy
internal parameters. For example, a bag-of-wordsmea
that weights each word based on inverted frequémcy
creases or decreases word weight based on whictiswor
were most predictive. Second, the vote merger weitjie

now consider how Harmony addresses the remaining decandidate matchers based on their performance rso fa

siderata.
4.2. Filtering

The Harmony GUI supports a variety of filters that
help the integration engineer focus her attentibmese
filters are loosely categorized as link filters amatle fil-
ters. A link filter is a predicate that is evaluhtagainst
each candidate correspondence to determine ifoitildh
be displayed. A node filter determines if a givehesna
element should benabled. An enabled element is dis-
played along with its links; a disabled elemengiayed
out and its links are not displayed.

Harmony currently supports three link filters. Eira
confidence slider filters links based on the coarfice
assigned to a link by the Harmony engine. Onlydittat
exceed some threshold are displayed. Links that wer
drawn by the integration engineer, or were expjicit
marked as correct, have a confidence score of ifdi- S
larly, links explicitly rejected have a score of -1

The second filter determines if a link should be-di

Learning new weights must be done carefully, though
Each candidate matcher focuses on a particular fufrm
evidence, such as elements’ names. If the englesed
her first pass on exactly that form of evidence, ¢brre-
sponding candidate matcher will appear overly sssfcd

In addition to accepting and rejecting specifi&kéinthe
engineer can mark a sub-tree as complete. Thisrahts
several effects. First, it accepts every link patg to
that sub-tree as accepted (if currently visible)rejected
(otherwise). Once a link has been accepted ortegjethe
engine will not try to modify that link. This enss that
links do not mysteriously disappear or appear shoiogé
user subsequently invoke the Harmony engine.

Second, it updates a progress bar that tracks hase c
the engineer is to a complete set of corresponderides
feature was introduced at the request of integnatiogi-
neers working on large schema integration probléras
involve several dozen iterations.

Once all schema elements have been marked as com-
plete, the final set of correspondences could tezl ue
guide the generation of a more detailed mapping- Ha

played based on whether it is human-generated er mamony provides neither a mechanism for authoringecod

chine-suggested. The final filter displays, forleachema
element, those links with maximal confidence (ulyual
single link, but ties are possible).

The node filters include a depth filter and a e fil-
ter. The former enables only those schema elentbats
appear at a given depth or above. For examplen iBR
model, entities appear at level 1, while attributes at
level 2. Thus, using this filter, the engineer ¢acus ex-
clusively on matching entities.

The sub-tree filter enables only those elementsapa
pear in the indicated sub-tree. For example, iher fcan
be used to focus one’s attention on the ‘Facilgub-
schema. By combining these filters, the engineer rea
strict her attention to the entities in a given-sahema.

4.3. Iterative Development
Harmony supports iterative refinement through two

mechanisms. First, the engineer can rerun the Hayrmo
engine, which can learn from her feedback. Sectimal,

snippets, nor a code generation feature; thesedwaud
plicate commercial capabilities. Instead, we areebisp-
ing the integration workbench to couple our matghin
tools (and GUI) with commercially-available mapping
products.

5. Integration Workbench

Our attempts to integrate Harmony with other schema
integration tools revealed a key barrier to intemability.
Whereas schema integration experts trumpet thenadva
tages of a modular, federated architecture thagemts a
unified view of multiple data sources, we have aygplied
that same insight when we develop our own systems.
While some vendors may be moving in this direction
ternally to support integration of their own tootbey
have not published their approaches or interfathsre
are obvious advantages to user organizations aral sm
software companies to developingtandard framework
for combining schema integration tools. We propthse

engineer can mark sub-schemata as complete. We noviollowing as a way to initiate discussion that abigad

describe these two mechanisms.

When the Harmony engine is invoked after some cor-

respondences have been explicitly accepted or tegjec
(i.e., set to +1 or —1), this information is passedthe

toward development of such a standard.

At the core of our workbench proposal is an intégra
blackboard, which is a shared knowledge repositiuig-
diating between the blackboard and the varioussahe

engine and used in two ways. First, each candidateintegration tools is a workbench manager. The manag

provides several services including transaction agen
ment, event services and query evaluation. Thewirtig
sections describe the blackboard and manager.

5.1. Integration Blackboard

The integration blackboard (IB) is a shared repogit
for information relevant to schema integration thsatn-
tended to be accessed by multiple tools, includicige-
mata, mappings, and their component elements. \We pr
pose using RDF [23] for the IB, because: 1) it &unal

for representing labeled graphs, 2) one can use RDF

Schema to define useful built-in link types whildl ©f-
fering easy extensibility, 3) it is vendor-indepent and
4) it has significant development support.

Source Schema

containstelement

[firstName] [lastName] [subtotal]

Target Schema

shippinginfo

contains- contains-

attribute

Figure 2: Sample schema graphs

The basic contents of the IB are schema graphs and

mapping matrices (an approach also taken in [1oqw-
ever, in RDF, any element can be annotated; wehise
feature to enrich the graphs and matrices with tamfdil
information. We predefine certain annotations using
controlled vocabulary (these terms appeanairs serif).

5.1.1. Schemata: The IB represents a schema as a di-
rected, labeled graph. The nodes of this graphespand
to schema elements. In the relational model, tlese
ments include relations, attributes and keys. InLXkhey
include elements and attributes.

schema elements. For example, in the relationalemod
contains-table edges are used to link a database to the
tables it contains. Tables are linked to attribwi@scon-
tains-attribute edges. In XML, elements are linked to sub-
elements viaontains-element edges, and to attributes via
contains-attribute edges. For many schema languages, the
edge-types are specified by the modeling language,
with ontologies they are extensible.

Whereas schema elements can be annotated arpjtraril
we identify three edge labels of particular impocda to
schema importing and matching utilitiesime, type and

The edges of a schema graph correspond to strlicturadocumentation. Import tools populate these metadata so

relationships among the schema elements. Theses adge

that they can be used by schema matchers to igexuif

object properties whose subject and object are bothtential correspondences.

code=
let $shipto := $purchOrd/shipTo

return
<shippinginfo total =
"{ data($shipto/subtotal) * 1.05 }">
{
for $fName in $shipto/firstName,
$IName in $shipto/lastName
return
<name>{
concat($IName, concat(", ", $fName))
}</name>
}
</ShippingInfo>

shippinginfo
is-complete=false
code=

name
is-complete=false
code=
concat($IName,
concat(", ", $fName))

total

is-complete=false

code=

data($shipto/subtotal)
*1.05

shipTo
is-complete=false
variable=$shipto

confidence=+0.8
user-defined=false

confidence=—0.4
user-defined=false

confidence=—0.6
user-defined=false

firstName
is-complete=true
variable=$fname

confidence=-1
user-defined=true

confidence=+1
user-defined=true

confidence=-1
user-defined=true

lastName
is-complete=true
variable=$Iname

confidence=-1
user-defined=true

confidence=+1
user-defined=true

confidence=-1
user-defined=true

subtotal
is-complete=true
variable=$shipto/subtotal

confidence=-1
user-defined=true

confidence=—1
user-defined=true

confidence=+1
user-defined=true

Figure 3: Sample mapping matrix in which every component has been annotated

Sample schema graphs appear in Figure 2. In thie nex

5.1.3. Integration Blackboard Enhancements. We

section we present a sample mapping from the sourcecurrently assume that the blackboard capturesnrdton

schema to the target schema.

5.1.2. Mappings: Inter-schema relationships can be
represented conceptually agmapping matrix. This ma-
trix consists of headers (describing source angketagle-
ments) plus content: a row for each source elemedta
column for each target element. (Note that whetbas
structure can easily be interpreted as a matrixstwee
this matrix using RDF.)

For example, the mapping matrix for the schemata in
Figure 2 contains four rows and three columns,hasve
in Figure 3. Each cell in the mapping matrix ddsesi a
potential correspondence between a source elemena a
target element.

Mapping elements are also annotated. First, edtlsce
annotated withconfidence-score, which ranges from -1
(definitely not a match) to +1 (definitely a matcland
is-user-defined. This latter annotation is true for any cor-
respondence provided by the user (for example aw-dr
ing a link between two elements), and the assatiaie-
fidence-score is £1. When a match algorithm is executed,
is-user-defined is false, and theonfidence-score falls in
the range (-1,+1).

Each row is further annotated withvariable-name.
Each column is annotated witlode that references these
names. Finally, the matrix as a whole hasde annota-
tion, which represents the mapping from sourceatget.
Additional annotations are possible; for examplar-H
mony annotates rows and columns witkcomplete to
track progress. The relationship between thesetations
and the mapping matrix appears in Figure 3.

() (s |

Tool In

Schema
Matcher

Schema

Schema Code
Loader Mapper Generator

terface

| Sjuang

Workbench Manager

Integration Blackboard
(stored in RDF)

K Integration Workbench /

Figure 4: Workbench Architecture

about the source and target schemata, as welleasuth
rent state of the mapping that relates the sourt¢e(the
target. Future goals include the following.

The blackboard should maintain a library of map-
pings, partly to facilitate mapping reuse, but aso

a resource for some matching tools.

Schemata inevitably change; the blackboard should
track schemata across versions.

Mappings are also refined over time, especially
once they are tested on real data. The blackboard
should maintain mapping provenance.

Based on Section 4.2, the blackboard should allow
contextual information, such as focus on a particu-
lar subschema, to be shared across tools.

The blackboard should be shared across multiple
workbench instances.

5.2. Workbench M anager

All interaction with the IB occurs via the workbdnc
manager, which coordinates matchers, mappers, tmpor
ers, and other tools. The manager provides segeral
vices: First, it provides transactional updateshe IB.
Second, following each update, it notifies the ottomls
using an event. Third, the manager processes adumc
ries posed to the IB

A single-user version of the workbench architecture
appears in Figure 4. Ultimately, we envision therébe
one IB for each community of interest—i.e., a set of
stakeholders “who must exchange information in pitirs
of their shared goals, interests, missions, orness proc-
esses” [24]. Each integration engineer would hage h
own instance of the integration workbench contajnin
single manager and multiple tools.

5.2.1. Tools: We focus on four kinds of tools: loaders,
matchers, mappers and code-generators. The first tw
tools support the first two phases of schema iatégr.
Given the complexity of schema mapping, we separate
steps 4)—7), in which the mapping is produced presad,
from steps 8) and 9), in which code is generated.

Loaders are used during schema preparation to parse
schema from a file, database or metadata repogitory
cluding ancillary information such as definition®rh a
data dictionary) into the internal representatiaedi by
the IB. When the user invokes a loader, that tdates
the new objects in the 1B, which extends the magppna-
trix accordingly and advises the other tools viaaeant.

Schema matching can be performed manually, agis th
case for most commercial tools, or semi-automayical
(Harmony supports both approaches.) A match toel up
dates the cells of the mapping matrix. When cowesp

dences are generated automatically, all of thednt®ns
with the IB are wrapped in a transaction; no events
generated until the mapping matrix has been updated

5.3. Case Study

We have begun validating the integration workbench

Schema mapping can also be performed manually orpy using it to allow Harmony and BEA's Aqualogimto

automatically [25], although we are not aware of an
commercial automatic mapping tools. A mapping tool
updates thecode associated with each column. Both
matchers and code generators may need to listehdee
events to update their internal state.

Finally, a code-generator assembles the code associ

ated with each column into a coherent whole. T,

to interoperate. Both tools support schema loadind
manual matching. Harmony also supports automated
matching, but neither mapping nor code generattam-

versely, the Aqualogic development environment sup-

ports manual mapping and automatic code generation.
In our pilot study, Aqualogic is the first tool lached
by the workbench. Within Aqualogic, the integration

code-generator must understand how to assemble codengineer can load schemata, connect source elerents

shippets based on the structure of the target sztiyeaph
(e.g., Clio [2]).

target elements, and initiate the automatic geiwaradf
XQuery code. Alternatively, she can choose a sebé-tr

This enumeration of tools is by no means complete. (including an entire schema) and request recomniende

Another tool might attempt to enforce domain-specif
constraints on the mapping matrix. Or, a tool migo-
tate a schema with information culled from external
documentation. All that is required is that a tguople-
ments the tool interface.

The tool interface defines two methods. First, @l to
must provide arnnvoke method. The implementation of
this method might launch a GUI (for mapping), ingok
match algorithm, or display a file selection dial¢i
load). Second, when the workbench starts, eachhas|
the option of implementing anitialize method. Generally,
this is done when a tool needs to register for esven

matches from Harmony. The workbench launches the
Harmony GUI and begins an IB transaction. The irsteg
tion engineer uses Harmony to automatically propose
likely correspondences, which she accepts or rejesing

the GUI. Once satisfied, she exits Harmony to cetepl
the IB transaction.

Aqualogic then updates its internal representation
based on the changes made in Harmony. The integrati
engineer also provides element and attribute tosnmsf-
tions that are incorporated into the generated X@Qut
any point this code can be tested on sample dodsmen

This combination of tools addresses all of the dkssi
ata presented in Section 4.1. Harmony allows ttegia-

5.2.2. Events. Tools generate events whenever they tion engineer to focus on varying levels of graritya
make any change to the contents of the IB. The work while matching, and AqualLogic supports all of the

bench manager propagates these events to allowoahy
to respond to the update. A different type of evsrgen-
erated for each major component of the IB so thiaioh
can register for only those events relevant to tibait

A schema loader generateschema-graph event when
it imports a schema into the workbench. Any toalhva
GUI listens for these events and refreshes thdajisp

A mapping-cell event is generated when a user manu-
ally establishes a correspondence. Multiple sucknisv
are triggered by an automatic matching tool. A niragp
tool can listen for these events to propose a daeli
transformation, such as a type conversion.

schema integration subtasks. Both tools suppadtite
refinement when used independently, as well as when
combined. The next step will be to try the combiteal

on real government schema integration problems.

6. Conclusions and Future Work

Data integration is a widely researched problemyHo
ever, we described ways in which enterprise datgima-
tion differs from the situations usually encounteie the
research literature (e.g., documentation is widsmhil-
able, instance data less so). Other pragmatic comsme

Conversely, when a mapping tool establishes a-trans yiscssed how best to represent coding schemesego t

formation, it generates aapping-vector event. Match
tools listen for these events to synchronize th@pimg
cells with the updated row or column. A code getiena
tool similarly listens for these events to synclizenthe
assembled mapping. The code generation tool, in, tur
generates anapping-matrix event when the user manually
modifies the final mapping.

can be leveraged by integration tools.

We also enumerated the subtasks involved in dé&ta in
gration, partitioned to reflect the behavior ofeigtation
engineers and the support provided by existingstottis
task analysis is intended to guide tool developragnit to
enable comparisons across tools and integratidigre.

Based on our observations and task modeling, we ide

Additional interactions are possible, but generally jifeq important design goals for integration todipecifi-

speaking, a tool listens for events immediatelytngasn
or downstream in the task model. It is necessatisten
in both directions given the iterative behavioratésed in
Section 4.3 and illustrated using a case study.

cally, we articulated the need to support all af thsks
involved in schema integration. One approach totimge
this need is to bring multiple tools to bear.

Unfortunately, assembling several tools to sol\mea
ticular integration problem is daunting. Our comiityn
needs to adopt the principle of assembling systieom
modular components and integrating existing comptme

To facilitate tool interoperation, we proposed qem,
extensible integration workbench. This architectpre-
vides a unified view of schemata and mappings sb th
integration tools can more easily communicate. Ve b
lieve that both tool vendors and database researche
benefit from this arrangement. We hope that thisppsal
will generate discussion that ultimately could l¢adtan-
dards (e.g., for mapping matrices) for data intégnetool
interoperation.

Since our overarching goal is to improve the lieés
integration engineers, our next task is to perfarosabil-
ity analysis of the Harmony/Aqualogic integratiaumts.
We will measure the extent to which software tcsdse
time on each of the schema integration subtasks.

7. Acknowledgements

We would like to thank Chris Wolf for his work ddeping
the Harmony GUI, Mike Carey and Sachin Thatte fagirt in-
put, and the anonymous reviewers for their feedback

8. References

[1] E. Rahm and P. A. Bernstein, "A Survey of Ap-
proaches to Automatic Schema Matching,” The VDLBrdal,
vol. 10, pp. 334-350, 2001.

[2] R. Miller, M. A. Hernandez, L. M. Haas, L. Ya@, T.
H. Ho, R. Fagin, and L. Popa, "The Clio Project: ndging
Heterogeneity," SIGMOD Record, vol. 30, pp. 78-3301.

[3] D. Aumueller, H. H. Do, S. Massmann, and E. Rah
"Schema and ontology matching with COMA++," presenét
Proceedings of the ACM SIGMOD International Confexe on
Management of Data, Baltimore, MD, 2005.

[4] J. Hammer, H. Garcia-Molina, S. Nestorov, R.
Yerneni, M. M. Bruenig, and V. Vassalos, "Templ&&sed
Wrappers in the TSIMMIS System," presented at Rrdiceys
ACM SIGMOD International Conference on Managemeht o
Data, Tucson, AZ, 1997.

[5] A. Doan, P. Domingos, and A. Y. Halevy, "Leargi
to Match the Schemas of Databases: A Multistrafggyroach,"
Machine Learning, vol. 50, pp. 279-301, 2003.

[6] L. J. Seligman, A. Rosenthal, P. E. Lehner, &d
Smith, "Data Integration: Where Does the Time GdEEE
Database Engineering Bulletin, vol. 25, pp. 3-1I)2

[71 N. Ashish and C. A. Knoblock, "Wrapper Geneuvati
for Semi-structured Sources," SIGMOD Record, vél. 2p. 8—
15, 1997.

[8] C. Batini, M. Lenzerini, and S. B. Navathe, @om-
parative Analysis of Methodologies for Database et Inte-
gration," ACM Computing Surveys, vol. 18, pp. 328431986.

[9] S. Cluet, C. Delobel, J. Siméon, and K. Smayaur
Mediators Need Data Conversion!," presented at SIBM
1998, Proceedings ACM SIGMOD International Confeseon
Management of Data, Seattle, WA, 1998.

[10] D. Florescu, A. Y. Levy, and A. O. Mendelzda-
tabase Techniques for the World-Wide Web: A Sutv&}G-
MOD Record, vol. 27, pp. 59-74, 1998.

[11] A. Pan, J. Raposo, M. Alvarez, J. Hidalgo, ahd
Vifa, "Semi-Automatic Wrapper Generation for Comaoredr
Web Sources," presented at Engineering Informa®igstems in
the Internet Context, Kanazawa, Japan, 2002.

[12] Y. Papakonstantinou, A. Gupta, H. Garcia-Malin
and J. D. Ullman, "A Query Translation Scheme fapR Im-
plementation of Wrappers," presented at Deductig @bject-
Oriented Databases, Fourth International Conference
DOOD'95, Singapore, 1995.

[13] L. Popa, Y. Velegrakis, R. Miller, M. A. Herndez,
and R. Fagin, "Translating Web Data," presented/labB
2002, Proceedings of 28th International ConfereoceVery
Large Data Bases, Hong Kong, China, 2002.

[14] R. Fagin, P. Kolaitis, R. Miller, and L. Popdata
Exchange: Semantics and Query Answering," preseatt&ata-
base Theory — ICDT 2003, 9th International Confeegnc
Siena, Italy, 2003.

[15] C. M. Wyss and E. L. Robertson, "Relationalnta
guages for Metadata Integration,” ACM TransactionsData-
base Systems, vol. 30, pp. 624-660, 2005.

[16] C. H. Goh, S. Bressan, S. E. Madnick, and Mg8,
"Context Interchange: New Features and Formalisonsthe
Intelligent Integration of Information," ACM Transigons on
Information Systems, vol. 17, pp. 270-293, 1999.

[17] E. Sciore, M. Siegel, and A. Rosenthal, "Usi@g-
mantic Values to Facilitate Interoperability AmoHgterogene-
ous Information Systems," ACM Transactions on DasabSys-
tems, vol. 19, pp. 254-290, 1994.

[18] J. D. Ullman, "Information Integration Usingogical
Views," presented at Database Theory—ICDT '97, fithrha-
tional Conference, Delphi, Greece, 1997.

[19] P. A. Bernstein, S. Melnik, M. Petropoulos,da@.
Quix, "Industrial-Strength Schema Matching," SIGMOREe-
cord, vol. 33, pp. 38-43, 2004.

[20] H. H. Do and E. Rahm, "COMA - A System for Xile
ble Combination of Schema Matching Approaches,'seméed
at VLDB 2002, Proceedings of 28th International féoence
on Very Large Data Bases, Hong Kong, China, 2002.

[21] J. Madhavan, P. A. Bernstein, and E. Rahmn&sie
Schema Matching with Cupid," presented at VLDB 20Rfo-
ceedings of 27th International Conference on Veayge Data
Bases, Roma, Italy, 2001.

[22] S. Melnik, H. Garcia-Molina, and E. Rahm, "dan-
ity Flooding: A Versatile Graph Matching Algorithtnpre-
sented at Proceedings of the 18th Internationalféence on
Data Engineering, San Jose, CA, 2002.

[23] D. Brickley and R. Guha, "RDF Vocabulary Déper
tion Language 1.0: RDF Schema," World Wide Web ©ons
tium (W3C®), 2003. http://www.w3.0rg/TR/rdf-schema/

[24] J. P. Stenbit, "Department of Defense Net-@ent
Data Strategy,” 2003. http://www.defenselink.milkig/cio/
doc/Net-Centric-Data-Strategy-2003-05-092.pdf

[25] 1. F. llyas, V. Markl, P. J. Haas, P. BrowmdaA.
Aboulnaga, "CORDS: Automatic Discovery of Corredas and
Soft Functional Dependencies," presented at Priegedf the
ACM SIGMOD International Conference on Managemeht o
Data, Paris, France, 2004.

