
MITRE 2010

Handbook for Implementing Agile in
Department of Defense Information
Technology Acquisition

Carlton Northern
Dr. Kathleen Mayfield
Robert Benito
Michelle Casagni

15 December 2010

Approved for public release: 11-0401.

Distribution Unlimited.

Copyright © 2010 - The MITRE Corporation.

All rights reserved.

The author's affiliation with The MITRE Corporation is provided for identification
purposes only, and is not intended to convey or imply MITRE's concurrence with, or

support for, the positions, opinions or viewpoints expressed by the author.

MT R 1 0 04 8 9

MIT RE T E C HN IC A L R E P O R T

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 11-0401

MITRE 2010

This page intentionally left blank.

MITRE 2010

Approved By:

Name and Title of Approval Signature Date

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 iii

Abstract

The ability to rapidly produce and deploy information technology (IT) based capabilities in the

United States Department of Defense (DOD) that meet the ever-evolving needs of the Warfighter

is a challenging endeavor. DOD acquisition projects typically follow a highly structured, top-

down, step-by-step process, based on the assumption that an end state is known. Unfortunately,

this is rarely the case in modern IT projects. Long development cycles and rapidly changing

requirements make it difficult to properly identify the end state of an IT system at the onset of

the project.

Agile development is an industry accepted software development practice that is now beginning

to emerge in Government programs. This report includes background information on Agile

principles and methodologies from peer-reviewed industry and academic materials, MITRE

technical reports, as well as interviews with members of DOD Programs that have implemented

Agile development methodologies. This report describes how Agile development principles can

be applied to an IT systems engineering effort, and explains how an Agile methodology could be

used to benefit DOD Government acquisition and development programs. This report is

intended to be used as a guidebook, to provide specific recommendations regarding the

implementation of an Agile methodology. This handbook will be a living document and will be

updated as lessons are learned.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 iv

Acknowledgements

The authors would like to thank the government and MITRE staff members who took the time

help in the creation of this handbook. This includes all those who shared their expertise through

interviews, as well as those who took the time to read the document and provide feedback.

These contributors include, but are not limited to: Kevin Buck, Patricia Carbone, Dr. Robert

Cherinka, Dave Edwards, Kevin Gunn, Dr. John Keller, and Dr. Jody Mandeville.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 v

Table of Contents

1 Introduction ... 1-1

1.1 Purpose .. 1-1

1.2 Intended Use of Document .. 1-1

1.3 Naming Conventions ... 1-1

1.4 Document Organization .. 1-2

2 The Software Development Process .. 2-3

2.1 The Pitfalls of Traditional Software Development ... 2-3

2.1.1 A High Rate of Failure .. 2-3

2.1.2 Assumes Well-Defined Requirements and Overall Stability 2-3

2.1.3 Linear, Formal Process (―Heavy Process‖) ... 2-4

2.2 IT Development as it Relates to the Department of Defense 2-5

3 Agile Software Development .. 3-6

3.1 What is Agile Software Development? ... 3-6

3.1.1 Agile History ... 3-6

3.1.2 Agile Principles ... 3-6

3.1.3 Highly Disciplined Development Process ... 3-8

3.2 What Agile Software Development is Not .. 3-9

3.3 Agile Methods ... 3-10

3.3.1 Extreme Programming (XP) .. 3-10

3.3.2 Scrum ... 3-12

3.3.2.1 Scrum Roles ... 3-12

3.3.2.2 Scrum Process .. 3-12

3.3.3 Lean Software Development ... 3-13

4 Guidelines for Embracing Agile .. 4-15

4.1 Deciding to ‗Go Agile‘ .. 4-15

4.2 Selecting the Methodology or Methodologies .. 4-17

4.3 New Development and Integration .. 4-18

4.4 Defining ―Done‖ .. 4-19

4.5 Agile Training and Using an Agile Coach .. 4-19

4.6 Distributed Teams ... 4-20

4.7 Scaling Agile for Large Projects ... 4-21

4.8 Agile In the Enterprise .. 4-21

4.9 Agile Risk Management .. 4-22

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 vi

4.10 Agile Contracts .. 4-23

4.11 CMMI and Agile ... 4-24

5 Agile/Rapid Acquisition ... 5-27

6 Development Best Practices ... 6-30

6.1.1 Expressive Code .. 6-30

6.1.2 Regression Testing .. 6-30

6.1.3 Continuous Integration .. 6-31

6.1.4 Pair Programming .. 6-31

7 Tools 7-33

7.1 Development Tools ... 7-33

7.2 Agile Project Management Tools .. 7-33

7.2.1 Trade Study Methodology ... 7-34

7.2.2 Summary of Tool Results .. 7-36

8 Case Studies ... 8-38

8.1 Program A ... 8-38

8.1.1 Project Summary ... 8-38

8.1.1.1 Summary of the Agile Methodology and Related Processes 8-38

8.1.2 Challenges ... 8-39

8.1.3 Benefits .. 8-39

8.1.4 Lessons Learned .. 8-39

8.2 Joint Operational Planning and Execution System (JOPES) 8-39

8.2.1 Project Summary ... 8-39

8.2.1.1 Summary of the Agile Methodology and Related Processes 8-40

8.2.2 Challenges ... 8-40

8.2.3 Benefits .. 8-40

8.2.4 Lessons Learned .. 8-40

9 Systems Engineering Plan Template ... 9-41

9.1 Agile Systems Engineering Plan Introduction .. 9-41

9.2 Capability Requirements Analysis .. 9-42

9.2.1 User Stories ... 9-42

9.2.2 Storyboarding and Mockups ... 9-44

9.2.3 Prioritization .. 9-45

9.2.4 Capability Estimation .. 9-45

9.3 Planning ... 9-46

9.4 Sprint Execution .. 9-47

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 vii

9.4.1 Sprint Development ... 9-47

9.4.2 Sprint Integration ... 9-48

9.4.3 Sprint Testing .. 9-48

9.4.4 Sprint Retrospective .. 9-49

9.4.5 Sprint Review .. 9-49

9.5 Tools .. 9-49

9.6 Roles .. 9-50

9.6.1 Product Owner ... 9-50

9.6.2 ScrumMaster ... 9-50

9.6.3 Integration Team ... 9-51

9.6.4 Stakeholders .. 9-51

9.6.5 Users .. 9-51

9.7 Trade Studies ... 9-51

10 Conclusion ... 10-53

11 References ... A-1

Appendix A Results .. A-6

A.1 SoftwareForge .. A-6

A.2 Atlassian JIRA with GreenHopper ... A-8

A.3 Agilo Free ... A-10

A.4 ScrumWorks Pro .. A-11

A.5 tinyPM .. A-13

A.6 ScrumNinja ... A-15

A.7 ScrumDesk ... A-16

A.8 ScrumWorks Basic ... A-17

A.9 XPlanner+ ... A-19

A.10 Rally ... A-20

Appendix B CMMI and Agile Paradigm Comparison ... B-21

Appendix C Recommended Reading .. C-24

C.1 Websites ... C-24

C.2 Books .. C-24

Appendix D Glossary ... D-26

Appendix E Use Case Template .. E-28

Appendix F Program of Record Technology or Initiative Transition Barriers/EnablersF-29

F.1 Funding ... F-29

F.2 Design ... F-30

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 viii

F.3 Documentation ... F-33

F.4 Test ... F-35

F.5 Program of Record ... F-36

F.6 Sustainment .. F-38

F.7 Advocacy .. F-40

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 ix

List of Figures

Figure 2-1: Project Uncertainty and Cost Comparison over Time (Project Management Institute,

2008, p. 17) ... 2-4
Figure 2-2: Recommended Agile Acquisition Process ... 2-5
Figure 3-1: People Focused Aspects of Agile .. 3-8
Figure 3-1 eXtreme Programming Practices (source: xprogramming.com) 3-11
Figure 3-2 Scrum Process (source: Scrum Primer V1.2) ... 3-13

Figure 4-1 Dimensions Affecting Method Selection (source: Boehm & Turner, 2004, p. 56.

Note: Personnel description was modified slightly for ease of understanding)........................ 4-16
Figure 4-2: Scrum and XP (source: http://www.controlchaos.com/about/xp.php) 4-18
Figure 5-1 New Acquisition Process .. 5-28
Figure 5-2 Program of Record Technology or Initiative Transition Barriers/Enablers 5-29

Figure 6-1 Java For Loop Without Iteration Design Pattern .. 6-30

Figure 6-2 Java For Loop With Iteration Design Pattern ... 6-30
Figure 9-1: Agile Process.. 9-42

Figure 9-2 Wire-frame Mockup of iTunes Cover Flow Feature (source:

http://www.balsamiq.com/products/mockups/examples#mytunez) ... 9-44
Figure 9-3: Iteration Planning Meeting Flow ... 9-46

Figure 9-4: Sample Burn Down Chart .. 9-48
Figure G-10-1 Program of Record Technology or Initiative Transition Barriers/Enablers F-29

file:///C:/Documents%20and%20Settings/CNORTHERN/Desktop/Agile%20Implementation%20Handbook%202-3-11.docx%23_Toc284496585
file:///C:/Documents%20and%20Settings/CNORTHERN/Desktop/Agile%20Implementation%20Handbook%202-3-11.docx%23_Toc284496590
file:///C:/Documents%20and%20Settings/CNORTHERN/Desktop/Agile%20Implementation%20Handbook%202-3-11.docx%23_Toc284496597

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 x

List of Tables

Table 4-1Rank Ordered Agile Success Factors (source: Chow & Cao, 2008, p. 970) 4-16

Table 7-1 Tool Evaluation Criteria ... 7-34
Table 7-2 Tool Study Results ... 7-36
Table 9-1 Cost Effectiveness Parameters ... 9-52
Table 10-1 CMMI and Agile Paradigm Comparison Table .. B-21
Table 10-2 Recommended Websites Table ... C-24

Table 10-3 Recommended Books Table .. C-24
Table 10-4 Use Case Template .. E-28

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 xi

This page intentionally left blank.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 1-1

1 Introduction
Information Technology (IT) plays a large part in the Department of Defense (DOD), it offers

immense capability to weapons systems, infrastructure and business systems. In 1970, software

accounted for only 20 percent of weapon system functionality, whereas, in 2000 it accounted for

as much as 80 percent (Defense Science Board, 2000). Unfortunately, IT systems development

in the DOD is fraught with budget-overruns and time delays in achieving initial operational

capability (IOC). According to a July 2008 Government Accountability Office (GAO, 2008a)

report, 48 percent of the federal Government's major IT projects have been rebaselined at least

twice. Another GAO (2008b) report cites that the overall portfolio of DOD IT programs has

experienced a 21-month delay in delivering initial operational capability to the war fighter, and

12 percent are more than four years late. Over the last decade, commercial industry has

responded to similar dismal statistics regarding IT projects by implementing Agile software

development methods (Johnson, 2009).

Agile software development is an industry accepted software development practice that is now

beginning to emerge in Government programs. This report describes how Agile development

principles can be applied to a IT systems engineering effort, and explains how an Agile

methodology could be used to benefit DOD Government acquisition and development programs.

1.1 Purpose

The purpose of this document is to provide DOD programs with guidance on implementing an

Agile process. This document presents the findings and recommendations of multiple sources to

include MITRE technical reports, peer reviewed journals from industry and academia, open

source materials, interviews with members of DOD Agile teams, and a market survey of Agile

project management tools.

1.2 Intended Use of Document

This handbook is geared towards DOD projects; however it can be adapted and used by any

program within the government. For DOD program managers, this handbook will provide details

on how to apply Agile techniques to a DOD IT intensive program. For program managers and

developers it can be used to gain an understanding of Agile principles, processes, methods and

best practices. It will provide guidance and insight into tools and techniques that can be

introduced to help a program become more agile in how they develop, integrate, and deliver

capabilities. This handbook can also provide program managers with the necessary information

to help make decisions regarding whether or not to use Agile in a project.

The document can be read end-to-end, or the reader can selectively read only what is of interest

to them using the available hyperlinks or Table of Contents.

1.3 Naming Conventions

The following naming conventions are used in this document:

 The term "Agile" will be capitalized when it refers to the Agile software development

process, and will be lower case when being used as a verb or to describe an action or activity.

 When referring to the role, the titles for Product Owner and ScrumMaster will be capitalized.

 When referring to a specific instance, the term "sprint" will be capitalized, such as Sprint 1,

all other times the term will be lower case.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 1-2

1.4 Document Organization

Section 2

The Software
Development
Process

In this section we describe the traditional software development process, its
shortcomings, and how it relates to the Department of Defense.

Section 3

Agile Software

Development

This section introduces Agile Software Development, describing its history and
principles, and summarizes Extreme Programming, Scrum, and Lean
Development.

Section 4

Guidelines for

Embracing Agile

This section discusses critical areas of that should be explored for a Program of
Record when using an Agile Development methodology. These subjects include
how to make the decision to go 'Agile'; deciding on an Agile methodology;
defining "done"; team skills and training; how to write Agile contracts; Agile and
CMMI; how to manage risk with Agile; Agile in the Enterprise and how to scale it;
and lastly, using Agile with distributed teams.

Section 5

Agile/Rapid

Acquisition

In this section we define and summarize the processes of Agile/Rapid Acquisition
and how they relate to a Program of Record.

Section 6

Development

Best Practices

In this section we discuss best practices from Agile development methodologies
for developing code.

Section 7

Tools

In this section, we take a look at Agile tools which aid in development of
software, and we then discuss the results of a trade study completed on Agile
project management tools to determine which tools are well suited for use in the
DOD environment.

Section 9
Systems
Engineer Plan
Template

This section aims to ease the burden of creating a Systems Engineering Plan by
providing an Agile methodology to use as a template for the creation of a
program's Systems Engineering Plan.

Section 10
Conclusion

This section contains the summary and recommendations of this handbook.

Section 11

References
This section contains the references that are cited in this handbook.

This section includes two case studies of DOD programs that are using

Agile methodologies and processes.

Section 8

Case Studies

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 2-3

2 The Software Development Process

2.1 The Pitfalls of Traditional Software Development

Software development methodologies have evolved since the early 1960‘s mainframe computing

era. They run the gamut of no formal process at all (e.g. early ‗code and fix‘ development), to

rigid development processes based on extensive up-front planning, to more recent processes that

embrace change throughout the development cycle (Surendra, 2008). DOD acquisition projects

typically follow a highly structured, top-down, step-by-step process, based on the assumption

that an end state is known. Unfortunately, this is rarely the case in information technology (IT)

projects. IT, as defined in this report, is any system or subsystem of hardware and/or software

whose purpose is acquiring, processing, storing, or communicating information or data (Defense

Science Board, 2009). This section describes the pitfalls of traditional software development and

why these processes can lead to underestimated costs, schedule overruns and ultimately,

dissatisfied customers and users.

2.1.1 A High Rate of Failure

Traditional software development methodologies, defined as a rational, highly documented,

plan-driven processes, such as waterfall and spiral, use highly controlled and predictable

frameworks to guide projects to completion. The intent of these approaches is to manage

uncertainty by clearly defining a desired end state, and developing up-front, detailed plans to

achieve this end state. This rigidity prevents projects from readily responding to emerging

technical and functional requirements (Lindstrom & Jeffries, 2004).

The Standish Group (2009) reports that over 68% of IT projects are delivered late, over budget,

or do not fully address the required system functionality (Johnson, 2009). In 2008 alone, the US

Government placed over 400 software projects, at a cost of $25.2 billion, on a management

watch list because they were failing or performing poorly (United States General Accounting

Office, 2008a). Unfortunately, success or failure is typically related to the ‗iron triangle‘ of cost,

scope, and schedule rather than the customer‘s satisfaction with the end product (Fernandez &

Fernandez, 2008). With respect to DOD acquisition, where the focus is on the Warfighter,

software project failures are not only measured by statistics or dollars, but ultimately, by their

inability to perform mission critical capabilities, putting lives at risk.

2.1.2 Assumes Well-Defined Requirements and Overall Stability

IT systems development can be fraught with uncertainty and ambiguity making it difficult to

accurately define the end state up front. This may be the main reason for the high rate of failure

on IT development projects (Atkinson, Crawford, & Ward, 2006). There are several contributing

factors to the high level of uncertainty. The product is intangible or abstract, which makes it

difficult for users to define what they want up front. This can be complicated even more by

stakeholders with differing objectives and perceptions of the problem space and what they think

the system should do. These differences can increase uncertainty and misunderstanding. In

addition, software development has a high level of technical complexity due to numerous

internal and external interrelationships in the code and interfaces, which can result in unforeseen

issues. It is hard to predict the impact of these factors at the beginning of the project.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 2-4

Figure 2-1: Project Uncertainty and Cost Comparison over Time (Project Management Institute, 2008, p. 17)

In a generic project life cycle as depicted in Figure 2-1, risk, uncertainty, and stakeholder

influence are typically highest at the start of the project (Project Management Institute, 2008, p.

17). Yet in many IT development projects, this is when detailed project planning and design

documentation is completed and baselined. In other words, planning and design is completed

when the least information is known. Based on this model, as understanding increases, the cost

of making corrective changes increases – creating the need to ‗stay on track‘ with a sub-optimal

plan rather than developing the optimal product for the customer. This creates a situation in

which the team is constantly fighting with reality to keep the plan on track.

2.1.3 Linear, Formal Process (“Heavy Process”)

Some form of methodology is needed to manage the multitude of tasks associated with an IT

development project; however the approach chosen should be matched to the needs of the

project. Traditional software development approaches have been considered ‗heavyweight‘

processes defined by up-front planning and formal documentation, and functional teams that

develop the product in a linear phase approach (requirements, design, etc.). This method was

referred to as a relay race by Takeuchi and Nonaka (1986) due to the way the product is handed

off from one functional team to another at the end of each phase. This may be acceptable for

incremental product improvement or enhancement to an existing, well-understood product, but

can actually hinder creativity on a new product effort (Harmancioglu, McNally, Calatone, &

Durmusoglu, 2007).

Additionally, decisions are not made during development phases; rather, they are delayed until

the end of each phase, reducing the project‘s ability to adapt to change (Steffens, Martinsuo, &

Artto, 2007). Because of these considerations, a plan-driven, heavyweight process may not be

the best choice on a highly innovative software development effort. This caution can be further

justified by comparing the level of control with team performance. Davis, Eisenhardt, and

Bingham (2009) explain that high control on well-defined projects is acceptable in a stable

environment; but not for a highly complex project because the environment is challenging and

chaotic. The team needs to be able to learn and adjust to this changing environment. Many

software development projects fail because they are more complex than what the project team

initially anticipated (Xia & Lee, 2004). Following a plan-based approach can hide this

complexity, and cause a project to spiral out of control.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 2-5

2.2 IT Development as it Relates to the Department of Defense

IT systems development of a Program of Record (POR) in the DOD adheres to the policies of

DOD Directive 5000.1 and Instruction 5000.2, and the processes detailed in the Joint

Capabilities Integration and Development System (JCIDS). These heavyweight processes were

designed for large weapon systems development, and are not necessarily appropriate for the

production of IT systems. Typically, the acquisition time frame is quite lengthy, as much as 5-10

years (Duquette, Bloom, & Crawford, 2008). This development cycle is too long for IT

programs, and is made worse by the practice of locking down detailed requirements at the

beginning of the project. By the time the product is finally fielded, the technology is dated and

the functionality needed 5 to 10 years before may no longer address the Warfighter‘s current

needs.

Excessive cost and schedule overruns on software projects have earned the attention of

government senior leadership and oversight authorities. In December 2008, modifications were

made to the DOD 5000 Directives and Instructions, and the JCIDS process which seek to reduce

uncertainty early in the development process. Specifically, the creation of the "IT Box" in the

JCIDS offers an alternate model to IT systems. The IT Box institutionalizes a process where the

Combatant Command has requirements validation authority to reprioritize, add, or delete non-

key performance parameter requirements. It also seeks to reduce the number of trips to the Joint

Requirements Oversight Council in hopes of reducing time to deliver Initial Operating Capability

(IOC). It is the opinion of the authors that these changes to the JCIDS process are a step in the

right direction, but they do not go far enough to significantly reduce the time to IOC.

Furthermore, the changes to the overall defense acquisition process include increased

documentation and review processes which may slow development and increase costs for IT

programs.

Figure 2-2: Recommended Agile Acquisition Process

Organizations such as the Defense Science Board (2009) and the National Academy of Sciences

(2009) recommend a fundamentally new acquisition process for information technology (IT)

programs that uses commercial Agile software development practices. Figure 2-2, from the

Defense Science Board report (2009, p. 48) suggests a process that includes continuous user

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 3-6

involvement, smaller iterations leading to releases within 18 months, and continuous testing.

This topic is discussed further in Section 5 Agile/Rapid Acquisition.

3 Agile Software Development

3.1 What is Agile Software Development?

3.1.1 Agile History

Agile methods, for which principles were agreed upon in the Agile Manifesto (Beck et al., 2001)

in 2001, actually took root decades before with the introduction of iterative and incremental

design and development and quality and productivity principles. These included Dr. Deming‘s

14 transformational points for management, which includes building in quality and breaking

down departmental barriers (Deming, 1982) and his Plan-Do-Study-Act (PDSA) empirical

model which included time-boxed, iterative, and incremental product development plans. These

timeless principles and practices, which began in manufacturing, are beginning to emerge in

software development practices.

As described by Barry Boehm in his 2006 paper titled ―A View of 20th and 21st Century

Software Engineering‖ software processes have evolved since the 1950‘s. Software

development began by using engineering practices similar to those of hardware development.

During the 1960‘s, this changed to a ‗code and fix‘ model, often resulting in code that was

difficult to maintain. In the 1970‘s, the Waterfall methodology was introduced to add structure

and order to the development process. This process was an iterative approach focused on finding

and fixing bugs as early in the process as possible. However, it was misconstrued as a strictly

sequential approach which was further reinforced by government contracting standards

(Waterfall model, 2010). The 1980‘s introduced software process maturity models, development

tools, and software reuse. The 1990‘s brought about new methods to support reduced time to

market constraints. Many of the early Agile methods emerged during this decade, which started

a shift from plan-driven to value-driven software development.

This emergence began during the 1990‘s and the individual Agile approaches came together in

2001 into what is known as the Manifesto for Agile Software Development (see

http://agilemanifesto.org/). This document, often referred to as the Agile Manifesto, describes a

set of beliefs and guiding principles of Agile development and creates an alliance among the

various methodologies.

3.1.2 Agile Principles

The Agile Manifesto describes the overarching beliefs of Agile software development (Beck et

al, 2001):

We are uncovering better ways of developing software by doing it and helping

others do it. Through this work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on the

left more.

http://agilemanifesto.org/

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 3-7

The authors augmented the manifesto with the following 12 principles for Agile software

(http://agilemanifesto.org/principles.html):

1. Our highest priority is to satisfy the customer through early and continuous delivery of

valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness

change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months, with

a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and support

they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity – the art of maximizing the amount of work not done – is essential.

11. The best architectures, requirements, and designs emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behavior accordingly.

Of significance is that two of the four manifesto items and five of the 12 principles are people-

oriented as demonstrated in Figure 3-1. This emphasizes that applying Agile methods is more

than simply having a different way for developing software; the human element is just as

important, as is delivering value to the customer rather than merely following a prescriptive

development or management process.

http://agilemanifesto.org/principles.html

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 3-8

1. Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software.

2. Welcome changing requirements, even late in development.

Agile processes harness change for the customer's competitive

advantage.

3. Deliver working software frequently, from a couple of weeks to a

couple of months, with a preference to the shorter timescale.

4. Business people and developers must work together daily

throughout the project.

5. Build projects around motivated individuals. Give them the

environment and support they need, and trust them to get

the job done.

6. The most efficient and effective method of conveying

information to and within a development team is face-to-

face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The

sponsors, developers, and users should be able to maintain a

constant pace indefinitely.

9. Continuous attention to technical excellence and good design

enhances agility.

10. Simplicity – the art of maximizing the amount of work not done

– is essential.

11. The best architectures, requirements, and designs emerge

from self-organizing teams.

12. At regular intervals, the team reflects on how to become

more effective, then tunes and adjusts its behavior

accordingly.

People-Focused Aspects of the Agile Principles

People-Focused Aspects of the Agile Manifesto

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan.

Figure 3-1: People Focused Aspects of Agile

3.1.3 Highly Disciplined Development Process

Agile methodologies require team members to be highly skilled and disciplined. Unlike

traditional software development methodologies where each phase of the life-cycle sequentially

informs the next, Agile methods perform these life-cycle phases essentially in parallel. A typical

Agile incremental development period will last anywhere from one to six weeks and could

include requirements analysis, design, development, testing, documentation and deployment.1

This requires team members to be intimately familiar with all phases of the software

development life-cycle and allows little time for ―learning-on-the-job‖.

Furthermore, the ability to write usable, fully-tested software in short periods of time implies

strong knowledge of the computing environment, including pertinent technologies, coding

standards, testing practices and design patterns. The decision to use web technologies, for

instance, implies that the team member have extensive knowledge of the HTTP protocol, HTML,

Javascript, server side scripting languages, and the associated coding, testing and deployment

practices of each of these constructs.

1
 This does not imply that upfront planning, analysis or design is not encouraged. They are encouraged, but should

be performed less rigorously than traditional development methods. The Product Backlog from the Scrum

methodology is an example of such up-front planning and analysis,

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 3-9

This is not to say that only team members who have previous experience are eligible to work in

Agile teams. Less experienced team members are appropriate, but should not make up the

majority of the team. Pair programming is a good technique that will be discussed in more detail

in Section 6.1.4 that helps less experienced team members get up to speed on a project.

Furthermore, skill building is often encouraged of developers during time between iterations of

development. This helps to ensure that the technology to be used during an iteration is better

understood by those who are responsible for implementing it.

Lastly, it is up to the team to determine the necessary and sufficient level of documentation and

testing to be performed. This is determined by the definition of "done", discussed more

thoroughly in Section 4.6. It takes experience and discipline to determine not just what needs to

be done, but more importantly, what doesn‘t need to be done. One all too common pitfall of IT

development is not knowing when to stop. Test Driven Development (TDD) is one Agile

practice in which no code is written unless it attempts to satisfy the requirements of a failing test.

In other words, tests are created first followed by code. This provides traceability from

requirements, to tests, to code, and ensures that a proper level of testing and pertinent code is

written. To perform properly, TDD requires an extreme amount of discipline from the

developer.

3.2 What Agile Software Development is Not

While it is important to describe what Agile software development is, it is also a worthwhile

exercise to discuss what Agile software development is not. Agile methods are not a single

approach to software development; they are a family of development processes that embody the

principles of the Agile Manifesto. It is impractical to assume that any one development

methodology can fit every software engineering problem. For instance, the safety critical

software domain where malfunctions of the system can result in serious physical harm or death

requires large amounts of initial analysis and design to ensure that safety requirements will be

met. It is much cheaper to perform this work before any code has been written due to the

extreme cost and time of writing safety critical code2. In this case, an Agile methodology such as

Lean software development, where emphasis is placed on minimizing work that has less value,

may not be a wise choice. However, Scrum, an iterative and incremental project management

framework, may work very well, if the practitioner includes initial sprints dedicated to upfront

analysis and design.

This brings up the point that Agile methods are not ―all or nothing‖ approaches. It is appropriate

to pick and choose practices from various methodologies as needed. Scrum, for instance, relies

on Agile practices from Extreme Programming (XP), TDD, and other development

methodologies to carry out the actual writing of the code. Scrum focuses specifically on the

management aspects of the project such as the roles, meetings and artifacts of the project

(Kniberg, 2007).

While there is flexibility associated to Agile methods, it is important to understand the benefits

and drawbacks of each practice. Too many Agile practitioners falsely apply a zero value to the

items on the right of the Agile Manifesto core values. For example, it is not uncommon for the

inexperienced Agile practitioner to blaze a trail of code without keeping up with the appropriate

level of documentation, falsely assuming that Agile methods value working software to the

exclusion of documentation.

2
 According to a report from LynuxWorks, 134,736 lines of code cost 269 person years (Matharu, (2005).

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 3-10

This is where experience and discipline come into play. The experienced Agile practitioner will

set out to create enough documentation for himself or someone else to be able to develop new

functionality in the future. This threshold should be defined in the definition of "done". The

experienced Agile practitioner will also understand that documentation done while writing code

is more pertinent and relevant than documentation produced at the end of the iteration or release,

because it is at the moment of creation that code is most clearly understood.

In summary, it is important to understand not just what Agile development is, but also what it is

not. Agile development is not a silver bullet. It is not an "all or nothing" approach. And it is not

appropriate to skip proper engineering practices, claiming that is it "Agile".

3.3 Agile Methods

There are multiple Agile methodologies, but to scope the document appropriately, three methods

will be summarized in this section: XP, Scrum, and Lean Development. According to Version

One‘s ―State of Agile Development Survey 2009‖, out of all Agile development methodologies

in use, 83% of Agile teams use the following methodologies: Scrum (50%), Scrum / XP hybrid

(24%), XP (6%) and Lean Development (3%).3 Furthermore, these methodologies were selected

because they have slightly different objectives. XP is a software engineering Agile process,

Scrum is an Agile project management framework that can be used alone or in coordination with

any Agile process or processes, and Lean Development is focused on reducing waste, increasing

quality, and establishing a culture of continuous improvement. As mentioned previously,

adopting Agile practices is not an ‗all or nothing‘ approach, nor is it a purist-only approach. It is

important to match the best approach, mix or hybrid based on the needs of the individual project.

It is not the intent of this section to describe these three methodologies in great detail. The intent

is to explain at a high-level these methodologies and to expose the reader to their core

values/practices. The reader is encouraged to follow the links provided in each subsection to

gain a greater understanding of the methodologies.

3.3.1 Extreme Programming (XP)

The following information is provided from "What is Extreme Programming?" on Ron Jeffries'

site (http://xprogramming.com/xpmag/whatisxp).

"Extreme Programming is a discipline of software development based on values of simplicity,

communication, feedback, and courage. It works by bringing the whole team together in the

presence of simple practices, with enough feedback to enable the team to see where they are and

to tune the practices to their unique situation." Of the three agile methodologies described in this

section, XP is most focused on daily engineering processes for the software team. These include

concepts that overlap with other agile practices, such as Scrum, by using user stories to define

requirements. It also includes several 'extreme' concepts such as shared code ownership, writing

the tests before the code, and developing code in pairs. One important aspect of XP is the use of

automated tests that are run each time new code is developed. If new code causes a test to fail,

no new code is written until the test passes. This continuous testing approach, to include

integration testing, allows errors to be corrected as close as possible to when they are made.

3 It should be noted that Scrum dominates the Agile space with a large 74% of the market share

when including the Scrum / XP Hybrid approach. For this reason, many people often use the

terms "Agile" and "Scrum" somewhat synonymously even though their definitions are different.

http://xprogramming.com/xpmag/whatisxp

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 3-11

XP is an Agile software engineering practice that consists of the following 13 core practices

shown in Figure 3-1.

1. Whole Team: The team is made up of many functional roles that all work together to

develop the product. It is not ―us‖ and ―them‖, but ―we‖.

2. Customer Tests: The customer witnesses an automated acceptance test of the desired

feature.

3. Small Releases: Development is broken into multiple small releases to decrease risk and

to provide working software early and often.

4. Planning Game: The team continually monitors what is currently being developed to

determine what needs to be developed next.

5. Collective Ownership: The code is owned by the team, not by individual team

members, so everyone can modify the code.

6. Coding Standard: A common standard is used for code development so that it is easier

to understand and modify.

7. Continuous Integration: Integration is not pushed off until the end, but is part of the

daily workflow.

8. Metaphor: The team uses a simple way to describe the program vision so that it is easy

to understand and communicate.

9. Sustainable Pace: The team works 40-hour workweeks, and surges for a short time, if

needed.

10. Simple Design: The team builds software to a simple design to minimize waste

associated with redundancy and rework.

11. Pair Programming: Junior developers are paired with more experienced developers for

mentoring as well as providing peer review of the code.

12. Refactoring: The code is continually refined and simplified.

13. Test-Driven Development: XP uses a ‗test first‘ approach that requires the test to be

written prior to code development, and then the test is run frequently as the code is being

written. New code is not written until the test passes.

Figure 3-2 eXtreme Programming Practices (source:

xprogramming.com)

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 3-12

3.3.2 Scrum

Scrum is an Agile project management practice that is based on iterative sprints, or development

cycles. The following information is derived from the Scrum Primer In contrast to XP, Scrum is

more focused on the planning aspects of agile development rather than on the technical

processes. This includes requirements management as well as iteration and release planning. As

a result, Scrum can be considered as a management framework that can be used in addition to

agile technical methodologies. The following information on Scrum roles and processes is

derived from the Scrum Primer V1.2, by Deemer, Benefield, Larman, and Vodde (2009) and is

depicted in Figure 3-3:

3.3.2.1 Scrum Roles

1. The Product Owner: Identifies and prioritizes required features, and is responsible for the

overall project success.

2. The Team: Builds the product based on direction from the product owner. The team is

cross-functional (functional analyst, developer, tester, database designer, etc.) and is typically

no more that 10-15 people.

3. The ScrumMaster: Helps the team and product owner follow the Scrum process. Removes

barriers to the team‘s progress, resolves issues, and enables the team to be successful.

3.3.2.2 Scrum Process

1. The process begins with the product owner collecting and prioritizing requirements in a

product backlog.

2. The team and product owner work together to select the highest priority requirements that

can be accomplished within a given time period called a ―sprint‖.

3. The ScrumMaster facilitates the team through daily collaborative meetings, buffers them

from external interference, and removes barriers that slow their progress.

4. At the end of the sprint, the team demonstrates the completed features to the product owner.

These features are a potential shippable product. The feedback gathered from the

demonstration is fed back into the product backlog.

5. The team then has a retrospective to determine what worked well, and what improvements

need to be made to the process for the next sprint.

file:///C:/Documents%20and%20Settings/CNORTHERN/Desktop/is

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 3-13

Figure 3-3 Scrum Process (source: Scrum Primer V1.2)

3.3.3 Lean Software Development

Lean software development practices and principles are derived from those used in lean

manufacturing. Lean manufacturing has been around for over 50 years, and includes processes

such as just-in-time production. Lean software development, a more recent concept, provides a

set of overarching principles that can be used to help guide decision making during the

development process. These are related to goals such as making quality an integral part of the

process, and removing waste by minimizing work in progress and reducing excessive

documentation. As a result, it can be used with any combination of agile methods to help

optimize the development process. The 10 basic practices or rules of Lean Production from the

Poppendeick LLC site at http://www.poppendieck.com/lean.htm are:

1. Eliminate waste. Reduce things that do not produce value such as excess documentation,

functionality that is not used, and waiting time between processes (such as review or

approval).

2. Minimize inventory. For software development, examples are excess documentation that

will not be released with the code, and code that is not finished.

3. Maximize flow. Reduce the time it takes to deliver value, such as smaller release cycles.

4. Pull from demand. Respond to change instead of trying to predict it. Keep requirements

flexible and make decisions at the last possible moment.

5. Empower Workers. Push decisions down to the lowest level possible. To do this, the team

must understand the project vision and have the data and authority to make decisions.

6. Meet customer requirements. Team with the customer throughout development rather than

at the beginning, when requirements are defined, and the end when they are verified.

7. Do it right the first time. Make quality and feedback intrinsic aspects of the development

workflow rather than as separate processes.

http://www.poppendieck.com/lean.htm

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 3-14

8. Ban local optimization. Do not sub-optimize requirements by locking them down at the

beginning of the project. Things will change. The customer‘s needs will change.

9. Partner with suppliers. Build relationships on trust and on doing what is best for the

customer, rather than on highly specified contracts. These contracts can result in adversarial

relationships.

10. Create a culture of continuous improvement. Encourage learning and feedback to

continually improve the processes.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 4-15

4 Guidelines for Embracing Agile
The following section addresses additional guidelines that should be taken into consideration as a

program is deciding, or begins, to use Agile. Through research, case studies and experience,

these practices have been observed as illustrating the best practices of Agile development. Each

subsection is broken up into Observation, Discussion and resulting Guideline. This format

serves to help the reader identify a situation, understand the logic behind the best practice, and to

ultimately implement the best practice or attain more information from an additional resource.

These guidelines are not necessarily related nor are they meant to be taken together as a whole.

They are independent observations and recommendations that are applicable during different

points of the engineering process. To help users decide which guidelines may be applicable to

their situation, consider the following categorizations:

 Project inception or planning

- 4.1 Deciding to 'Go Agile'

- 4.2 Selecting the Methodology or Methodologies

- 4.3 New Development, Integration

- 4.4 Defining "Done"

 Building the team

- 4.5 Agile Training and Using an Agile Coach

- 4.6 Distributed Teams

 Program interactions

- 4.7 Scaling Agile for the Large Projects

- 4.8 Agile in the Enterprise

 Managing the project

- 4.9 Agile Risk Management

- 4.10 Agile Contracts

- 4.11 CMMI and Agile

4.1 Deciding to „Go Agile‟

Observation: Before deciding to adopt an Agile practice, it is wise to first determine the best

approach for the given project as a whole, and/or for sub-projects within it. This includes an

assessment of the project volatility (to include requirements and technology) and project

criticality, the available resources, the organizational culture, and the availability and

commitment of the customer and stakeholders.

Discussion: Boehm and Turner, in "Balancing Agility and Discipline: A Guide for the

Perplexed" (2004, p. 56), offer a tool to help determine whether an Agile or plan-driven

approach is more appropriate for a given project depicted in Figure 4-1. For example, a safety-

critical project with a stable requirements baseline, in a culture that thrives on order may not be

best suited for an Agile approach, even though the team is small and the personnel are

experienced in Agile methods.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 4-16

Figure 4-1 Dimensions Affecting Method Selection (source: Boehm & Turner, 2004, p. 56. Note: Personnel

description was modified slightly for ease of understanding)

Even if all of the dimensions are appropriate for an Agile approach, there are additional key

success factors that need to be taken into consideration. Table 4-1 offers a list of rank-ordered

success factors and their attributes (Chow & Cao, 2008, p. 970). Based on the results of the

Chow and Cao study, Agile project success is a factor of selecting and adhering to the Agile

value-based delivery strategy, selecting a high quality team that is trained on the selected Agile

method(s), and following sound Agile-software engineering practices.

Table 4-1Rank Ordered Agile Success Factors (source: Chow & Cao, 2008, p. 970)

Rank Factor Attributes

1 Delivery strategy Regular delivery of software

Delivering most important features first

2 Agile software engineering

techniques

Well-defined coding standards up front

Pursuing simple design

Rigorous refactoring activities

Right amount of documentation

Correct integration testing

3 Team capability Team members with high competence and expertise

Team members with great motivation

Managers knowledgeable in Agile

Managers who have adaptive management style

Appropriate technical training to team

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 4-17

4 Project management process Following Agile-oriented requirement management process

Following Agile-oriented project management process

Following Agile-oriented configuration management process

Good progress tracking mechanism

Strong communication focus with daily face-to-face meetings

Honoring regular working schedule

5 Team environment Collocation of the whole team

Coherent, self-organizing teamwork

Projects with small team

Projects with no multiple independent teams

6 Customer involvement Good customer relationship

Strong customer commitment and presence

Customer having full authority

Guideline: Following these recommendations on what to consider when deciding to adopt Agile

practices, can improve the likelihood of a successful project.

4.2 Selecting the Methodology or Methodologies

Observation: Agile methods are not ―all or nothing‖ approaches. It is appropriate to pick and

choose practices from various methodologies as needed.

Discussion: Choosing an appropriate methodology or combination of methodologies may seem

like a daunting task due to the numerous options and the many possible combinations of

methodologies. A quick scan of Agile websites and blogs may reveal that some practitioners are

either ―traditionalists‖ or ―agilists‖ and believe that the two approaches are mutually exclusive

(and are often adamant about it), while others are more open minded and recommend process

selection, to include multiple processes, be based on the needs of the project. For example,

referring back to the five factors in Figure 4-1, some aspects of a project may require a

traditional plan-driven approach while other sub-elements may be able to use an Agile method.

In this case, organize Agile and traditional sub-units under a higher-level program governance

framework (Vinekar, Slinkman, & Nerur, 2006). This will help the Program Management Office

keep the Agile and traditional development projects separate to minimize confusion (because

they require a different team structure, culture, and set of processes) and to provide a mechanism

to synchronize the activities of both. This cross-project coordination may also include

encouraging members of the traditional and Agile development teams to attend each other‘s

project meetings, such as the Agile teams‘ daily Scrums. This communication and coordination

mechanism can increase awareness on individual team development progress and potential

integration dependencies across teams.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 4-18

Figure 4-2: Scrum and XP (source: http://www.controlchaos.com/about/xp.php)

Whether using traditional and Agile methods together, multiple Agile methods can also be

combined. For example, as depicted in Figure 4-2 (Advanced Development Methods, Inc.,

2010), projects can adopt Scrum along with XP to gain the benefits of an Agile project

management process combined with an Agile software engineering process.

Guideline: It is common practice to use a combination of methodologies, whether traditional or

Agile, in a program. The main thing to remember when selecting a process, or set of processes is

that they align with the unique needs of the project.

4.3 New Development and Integration

Observation: Agile should not be viewed as a solution solely for new development projects. It

should be considered for all projects that involve software intensive systems, including but not

limited to: IT systems, embedded systems, and equipment under control.

Discussion: The Government has different terms to categorize different types of engineering

efforts. Usually, the terms "software/system development" and "software/system integration" are

used to categorize and define the scope of a project.

The term "software/systems development" is used as an umbrella term and is defined as the

research, new development, modification, reuse, maintenance, integration or any other activities

that result in a software product or information system. Specifically, the word "development"

could be perceived as having too broad a scope to be used to describe the work performed on

most Government programs.

Similarly, "software/systems integration" is defined as the process of linking together different

computing systems and software applications physically or functionally. The process of systems

integration involves the integration of existing (often disparate) subsystems through their

interfaces. The method by which these interfaces "speak" to one another varies. Translation

code or mappings are often needed to act as "glue" between these systems. The systems

http://www.controlchaos.com/about/xp.php

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 4-19

integrator is required to have broad knowledge varying from such fields as computer networking,

business process management, computer programming, etc. Often, integration tasks require the

integrator to perform research, development of new software (i.e. translation code), modification

of existing software/systems, reuse of existing software/systems, and possibly even integration of

even smaller sub-systems. It is for these reasons that software/systems integration can be used

almost synonymously with software/systems development, and furthermore, why

software/systems integration should adhere to practices of software/systems development

methodologies.

Many projects aim to decrease the amount of "custom" code developed, and leverage

commercial off the shelf (COTS) components as much as possible in order to decrease project

cost and risk. These types of projects tend to classify themselves as "Integration" projects, and

focus more on developing "glue" code that integrates disparate systems together. Similarly,

some projects are responsible for updating or maintaining existing legacy software, and do not

classify themselves as pure software development.

Guideline: Agile is about improving the quality of a product through early and frequent

deliveries of small pieces of the product, and continual stakeholder involvement. Regardless of

the type of effort (e.g. new development, integration or maintenance), Agile principles can be

applied to add engineering discipline and improve product quality and user satisfaction.

4.4 Defining “Done”

Observation: In traditional projects, ―done‖ may mean that the code or feature is completely

finished (coded, tested, documented, etc.), but in Agile, this term may have different meanings

based on the context of the given situation.

Discussion: How the team decides what is ―done‖ for an iteration may be very different from

what is considered ―done‖ for a release. Iteration features may need to be minimally

documented (maybe only in the code comments), bug free, and accepted by the product owner or

customer. Release feature code may need to be fully integrated, bug free, documented in

accordance with program of record requirements, and tested in a manner that is ready to be

fielded. The accepted ―done‖ criteria need to be defined explicitly during iteration planning (M.

Loomis, personal communication, February 16, 2010), and agreed to by the entire team.

Otherwise, features that are not adequately completed in an iteration will incur technical debt,

resulting in additional backlog and rework during future iterations. Technical debt can result

from decisions such as waiting until the next iteration to refactor code or to fix a bug. Debt is

incurred because the code or function was not "done" in the earlier iteration, and will require

cleanup or fixes in the in the next iteration. This will take away time that the team could have

devoted to new functionality. Therefore, it is recommended that the definition and criteria for

"done" be agreed upon prior to starting the first Sprint.

Guideline: Explicitly define and agree to the accepted criteria for "done" during iteration

planning.

4.5 Agile Training and Using an Agile Coach

 Observation: One of the keys to a successful Agile development project is that the entire team

have Agile experience. This was reiterated in VersionOne‘s 2009 State of Agile Survey, which

specifically stated that the top reason for failure on an Agile project was lack of Agile

development experience among team members. This applies not only to the development team,

but to the program management team as well.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 4-20

Discussion: A United States General Accounting Office Report (2002) states: ―Having the right

people with the right skills to successfully manage acquisitions is critical for DOD. The

Department spends about $100 billion annually to research, develop, and acquire weapon

systems and tens of billions of dollars more for services and information technology. Moreover,

this investment is expected to grow substantially. At the same time, DOD, like other agencies, is

facing growing public demands for better and more economical delivery of products and

services. In addition, the ongoing technological revolution requires a workforce with new

knowledge, skills, and abilities.‖ While this report does not specifically call out Agile methods,

it does cite the need to have highly skilled individuals in the workforce.

Agile training needs should be identified and included in the overall cost and schedule estimates

during the project planning phase. Even with training, additional hands-on assistance from an

Agile subject matter expert may be needed during the early stages of implementation. One way

to compress the up-front learning curve is to hire an Agile coach to guide the team through the

initial stages. The value of a coach has been documented in both industry and government

adoption of Agile methods (Cohan, 2007; Schatz & Abdelshafi, 2005), and can help ease the

challenges associated with adopting a new process, thus increasing the overall probability of

success.

Guideline: Identify and include Agile training in the project plan. For inexperienced Agile

teams, hire an Agile coach to enhance the training and facilitate the teams' adoption of the

process.

4.6 Distributed Teams

Observation: Working a project where team members are not physically co-located can be a

challenging endeavor. While distributed projects may not be optimal, they are often times the

only option available, especially in the DOD where resources and personnel are scattered all over

the world.

Discussion: Many Agile methodologies including Extreme Programming urge their practitioners

not to work with distributed teams; citing problems with verbal communication, digital

communication and even team bonding. To mitigate these drawbacks we mainly look to

technology to cross the divide. A good Agile project management tool can provide the most

value in this respect. It provides a single point of entry into the situational awareness of a

project. In addition to an Agile project management tool, a project wiki is a great way to

catalogue the details and documentation of a project. A typical project wiki would include

information for all of the resources of a project such as the people working on the project and

their contact information, the project's code management system, any repositories or databases

that may be in use, and the details of the project's computing systems.

Collaboration tools are another way to improve the situation. Sharing a desktop screen or using

a virtual white board is a good way to augment a distributed meeting; this becomes particularly

useful in a distributed design session. A persistent chat room where team members can "hang-

out" is another good way to keep presence between the team and to facilitate communication in

an unintentional sort of way, i.e. pose a question to the group and whoever is around and knows

the answer can field it. Instant messaging can also be leveraged to provide quick communication

to an individual team member.

Video chat is another tool that provides very good communication and a feeling of presence, but

is often seldom used outside of video-teleconferencing (VTC) in meetings. Setting up a

persistent video chat room with tools such as Apple iChat or Google Voice and Video Chat

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 4-21

between two labs, for instance, can provide an audio-visual presence between team members.

This isn't necessarily something that should be done all the time, but during an iteration of

development where team members are working together on a specific goal, it can be very

beneficial.

Guideline: Communication, collaboration and the proper tools are key for distributed teams to

be effective and successful with an Agile approach. More information on Agile project tools and

their benefits can be found in Section 7.2.

4.7 Scaling Agile for Large Projects

Observation: For large projects that consist of multiple Agile sub-projects, an inter-team

communication strategy is essential.

Discussion: A recommended inter-team communication strategy is to have an additional meeting

called a ―Scrum of Scrums‖ after the daily Scrum meeting. Each Scrum team should send at least

one member to the larger meeting, such as the ScrumMaster, and/or member from the

development team. Consideration should be given as to who can best represent the team. This

may change over time depending on factors such as results or issues from the daily Scrum

meeting. During the Scrum of Scrums meeting, each Scrum team should report the following

four items (Cohen, 2007):

1. What has your team done since we last met?

2. What will your team do before we meet again?

3. Is anything slowing your team down or getting in their way?

4. Are you about to put something in another team‘s way?

In addition to the daily Scrum of Scrums, Peter Vaihansky, Jeff Sutherland, and Anton Victorov

(2008) suggest a list of recommended practices for large, distributed projects. These can be

useful even if the team is not geographically distributed:

 Daily meetings of the Product Owner team.

 Hourly automated builds from the central repository.

 Seamless integration of XP practices like pair programming and code refactoring.

Guideline: The main point to remember when selecting a process, set of processes, or

communication strategy is that they must align with the unique needs of the project.

4.8 Agile In the Enterprise

Observation: IT projects are no longer organized or executed in a stove-piped fashion. The

success of projects requires interactions with other program offices and projects that may follow

a more traditional development model.

Discussion: Interactions between projects using different development methodologies presents

unique challenges with the need for identification and management of external dependencies

(programmatic and technical), submitting and receiving requirements from external projects,

reporting progress against those requirements, and deploying major releases to a production

environment.

Developing and delivering solutions for a large business organization, commonly referred to as

an Enterprise, usually requires programmatic and technical resources that are external to a

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 4-22

project. It is recommended that project plans (or other guiding project documents) outline that

these resourcing needs must be identified and addressed as soon as possible. Often, the required

resources may not be known at the onset of a project, so it is good practice to provide a

mechanism for new external resources to be identified and addressed within a project plan (or

other guiding project documents).

When a project requires an external resource, such as an external Program Management Office

(PMO) service or technical integration point, a best practice is to establish a documented

agreement with the external PMO that outlines the following:

 Inter-program requirements management process that governs how PMOs will develop,

exchange and manage requirements

 Roles and responsibilities for each organization

 Mechanisms for measuring and reporting performance between PMOs

 Deployment considerations

Often it is necessary to coordinate with another program or project that does't follow the same

style of requirements development and management. It is helpful to hold requirements

development sessions with the external PMO to build proper ―Agile‖ requirements, and store

these in a collaboration tool that is accessible to both PMOs.

Likewise, estimation of effort doesn't translate well across PMOs or development teams, as

different estimation methods may be employed and different teams have different production

capabilities. It is recommended that a common mechanism for exchanging estimates is

developed between development teams (e.g. days, hours). It is also helpful to include external

PMOs in planning and review meetings, so they can monitor progress and improve the fidelity of

their plans.

Deploying a capability to the Enterprise also requires some coordinating activities that are best

placed in a project plan (or other guiding project documents) and release cycle. Ideally, releases

are planned that adhere to Enterprise support and training requirements. Often, an Enterprise has

mandatory deployment activities (e.g. training, interoperability testing etc.) that must be

completed prior to deployment. It is good practice to account for these activities in the release

plan so the team can properly prepare for these necessary activities.

Guideline: Project plans (or other guiding project documents) should outline programmatic and

technical resources that are external to your project and establish a documented agreement with

these external resources. On-going communication and coordination with other program

management offices and projects is a critical component

4.9 Agile Risk Management

Observation: Risk management is an organic component of Agile development. Risks are

implicitly identified and managed through frequent communication, frequent plan refinement,

requirements prioritization,and the increased transparency, these activities bring.

Discussion: Despite the fact that risks are implicitly tracked and managed in an Agile process,

there should be a mechanism to codify this approach and have a semi-formal to formal risk

management approach. Common sense should be applied when developing a risk mitigation

approach. The formality of the risk management process depends on the size and criticality of

the project. An Agile development process needs to make risk management organic to the

process, and ensure that all team members actively participate in the risk management process.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 4-23

Whatever risk management approach is used, it should meet the following objectives as

identified by Sliger & Broderick (2008, p 189):

 Risk Identification

- Develop a risk register that is available to the entire team

- Risk register is updated regularly and anyone can submit a risk to be considered by the

team for inclusion

- Revisit the risk register at every planning meeting

- Create risk exposure charts to measure risk as a whole and provide quick and easy

mechanism to see the project‘s risk exposure at a glance

 Risk Analysis

- Quantitatively and qualitatively assess risk and make results visible in the risk register

- Prioritize risks and develop response plan for the highest priority risks

 Risk Response Planning

- When the team decides to respond to a risk, the following options are available and

should be documented in the risk register:

▪ Avoid: Don't do the project or part of the project that entails the risk

▪ Mitigate: Take steps to reduce or eliminate the risk before the risk materializes (e.g.

move high risk items to earlier Sprints)

▪ Contain: Set aside resources (time, money, materials) to address the risk if it

becomes an issue

▪ Evade: When none of the above is performed and the risk doesn't become an issue

(usually the least optimal response)

Guideline: Develop a semi-formal to formal risk mitigation approach that aligns with project

size, criticality, and availability of resource management resources and ensure that all team

members active participants.

4.10 Agile Contracts

Observation: Typical DOD IT acquisition projects assume that the product end state is well

known and that requirements are stable, however, this is usually not the case. Different

contracting approaches are needed that can accommodate high levels of uncertainty for IT

systems.

Discussion: For Agile projects, since the end-state is not well defined up front, a different

approach might include alignment of funding to software delivery releases (or iterations, if

desired), rather than to delivery of specific requirements or functionality (Koch, 2005). Smaller

periods of performance, correlated with short capability delivery cycles, can increase the

probability of success.

According to the Standish Group (2009, p. 30), software projects with labor costs less than

$750K have a 71% probability of success, those costing between $750K to $3M only have a

19% chance of success, and for projects over $10M, success rapidly falls to an abysmal 2%. It is

possible that the reason smaller contracts have a higher success rate is that they are easier to

manage, encourage frequent feedback and rapid delivery of value, and are easier to terminate

early, if necessary, than large contracts. Additionally, performance incentives based on user

feedback at capability demonstrations can be used to reward desired behavior (Stevens, King, &

Halley, 2009). In contrast, rather than terminating the contract, many large, traditional contracts

reward vendors who are over budget or behind schedule with additional time and money, thus

encouraging bad performance.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 4-24

Koch (2005) provides additional recommendations on the contract ―shalls‖ that protect both the

contractor and the government, as well as encourage a collaborative relationship:

 Identify the Agile development process or processes that will be used on the project (such as

Scrum, XP, or a hybrid of several methods)

 Specify the contractor/developer role

 Specify the government‘s role (such as product owner) and the level of involvement they will

have in the project

 Identify how requirements will be managed

 Clarify the contractor‘s level of interaction with the customer

 Identify release time-boxes (such as, sprints, iterations, releases) and associated funding

strategy

 Specify that the contract can be terminated early and the decision criteria for this action

Duquette, Bloom, Crawford, and Osgood (2007) have identified contracting guidance in the

Federal Acquisition Regulation (FAR) supporting Agile contracting. The following is a

summary of these findings:

 Subpart 16.5 - specifies the use of indefinite-delivery and indefinite quantity contracts, which

could prove particularly useful in letting contracts without fixed deliverables and

requirements.

 Subpart 6.3 - specifies the policies and procedures for contracting without providing full and

open competition. While full and open competition is generally regarded as a good thing,

frequent contracts of a smaller size may be held up in the competition process.

 Subpart 16.207 - specifies the use for firm-fixed-price, level-of-effort term contracts suitable

for Agile projects where the work can be stated in general terms and the Government pays

the contractor in a fixed dollar amount.

 Subpart 16.603 - specifies the use of letter contracts that are "used as a preliminary

contractual instrument that authorizes the contractor to begin immediately performing

services", "in cases where negotiating a definitive contract is not possible in sufficient time to

meet the requirement."

 Subpart 43.2 - specifies the use of change orders, which allow for the changes in the general

scope of a contract after it has been let. This of course does not require the contractor to

incur any costs beyond the limits established in the initial contract. This subpart could prove

useful in projects where emerging requirements can cause a fundamental change in the scope

of the project not initially accounted for in the original contract.

Guideline: Smaller contract award sizes have shown to improve project success rates. Using

specific verbiage that encourages a collaborative relationship in a contract is a good idea.

Existing sections of the FAR can support Agile contracting without modification.

4.11 CMMI and Agile

Observation: Capability Maturity Model Integration (CMMI) compliance has become a

standard compliance yardstick for bidders on government projects. Unfortunately, it is a

common misconception that the CMMI and Agile methodologies are at odds with each other.

Discussion: The reasons for this discord are best summarized in the Carnegie Mellon and

Software Engineering Institute‘s (SEI) paper "CMMI or Agile: Why Not Embrace Both!"

(Glazer, Dalton, Anderson, Konrad, & Shrum, 2008, p. 1):

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 4-25

1. ―Early adopters of both CMMI and Agile methods represent extreme examples of their

software development paradigms. Early CMMI adopters were developers of large-scale, risk

averse, mission-critical systems, often with high levels of management oversight and

hierarchical governance; whereas the early adopters of Agile methods generally focused on

smaller, single-team development projects with volatile requirements in a software-only

environment. These two extremes set the tone for all that followed.

2. The inaccurate information about CMMI and Agile and the misuse of both resulted in

misperceptions in both camps about the other. These negative perceptions that position

CMMI and Agile at odds with each other arose largely from the following factors:

▪ Misuse—two decades of experience, first with the Capability Maturity Model

(CMM®) and then with CMMI models, in which practices were sometimes misused

or applied to (i.e., overlaid on) development activities that may have already been

perceived by software development teams as productive without them

▪ Lack of Accurate Information—a dearth of accurate information about CMMI in the

Agile community and the corresponding dearth of accurate information about Agile

methods in the CMMI community

▪ Terminology Difficulties—the use of terminology in CMMI (e.g., discipline, quality

assurance, and predictability) and Agile methods (e.g., continuous integration, test-

driven development, and collective code ownership) that carries context-specific

connotations and is thus easily misunderstood and abused

3. Top-Down Versus Bottom-Up Improvement Approach—the introduction of an approach that

sometimes favors one ―voice‖ (i.e., management versus practitioner) over the other, which

neglects the other important voice in how to effectively run the business‖

However, CMMI and Agile are compatible. CMMI focuses on process objectives, while Agile

methods focus on how projects develop products. These two objectives are orthogonal, and

actually complement each other very well (Sutherland, Jakobsen & Johnson, 2007). For

instance, CMMI does not impose a particular development methodology, nor do Agile methods

impose a particular model for development in which activities and process outputs are to be

measured. A case study performed by Sutherland, Jakobsen and Johnson (2007) on Systemic, a

CMMI level 5 organization that uses Lean Software Development, showed that productivity

doubled, reducing costs by 50%, rework by 42%, and defects by 40%.

A comparison of CMMI and Agile paradigms in the Carnegie Mellon and Software Engineering

Institute (SEI) paper (Glazer, Dalton, Anderson, Konrad, & Shrum, 2008, p. 35) is listed in

11Appendix B. A point of interest to note in this comparison is the dimension of ―trust‖ in which

Glazer et al argue that CMMI is well suited for low-trust environments and Agile for high-trust

environments. CMM (and subsequently CMMI) were created in response to the DOD software

dilemma of the 1980‘s. A culture of distrust persisted due to a wealth of software projects that

were over budget and under producing. As a result, protecting one‘s own interests was the

standard modus operandi verses finding the most efficient win-win solution (Glazer, Dalton,

Anderson, Konrad, & Shrum, 2008). CMM was created with the aim to combat this mentality by

ensuring that all interested parties could do their part in an open and transparent operating

environment.

Agile methods take a different approach to the problem of trust. At a cursory glance, it would

appear that trust is not important. Contracts are let with open ended deliverables and

requirements. Teams are encouraged to self organize (i.e. specific role responsibility is not

assigned). Inspection from stakeholders and management is allowed only during pre-scheduled

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 4-26

demonstrations. From an outsiders perspective it would appear as if Agile development could

only work in a high-trust, low-risk environment. However, this is not the case, as will be

explained.

Contracts are let without overly specific deliverables and requirements for numerous reasons.

The first of which is described in Section 2.1.2, which states that uncertainty is at the highest

point during the beginning of a project and it is therefore unreasonable to assume that detailed

specifications and release plans can be adequately documented at this stage of the project. The

risk of not specifying requirements and deliverables is mitigated with early termination clauses,

frequent demonstrations of functionality, and code iterations that are potentially shippable. If at

any point in the project the contractor is not producing quality code or a user/stakeholder

approved capability in a timely manner the contract holder reserves the right to terminate the

relationship. Since code is written in such a way that it is potentially shippable, a new contractor

can be brought on to finish the work.

Agile processes employ self-organizing, cross-functional teams to achieve the goals of the

project. Responsibility is placed upon the team, rather than the individual team member or the

project manager. This allows individuals to take on tasks as they become ready to be executed

(Moe, Dingsoyr, Dyba, 2008). In this way, the team manages their own workload internally,

rather than having it dispersed by a manager. In addition, the team interacts directly with the

customer and users, rather than through the project manager. These processes effectively

transfers customer and user trust directly to the team, the group responsible for doing the work.

Lastly, a team that is constantly under supervision and expected to drop what they are doing to

perform demonstrations or give briefs will not be able to perform at their optimum level.

Writing quality code is a time-intensive and focus-consuming task. It is for this reason that

scheduled demonstrations at the end of iterative development periods are not only recommended,

but are intended to be the only demonstrations given by the team. During this demonstration

information flows bi-directionally; the current status of the project is demonstrated to

stakeholders, users and management, and feedback is collected by the team for future iterations.

Guideline: Agile and CMMI are not at odds with one another and Agile can be employed in an

organization or a project that has a CMMI requirement.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 5-27

5 Agile/Rapid Acquisition
Duquette, et al (2007) define Agile Acquisition as "the actions taken by a capable, experienced

government management team to adjust program parameters throughout the life-cycle to respond

to changes in the program‘s environment and its customers‘ expectations." They further define

Rapid Acquisition as "the actions taken by a government management team to acquire a

capability in the shortest time possible within or outside of the government acquisition process

(definition, funding, procurement, development, testing, and fielding)." Based on these

definitions, we see that Agile Acquisition has an emphasis on reacting to change in the program's

environment and customers' expectations, while Rapid Acquisition focuses on the fielding of

capabilities in the shortest amount of time possible. One can clearly see the relationship between

these two definitions and the tenets of Agile Software Development. Mapping the focus of these

concepts to the 12 Agile principles described in Section 3.1.2, we see that Agile Acquisition

corresponds to principles 1, 2, 4, 8 and 12, and Rapid Acquisition corresponds to principles 1, 3,

7 and 8.

Most policy and authority in the DOD relating to Agile and Rapid Acquisition deals with Rapid

Acquisition. Rapid Acquisition Authorities exist at the Joint, Service, and Combatant Command

levels. These authorities exist to satisfy immediate Warfighter needs and are intended to field

capability as soon as possible, in some cases a matter of days, but can span up to two years.

They operate outside of the normal acquisition process to achieve these results. Typically, these

authorities are meant to assist with the development of new technologies to be transitioned to a

POR. The following is a list of programs that can be used to transition rapid capability to a POR

or in some cases even an operational unit (Duquette et al., 2008):

 Advanced Technology Demonstrations

 Air Force Applied Technology Councils

 Joint Concept Technology Demonstration Program

 Defense Production Act Title III Program

 Joint Experimentation Program

 Manufacturing Technology Program

 Small Business Innovation Research Program

 Defense Acquisition Challenge Program

 Small Business Technology Transfer Program

 Technology Transition Initiative

 Value Engineering

 Warfighter Rapid Acquisition Programs

 Navy Rapid Technology Transition Program

 Army Aviation Technology Assessment and Transition Management (TATM) Process

 Foreign Comparative Testing

 National Technology Alliance

 Independent Research and Development

 Department of the Navy Future Naval Capabilities

 USSOCOM Advanced Technology Directorate

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 5-28

Figure 5-1 New Acquisition Process

There are Agile Acquisition efforts in progress, as stated in Section 2.2. The modifications made

in December 2008 to the DOD 5000 Directives and Instructions sought to reduce uncertainty

early in the development process, through earlier development and increased prototyping.

Unfortunately, many of these changes have also included increased documentation and review

processes that could slow the process down for IT systems. Figure 5-1 depicts the changes to

the process.

Policy changes embedded in the new process include the following:

 "All programs will proceed through a formal acquisition process entry point, the Materiel

Development Decision (MDD). Programs will no longer immediately proceed to Milestone

B. Consequently, the vast majority of programs will benefit from the improved conception

and technical maturity resulting from the early phases of development.

 Programs requiring technology development will conduct competitive prototyping at the

system or sub-system level, when appropriate, to ensure that technologies have been

demonstrated in a relevant environment and, consequently, key risks have been retired before

programs are initiated.

 Where consistent with the strategy for the Technology Development Phase, preliminary

designs will be prepared to ensure that requirements are well understood and cost estimates

well informed.

 The Engineering and Manufacturing Phase has been redesigned to place additional emphasis

on systems engineering and manufacturing readiness.

 Configuration Steering Boards have been established to ensure that requirements

changes/creep, a traditional contributor to increased cost and extended schedules, are not

casually approved." (Defense Science Board 2009)

While these changes are a step in the right direction, they do not go far enough to address the

unique characteristics of information technology programs and the rapid timeframes in which

they evolve. The Defense Science Board's new acquisition process for information technology

systems, outlined in their March 2009 report, recognizes the need for a compressed development

cycle for IT systems and recommends a completely new process, drawing from Agile principles.

In fact, the National Defense Authorization Act for fiscal year 2010, becoming Public Law 111-

84, in section 804 directs changes to the DOD acquisition process for IT systems, using the

recommendations provided from the Defense Science Board. Specifically, the act states the

changes made to the acquisition system will be designed to include:

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 5-29

 Early and continual involvement of the user

 Multiple, rapidly executed increments or releases of capability

 Early, successive prototyping to support an evolutionary approach

 A modular, open-systems approach

However, until this new acquisition system is created, the existing acquisition process must be

followed. In light of this, Duquette, et al (2008) focus on how to successfully transition

Agile/Rapid Acquisition based capability initiatives to the Warfighter in the current DOD

acquisition atmosphere. They postulate that an Agile Acquisition approach can work for the

creation or transfer of capabilities to a POR, but that it must comply with the funding, design,

documentation, testing, sustainment and advocacy required of the acquisition process. This is

depicted in Figure 5-2 in greater detail. For convenience, the complete description of each

barrier/enabler is listed in Appendix G.

Furthermore, the Agile development roadmap of the program must be aligned with the

acquisition roadmap. Rather than waiting to deliver capability to the Warfighter at Initial

Operational Capability (IOC), which can take 5 - 10 years, capability can be delivered at

milestone decision reviews. This capability should be created for two reasons, either because it

justifies the existence of the POR to solve capability gaps identified previously, or it responds to

emergent user needs to counter a threat. Either way, it can be used as an Agile approach to

developing and delivering capability to the user in a rapid fashion.

Technology or

Other Initiative

Funding

Money

Phasing

Design Documentation Test
Program of

Record
Sustainment Advocacy

Investment

Affordability

Technology or Initiative
Transition to

Program Of Record
Barriers / Enablers

System Tech

Readiness Level

Hardware Tech

Readiness Level

Software Tech

Readiness Level

Integration Tech

Readiness Level

Design Ability

To Scale Up

Acceptability to

Developer

CONOPS

User Requirement

(CDD)

Interoperability

Open Systems

Standards

Op Utility Assess

COIs,MOE’s,MOPs,

Data Rights &

Proprietary Issues

Design Drawings

Source Code

User’s Manuals

Licenses

DoD 5000

Milestone Docs.

Capabilities

Documented Test

Plans & Results,

Operationally

Relevant Environ.

Program Manager

Commitment

Advancement

Difficulty Degree

Acquisition

Strategy

SOA

Considerations

System Level

Design

Projected

Life Cycle

Field Maintenance

Approach

Depot Maintenance

Approach

Spares

Training

Test & Support

Equipment

Maintenance

Manuals

Technology

Refresh

Software

Maintenance

50/50 and Core

Issues

Infrastructure

Approach

Security

Accreditation.

Information

Assurance.

Network

Certification

Urgent Need

Top-Cover

Ops & Maintenance

Personnel & Skills

User

Feedback

SysPerformance

Impact

Prototype-System

Schedule Sync

Competition

Issues

Champion

Short Chain of

Command

5000 Process

Waivers

Protected

Funding

Leadership &

Partnership

PM Risk

Orientation

SPO Size &

Skill Mix

SPO Personnel

Expertise

PM Network

Manufacturing Tech

Readiness Level

Tech Transition

Agreement

Oversight

Relief

Program

Processes

Program

Metrics

Figure 5-2 Program of Record Technology or Initiative Transition Barriers/Enablers

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 6-30

6 Development Best Practices
The following section describes best practices for developing code. While best practices for

developing code are not specific to Agile development, the concepts in this section are

considered to be a core component of Agile development. It is assumed that the reader of this

section is familiar with common programming concepts and paradigms.

6.1.1 Expressive Code

Code that is clear and easy to understand is considered to be 'expressive'. Expressive code

should convey its intent to the reader without excessive inline documentation. Simple practices,

such as using meaningful class and variable names, providing consistent formatting, avoiding

complex Boolean logic, and using whitespace appropriately leads to more expressive code. A

more complex practice of expressive code can be found in the use of design patterns.

Design patterns are general reusable solutions to commonly occurring software design problems

(Design Patterns, 2010). Examples of commonly used design patterns are builder classes,

factory methods, lazy initialization and iterator patterns. More information on design patterns

can be found in the Wikipedia article Design Patterns (2010).

Design patterns make code expressive because they are easily recognizable thus aiding in

comprehension. Often, programming languages embed design patterns directly into the language

itself. For example, Java makes use of the iterator pattern in container classes that implement the

Iterable interface in version 1.5 of the Java Development Kit (JDK). This includes almost all of

their container classes including lists, vectors, stacks, hashes, etc. Figures Figure 6-1 and Figure

6-2 demonstrate the printing of objects in a list to standard output, both with and without the

iterator design pattern. Notice the succinctness of the code in Figure 6-2 and how the intent is

easily understood.

Figure 6-1 Java For Loop Without Iteration Design Pattern

Figure 6-2 Java For Loop With Iteration Design Pattern

6.1.2 Regression Testing

Software is in a constant state of evolution when it is being developed. Whenever new code is

created, or existing code is modified, there is the potential to break existing functionality.

Regression testing is an attempt to discover when new code has broken previous code, and

allows the developer to correct the problem at the moment it is discovered. Regression testing is

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 6-31

achieved through extensive and repeatable automated testing, usually involving unit and

functional testing.

Unit tests verify the functionality of the smallest subset of the system, such as an object or

method. The goal of unit testing is to isolate each part of the program and show that the

individual parts are correct (Kolawa & Huizinga, 2007). Unit tests should be automated and run

at regular intervals, such as at build time and especially before checking code into version

control. It is considered good practice to create a unit test to expose a bug that has been located

and fixed, so that it can be retested after subsequent changes to the program, as bugs sometimes

have a way of resurfacing. Unit testing packages exist for most programming languages.

Functional testing can be thought of as black box testing, i.e. the internal mechanics of the

system are inconsequential, only the inputs and outputs of the system are of concern. In Agile

software development, functional testing takes place at the user story level and is used to

determine whether or not a user story has been completed. This is also known as 'acceptance

testing'.

By utilizing regression testing, the development team can ensure that code is operating the way it

was intended to operate. Further, it is an integral part of what is known as Continuous

Integration, another best practice of Agile software development.

6.1.3 Continuous Integration

Continuous integration, like regression testing, uses automation to ensure consistency in the

project, but focuses on the software build rather than software testing. Continuous integration is

defined as the practice of frequently integrating one's new or changed code with the existing

code repository; it should occur frequently enough so that no intervening window remains

between commit and build, and such that no errors can arise without developers noticing them

and correcting them immediately (Fowler, 2006).

For instance, take a project where developers working on an independent problem branch their

code, work on it for a couple weeks, and then check in their code. The delta between a branch

and the baseline could vary wildly as commits are performed. In some cases, modifications to

check the branch back into the baseline may take longer than the actual branch modifications

performed in the first place. Continuous integration aims to solve this problem by committing

early and committing often. Furthermore, automation of the build, complete with regression

testing, ensures that new modifications to code don't break the build or previous functionality.

6.1.4 Pair Programming

Pair programming is the physical act of two programmers developing together at one station.

Typically, one person types while the other observes, switching periodically. The thought

behind this concept is that two programmers working together on the same problem will produce

overall better code with less defects.

Pair programming is a controversial topic in software engineering. Proponents of pair

programming cite benefits of greater design quality, reduced cost, better training, and greater

focus and time management (Cockburn & Williams, 2000). Opponents of pair programming cite

drawbacks of slower development time, conflicts of personality, and personal freedom issues

(Pair Programming, 2010). This controversy is understandable considering the extreme deviance

from the typical single programmer approach. However, the benefits that pair programming

provides can in many cases outweigh the drawbacks. At the very least, pair programming can be

used on an as-needed basis.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 6-32

Take, for example, the scenario of a new employee joining the team of a well established project.

It is likely that the project has in place a set of practices that are used for configuration

management, that knowledge has been accumulated and shared among team members which

outsiders do not posses, and that relationships and roles have been formed in the project that are

critical to the project's success. A new team member must learn this/these

information/practices/roles in order to be a functioning contributor to the project. By pairing a

novice or new team member with a senior team member, information can be exchanged at a

much faster rate.

Pair programming facilitates this kind of knowledge transfer and it can be a useful tool that every

team should have in their Agile software development toolbox.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 7-33

7 Tools
Tools are an important part of software engineering. Agile development downplays the

importance of tools in favor of individuals and their interactions, which is a valid point. Without

the individuals and the interactions between those individuals, the tools they use are

meaningless. However, in a distributed environment like the DOD, where it's almost always the

case that users and stakeholders are not co-located with the development team, or even the

development team itself isn't co-located, tools become more important, especially tools that

foster collaboration.

In this section, we take a look at Agile tools which aid in development of software, and we then

discuss the results of a trade study completed on Agile project management tools to determine

which tools are well suited for use in the DOD environment.

7.1 Development Tools

As discussed in the Development Practices Section, Agile advocates the use of automation in

every area in which automation makes sense: the build, testing, and in some cases, even the

creation of the code itself. The following is a list of the types of tools that should be used in an

Agile development environment. These are not specific recommendations, as performing an

exhaustive study on all tools used in Agile development is outside the scope of this effort.

 Continuous Integration and Build – Necessary features include easy integration with

popular source code management tools, support for commonly used test frameworks, support

for various build tools, notification and alerting, and reporting. Examples include Hudson

(MIT-licensed) and Bamboo (Atlassian Software Systems).

 Automated Testing – Necessary features include testing of web applications with AJAX and

JavaScript elements, automated capture and replay of user actions, support for functional,

compatibility (cross-browser) and regression testing, and support for code-driven testing.

Examples include Selenium (open source) and TestComplete (AutomatedQA).

 Source Code Management or Revision Control – Necessary features are support for

baseline or trunk, revisions at the source file level, version merging, conflict management,

commits, release tagging, and branching. This may be included or integrated with a project

management tool. Examples include SubVersion (open-source), Mercurial (open-source)

and Perforce (Perforce Software Inc.).

 Integrated Development Environment – Necessary features include a source code editor, a

compiler or interpreter, a debugger, integration with a source code management tool.

Examples include Eclipse (open source), NetBeans (Sun) and Komodo (ActiveState).

7.2 Agile Project Management Tools

Agile project management refers to the planning, organizing, and managing of resources

associated with an Agile development project. Agile project management encompasses:

 Requirements management (product backlog)

 Planning (releases, iterations, tasks)

 Tracking (progress tracking/reporting)

 Quality assurance (testing, defect management)

 Feedback gathering (user/stakeholder priorities, ideas, and issues)

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 7-34

Each of these areas are important and all are required for a project to be successful.

Typically, with traditional project management, tools are used individually to satisfy these areas.

For instance, a spreadsheet or a requirements tool such as Rational RequisitePro is used for

requirements management. For planning and tracking Gantt charts are often used, such as

Microsoft Project. Bug trackers such as BugZilla and JIRA are often used to track defects in

software. Lastly, feedback is often garnered through surveys, email or word of mouth. It may or

may not be aggregated into a document or recorded in a requirements tool. These tools do the

job, but they are acting independently, without coordinating with each other. Often, there is no

integrated source information that ties everything together.

Furthermore, Gantt charts have some inherent flaws that keep them from being a useful day-to-

day planning tool for Agile projects. The first flaw is that every task must be time estimated and

assigned a date to be performed. When planning a year out, or even further, this is impractical.

Typically, tasks are chronically underestimated and the schedule keeps sliding to the right. This

leads us to the second flaw: there isn‘t a way to track changes that have been made to the

schedule. In other words, as the schedule slides to the right, there is no way to go back to where

you were 6 months ago to gauge your progress. Lastly, Gantt charts are focused on

dependencies. The fault in being overly concerned with dependencies is that there really isn‘t

much of a need to track dependencies on a project level. Most dependencies are well known on

an IT project and can be handled ad hoc (Dubakov & Stevens, 2008). This isn't to say that

tracking dependencies on a programmatic level isn't effective. Gantt charts can be very effective

at the high level of a program where the goal is to deconflict project timelines, milestones and

dependencies. However, trying to overload a Gantt chart at the low level of an individual project

has limited usefulness.

The answer to the above problems is an integration of the entire planning and development

process into an overarching, dedicated tool that can be accessible by everyone who is associated

with the project. Finding a tool that can achieve this for your project can be hard. There are

roughly 80 of these tools available for free or for purchase, each possessing their own set of

advantages and drawbacks. Furthermore, one must determine the desired characteristics of an

Agile project management tool tailored to the specific environment in which it will operate.

The DOD environment differs from many environments in industry due to its strict security

constraints and its distributed nature. Furthermore, Agile development in the DOD isn't as

widespread as it is in industry; as such, there isn't a clear front-runner among Agile project

management tools. For this reason, the authors have conducted a trade study of Agile project

management tools to determine the "best-of-breed" for use in the DOD.

Table 7-1 lists the criteria used to evaluate Agile project management tools for this trade study.

7.2.1 Trade Study Methodology

Table 7-1 Tool Evaluation Criteria

Weight Evaluation Criteria Description

5 Collaboration DOD programs perform development with distributed teams, stakeholders

and users. These individuals are located at such sites as government

installations, contractor sites and home residences. Collaboration between

these individuals is a constant need and for this reason the tool must

provide easy access to members on-site and off-site to allow information

to flow freely. This is mainly achieved through web-accessible tools that

exchange data on port 80; however, other implementations are

theoretically feasible.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 7-35

5 Security Information systems that operate on government owned or controlled

hardware must comply with the 8500 series of DOD Directives. This

characteristic will grade how well the tool complies with these directives

and how likely it will be to obtain a certification or waiver to operate on

DOD owned or controlled servers.

3 User stories/defect

management

Takes into account the ability to adequately capture a user story and its

associated supplemental information. Typical associated information

includes notes, tasks, the ability to prioritize against other user stories, and

assignment of responsibility to a team member. The tool should also be

able to manage defects in the software as user stories are considered to be

new feature requests.

3 Configuration

management

This characteristic grades the tool on how well it allows a person or group

of people to approve, deny, or modify functional changes to user stories.

3 Management of multiple

projects/releases/sprints

A project management tool should have the ability to handle multiple

projects with multiple releases and multiple iterative development cycles.

3 Time

reporting/estimation

Time estimation is extremely important in software development. It is

also extremely difficult to predict. A project management tool should be

able to accurately record and display time as it relates to a project so that

estimation can be improved upon on a continual basis.

3 Ease of use/access The tool should be easy to use and easy to understand. Tools that are not

easy to use are frequently not used. Also, an Agile project management

tool should be used on a daily basis. Any barriers that keep a team

member from using a tool should be looked upon negatively. For

instance, if a user must first setup a virtual private network to obtain

access to the tool the user will not use the tool as frequently.

3 Portability Members of the development team often use varied operating systems. A

tool that can run on more than one OS is preferred.

3 Support Support by the creator or vendor of the tool is important, but not required.

A tool that is no longer supported could lead to problems if a vulnerability

is found and there is no way to remedy it. This is especially problematic

of applications in which no source code has been provided and there is no

support. For applications where the source is provided, at least a fix could

be developed.

2 Cost Cost of the tool should not be prohibitive. Maintenance updates, upgrades

and support is also a part of the total cost of ownership and needs to be

evaluated.

2 Automation of

metrics/charts/reports

Automatic statistic and report generation is an important part of an Agile

project management tool. Providing these statistics and reports

automatically allows for on-the-fly status briefs to any interested party

including senior level management and stakeholders.

2 Integrates with

development

tools/repositories

The ability to integrate with a wiki for the purposes of documentation or

the ability to integrate with a code versioning system for the purposes of

documentation or bug tracking would be looked upon favorably. This is

not a crucial feature of the tool but enhancements of this nature tend to

foster better documentation and project awareness.

1 Ease of installation Installation of the tool shouldn‘t be overly complex or require large

amounts of hardware. A somewhat complex install can be tolerated

because it is usually a one-time process, but overly complicated install

processes tend to lead to errors, which could lead to vulnerabilities.

1 Ability to make

modifications

Access to the underlying source code is the most straightforward way to

make modifications to software. Open source software, for instance, has

the benefit of being tailorable to a specific environment. For instance, if

vulnerability is found in the tool, and a patch from the vendor is not

forthcoming, an in-house fix could be made, whereas with a closed source

tool this is not possible.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 7-36

The approach taken on this tool study is fairly straightforward. An exhaustive list of tools was

created by searching the web and from http://www.userstories.com/products, which contains a

list of Agile PM tools (about 60). Next, tools were selected for evaluation. The selection

process removed tools that were not able to operate in the DOD environment, including tools that

were not installable (i.e., hosted by a 3rd party), have poorly implemented security, or offer no

ability to collaborate between distributed users. Ten tools were selected, and each was installed

and evaluated based on the evaluation criteria in Table 7-1.

The evaluation criteria were developed based on the authors' experiences working with Agile PM

tools, and interviews conducted with members of the DOD and MITRE. The criteria attempt to

strike a balance between security, collaboration and Agile features. Each category has an

associated weight between 1 and 5. This weighting was multiplied against the grade received for

each category which is also a value between 1 and 5. The weighted category values were then

added together to achieve the total grade for the tool. The maximum value a tool could receive is

195 and the minimum is 39. Each tool was also reviewed to discuss features and drawbacks. All

evaluations are in Appendix A. The reviews were performed from a time period of January -

March, 2010. A summary of the tool results is provided in the following section.

7.2.2 Summary of Tool Results

Table 7-2 Tool Study Results

Score Tool

179 SoftwareForge

178

JIRA with

GreenHopper

168 Agilo for Trac

166 ScrumWorks Pro

153 TinyPM

136 ScrumNinja

134 ScrumDesk

131 ScrumWorks Basic

127 Xplanner+

N/A Rally

The results in Table 7-2 turned out in favor of DISA's open source collaboration service,

SoftwareForge, with a score of 179. SoftwareForge enables the collaborative development and

distribution of open source software and DOD community source software. It provides software

development tools such as version control, bug tracking, requirements management, and release

packaging along with collaboration tools such as wikis, discussion forums, and document

repositories to enable collaborative development amongst distributed developers. SoftwareForge

is currently built on the open source Subversion version control system and CollabNet

TeamForge application life cycle management tool. As of February 2010, SoftwareForge was

updated to include the TeamForge version 5.3 which includes Agile planning capabilities,

making SoftwareForge an Agile project management tool.

SoftwareForge stands out from the rest of the tools in that it is the only tool that is hosted as a

cloud-based, software-as-a-service application provided by DISA. As such, DISA has done the

legwork of certification and accreditation to operate on DOD networks. Furthermore, they have

http://www.userstories.com/products

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 7-37

tailored the tool to the DOD environment, making it a very attractive offering to any program

that needs a project management and code hosting solution. For these reasons, and the fact that

it is offered for free, it is selected as the "best-of-breed".

The second place tool is JIRA with GreenHopper which received a score of 178. JIRA is an

issue tracking and project management tool for software development that aims to improve code

quality and increase the speed of development. GreenHopper is an Agile project management

add-on to JIRA that allows for customizable work flows. JIRA without GreenHopper does not

utilize Agile concepts; however, JIRA with GreenHopper is a very mature tool and has a well-

thought out design. It is offered commercially, but can be used for free for teams smaller than 10

people.

JIRA with GreenHopper comes as either a hosted solution or an installable application. It fosters

collaboration with users outside of the firewall by operating over the Web. It complies with

DOD regulations regarding security with the exception of authentication through PKI certificate.

It handles multiple projects, releases, sprints, and user stories very well, and it also has very good

time reporting and estimation capabilities. It is generally easy to use, though there is a somewhat

steep learning curve due to its inherent flexibility and customization. The level of support

provided by JIRA is excellent. They have community forums and seem to engage well with their

customers. It supports multiple operating systems including Windows, Mac and Linux. The

report generation is very robust and includes capabilities to help forecast future costs. The install

is fairly straightforward, but not turn-key. It integrates well with various code repositories and

has built in bug tracking support through JIRA. It is a proprietary product and not an open

source tool, so there is no access to the underlying code.

The third place tool which is worth an honorable mention due to its open source and free nature

is Agilo Free. Agilo Free is a plug-in for the popular development tool Trac. Trac is an open

source, web-based, project management and bug-tracking tool. Along with Agilo it delivers a

robust platform of streamlined functionality for managing Scrum. Agilo targets the challenges of

a distributed development environment, it is highly configurable, allowing you to adapt the tool

to a specific workflow and provides a single tool to support a team‘s daily work.

Agilo scores very well in the areas of collaboration, portability, support and cost. The project

was created with the intent to allow distributed teams to collaborate easily on open source

projects. It installs on any operating system that runs Python (as this is a Python based tool).

The open source version is free, but there is also a professional version of this tool available for

purchase. The professional version only offers a few extra features and most likely isn‘t worth

the cost unless professional support is a must have.

Overall, this tool study found many suitable Agile PM tools that could be used in the DOD

environment. Some were better than others. This trade study should aid in the decision of

selecting an Agile PM tool.

http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Project_management
http://en.wikipedia.org/wiki/Bugtracker

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 8-38

8 Case Studies
The use of Agile development methodologies in DOD is on the rise. Many programs of record

are using some form of Agile development including: National Senior Leadership Decision

Support Service, Joint Space Operations Center Mission System, Joint Communications Support

Element, Air and Space Operations Center - Weapons System, Global Command and Control

System – Joint, Distributed Common Ground Station - Marine Core (DCGS-MC), DCGS -

Intelligence Backbone (DIB) and DCGS - Intelligence Community (DCGS-IC). Two case

studies are provided in this section detailing the use of Agile processes in government programs

of record. The first case study is on a program (referred to as "Program A") that is creating a

collaborative, web-based tool for sharing information and services and the second is on the Joint

Operational Planning and Execution System (JOPES). Data for the first case study was collected

through interviews conducted in February and August of 2010 with program representatives.

The second case study was derived from a published article. Each of the cases includes a

description of the project, information on the Agile methodology and processes used; challenges

and benefits of adopting Agile, and recommendations.

8.1 Program A

8.1.1 Project Summary

In 2007, Program A was created to be a collaborative, web-based tool to share information and

services. The effort is fairly large and serves multiple government programs of record.

Development is ongoing.

8.1.1.1 Summary of the Agile Methodology and Related Processes

 Team: The team structure includes a breakdown of the team into a government team and a

vendor team. The government team includes a Contracting Officer's Technical

Representative (COTR), Contracts Officer, Federally Funded Research and Development

Center (FFRDC) support, and three System Engineering and Technical Assistance (SETA)

contractor personnel. The vendor teams size is about 4-5 persons and includes testers,

systems engineers, developers, and security representatives. The Scrum team roles include

the Product Owner (a government or SETA contractor assigned to the project), the team

(vendor development team plus test and security reps), and the ScrumMaster (vendor). An

additional role called the Product Manager was also added. This role is assigned to a vendor

team member who serves as the vendor interface to the government Product Owner.

 Process: High level requirements are tracked in a spreadsheet or a System /Sub-system

Specification (SSS). They are decomposed into features (such as the system must be

Protection Level 3 (PL3) compliant), which are then decomposed further into user stories and

associated story points. Iterations are tracked at the feature level, using feature points. A

Verification Cross-Reference Matrix is used to manage traceability from the SSS to features,

to the lower level requirements (such as tasks). Iterations to build features that are not yet

integrated are about 4-6 weeks in length. At the end of the iteration, features are

demonstrated and signed off by the government, and planning for the next Iteration begins.

User feedback is added to the backlog. If features were not implemented in the previous

iteration, they become candidates for the next one, along with other high priority features

from the product burn down log. Releases occur about every 6 months (there are 4-6

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 8-39

iterations in a release), and include integration and documentation tasks. The team system

engineers build Department of Defense Architecture Framework (DODAF) 2.0 document

artifacts during the integration iteration. At the end of a release, a Requirements Review

Board is convened to look at outstanding requirements and reprioritize open ones, if needed.

The team engages users through numerous means: 1) new releases are deployed with team

members who engage users and show them the new features; 2) training sessions are offered

for users; and 3) feedback can be posted on the program's portal.

 Tools: The program is using Rally as their project management tool. It was considered the

best tool for managing multiple teams, but needs to be modified to pull data from the

vendor‘s time accounting system. The Program Office is working to automate the

connection of the SSS requirements to Rally to complete the end to end monitoring of

requirements to features satisfaction. This data will to be used to calculate earned value. In

addition, the team uses two automated test tools: 1) Load Runner and 2) Hudson.

8.1.2 Challenges

The team experienced challenges with testing and security to meet their organizations

requirements. The team initially had problems deciding how to test features, because there were

misunderstandings on what ‗done‘ meant. This was resolved by defining acceptance criteria up-

front during Iteration planning. The team also experienced challenges with waiting until the end

of a release to initiate security planning. This results in unnecessary rework. This problem was

resolved by including security representatives as team members during Iteration Planning.

8.1.3 Benefits

Using flexible contracting mechanisms saved money and allowed the program to

develop/integrate new technologies quickly. The Agile development process gave the Program

Office the opportunity to build out and field capabilities in a more rapid manner.

8.1.4 Lessons Learned

Because Agile software development requires continual improvement and learning, mistakes are

to be expected. However, as long as problems are identified and resolved quickly, the team can

keep moving forward. One recommendation offered was to leave a couple of blank iterations at

the end of a release to handle any unforeseen problems, or testing/security oversights. Another

recommendation was to keep the teams small. If a team gets too large (more than 5 or so), break

the team into smaller sub-teams.

8.2 Joint Operational Planning and Execution System (JOPES)

8.2.1 Project Summary

The information provided in this section is from an article written by Sean Cohan (2007) of

Pragmatics, Inc. Mr. Cohan was the lead engineer on a Defense Information Systems Agency

(DISA) project to Service Oriented Architecture (SOA) enable the JOPES program. The paper

highlighted that the typical DOD acquisition release duration is about 18 to 36 months, and that

DISA wanted to compress that down to 30-60-90 day releases, similar to Google release cycles.

The article describes how the team was able to meet these shorter duration cycles.

http://www.rallydev.com/
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-126-17%5e8_4000_100__
http://wiki.hudson-ci.org/display/HUDSON/Unit+Test

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 8-40

8.2.1.1 Summary of the Agile Methodology and Related Processes

 Team: The initial team consisted of 5 members: the lead engineer, a mid-level developer, 2

junior developers, and an Agile coach. The team later grew to over 20 developers.

 Process: The team used software engineering Agile practices such as Test Driven

Development, refactoring, and pair programming. The JOPES customer was included early

in the development process in order to understand requirements management (story cards),

observe automated tests and builds, and review release plans. The team included the test

community early in the planning process and provided the DISA testers automated tests with

the code delivery.

 Tools: The team used an open source tool called Dokuwiki for knowledge management,

Subversion as a code repository, Vulcan for continuous integration, and Cobertura as a test

code coverage reporting tool. Mr. Cohan mentioned that the test reports helped Pragmatics,

Inc. become CMMI level 4 compliant.

8.2.2 Challenges

The team experienced challenges with the following: having a geographically separated

customer, integration of non-Agile team members, and a long testing process that delayed

fielding. The team did not have an on-site customer/end user, so they created web applications

that allowed the end user to provide feedback and still be involved with development. There

were some difficulties integrating non-Agile team members into an Agile development

environment. At first they did not like the noise in the team area, having their code open for

review and refactoring, and fear of losing their status as senior engineers and team leaders. The

Agile coach helped ease transition by teaching the new members Agile processes, such as story

card development, refactoring, and pair programming. Additionally, the team worked to keep

the noise levels in check. Initially, the team had some difficulty getting the testers to be part of

the development team. As a result, it would take months for the software to be approved for

fielding. The team resolved this by including the test team earlier in the development cycle, and

worked with them to synchronize their test activities to the feature development schedule. Also,

at the time the article was being written, DISA was developing a Federation Development

Certification Environment (FDCE) that included automated testing and certification capabilities.

8.2.3 Benefits

Cohan cited that management support and having an experienced Agile coach were major

contributing factors to the project's success in reaching DISA's overall desire for shorter release

cycles.

8.2.4 Lessons Learned

The main lesson learned in the article is to use an Agile coach during early implementation. This

helped introduce new Agile concepts to the team, integrate new non-Agile team members, and

successfully deal with difficulties as they emerged.

http://www.dokuwiki.org/dokuwiki
http://subversion.apache.org/
http://vulcan-project.org/
http://cobertura.sourceforge.net/

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 9-41

9 Systems Engineering Plan Template
A Systems Engineering Plan (SEP) is a "living" document that captures a program's current and

evolving systems engineering strategy and its relationship with the overall program management

effort. The SEP's purpose is to guide all technical aspects of the program and is typically

established early in the programs life and continually updated. It is used in the Milestone

Decision Authority (MDA) approval at each milestone (ACQuipedia, 2008). Creating a SEP can

be a hard task, especially if the program doesn‘t currently have much systems engineering rigor.

Furthermore, it can be even harder if the program is making a transition to Agile.

This section aims to ease the burden of creating a SEP by providing an Agile methodology to use

as a template for the creation of a program's SEP. The remainder of section 9, is written as

sections that could be used in a SEP. To use the template, paste the relevant sub-sections into

your program's SEP and modify it to suit the needs of the program.

9.1 Agile Systems Engineering Plan Introduction

This SEP template uses an Agile methodology based on existing models and practices as

frameworks to build a hybrid approach that allows a program to capitalize on the benefits and

minimize the drawbacks of various approaches. When selecting an Agile methodology, it is

important to understand that each practice comes with benefits and drawbacks, and there is no

"one size fits all" approach to adopting a single method. As with all engineering processes,

tailoring is required to satisfy the idiosyncrasies of a given project.

This hybrid approach employs an Agile development methodology based primarily on Scrum

and supplemented with Extreme Programming (XP) practices. Scrum itself is not a software

development methodology (Mountain Goat Software, 2010), rather an iterative, incremental

process for development that focuses on delivering capabilities to the end user; it is thought of

more as a framework or an Agile project management methodology (Paulik, Davis, &

Maccherone, 2009). When implemented correctly, Scrum focuses on quick insertion of

incremental capability that is driven by user feedback. It also creates a program management

structure that is conducive to dealing with constant change.

While Scrum's strong points focus around project management, it does not specify low-level

engineering practices that help ensure product quality. To address this lack of specificity, and to

ensure product quality, low-level engineering practices from XP are recommended as a

supplement to the Scrum approach. As Kniberg describes in Scrum and XP from the Trenches

(2007), this is a common approach and these two methodologies complement each other well.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 9-42

Figure 9-1: Agile Process

Scrum provides a project management framework that incorporates, developers, stakeholders,

and end users together to produce a potentially fieldable capability at the end of every time

boxed iteration, called a ―sprint‖. Figure 9-1 illustrates this process and the following sections

detail how Scrum can be tailored for a DOD IT program.

9.2 Capability Requirements Analysis

Capability requirements are organized in a living document called the ―product backlog‖. The

product backlog is an evolving, prioritized queue of operational and technical requirements, as

depicted in Figure 4-1. It can contain requested features, change enhancements, and defect

corrections; in other words, anything that constitutes a change to the product that should be made

available for future releases. All stakeholders, end users, and developers can add capability

requirements to the product backlog. In effect, the product backlog is a prioritized ―wish list‖ of

features to be incorporated into the system, and can change as end user's needs change.

Initially, the product backlog should be populated from the program's documentation such as the

Capability Description Document (CDD) and Capability Production Document (CPD).

Classified information should be handled in a separate classified product backlog.

After information is initially collected and added to the product backlog, a storyboarding

workshop should be held. Storyboarding is described in Section 9.2.2. This storyboarding

workshop is an opportunity to present the capability requirements to the user community and to

refine them further with storyboards and user stories. During a storyboarding workshop the

development team, product owner (described further in the Section 9.6.1) and users meet to walk

through operational threads to refine capabilities already on the product backlog and to identify

new capabilities. The product backlog will become a living document and should be refined

based on user evaluation and feedback at the end of every sprint, or at predefined evaluation

events.

9.2.1 User Stories

Capability requirements should contain a user story. A user story is a concise, written

description of a capability that will be valuable to a user (or owner). It is written in a narrative

fashion from the user‘s perspective. It contains just enough information, "the who, what and

why" necessary to describe a requirement. User stories should be:

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 9-43

 Independent – User Stories should be as independent as possible, and minimize dependency

on other user stories to deliver full value.

 Negotiable – User Stories are not detailed specifications. They are high level descriptions of

features for the team to discuss with the story owner and collaborate to clarify the details near

the time of development.

 Valuable – User Stories should be valuable to the user (or owner) of the solution. They

should be written in user language, not technical jargon. They should be at the feature level

of description, not the task level.

 Estimatable – User Stories need to provide enough information to estimate level of effort,

without being too detailed.

 Small – User Stories should be small and succinct.

 Testable – User Stories should be worded in a way that provides for a testable result, i.e. not

subjective and clearly defined, stating true or false outcomes.

 Traceable – User Stories are traceable to overarching mission threads and CONOPS.

A well written user story takes this form:

 As a [user role], I want to [goal] so I can [reason]

For example:

 As a registered user I want to log in so I can access subscriber-only content.

A well written user story provides the key components of a capability:

 Who - The user role.

 What - The user‘s goal.

 Why - The reason for the user wanting to achieve the goal. This:

- Gives clarity as to why a feature is useful

- Can influence how a feature should function

- Provides a basis for the functional test (that is written before the code)

- Can give you ideas for other useful features that support the user's goals

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 9-44

9.2.2 Storyboarding and Mockups

Figure 9-2 Wire-frame Mockup of iTunes Cover Flow Feature (source:

http://www.balsamiq.com/products/mockups/examples#mytunez)

The program should use storyboarding and mockup demonstrations as a way to help visualize the

uses of the system and its features. A storyboard is a narrative visual depiction set in time that

describes how the system will be used. Google uses storyboards for almost every product they

launch. The implementation of their storyboards range from comic strips to animated videos, but

all of them describe how and why someone should use the product. A mockup is a visual

depiction of a feature of the system. For example, when Apple created Cover Flow in iTunes so

that users could visually browse their music collection using album cover artwork, it was

obviously very useful for them to show executives and developers what cover flow would look

like before it was built. Using a mockup, they could easily show exactly where in iTunes Cover

Flow would be displayed and roughly how it would look and function. Figure 9-2 demonstrates

a wire-frame mockup of iTunes Cover Flow.

http://www.balsamiq.com/products/mockups/examples#mytunez

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 9-45

9.2.3 Prioritization

The product owner is responsible for establishing the product backlog priorities so that higher

priority items will be implemented before lower priority items. This ensures scope optimization

throughout the life of the project. The product owner is responsible for socializing with the user

community to understand their needs in order to make decisions regarding the backlog item

priorities.

9.2.4 Capability Estimation

Agile estimation is also an iterative and incremental process. Estimations are performed by the

development team and are used to gauge complexity. Estimations can become more accurate

over time (if used correctly), as past performance information emerges throughout the project.

Estimates are starting points, from which sprints can be empirically constructed and managed.

User stories should be estimated by the development team using a measure called 'story points'.

A story point is a unit of measure that expresses the development complexity of a user story

relative to the other user stories in the product backlog. Each user story is assigned a story point

value. The raw value assigned is unimportant unless it is relative to every other story point

value. For example, a user story that is assigned a value of '2' should be twice as complex as a

user story that is estimated to have a value of '1'. Engineering judgment and analogy will be the

primary method to develop the basis of estimate for each estimated user story. This basis of

estimate will become refined prior to each sprint when the user stories are decomposed into tasks

and time required to completing them is associated.

The scale of story point values should be Fibonacci numbers (i.e. 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

…). Fibonacci numbers are derived recursively by taking the sum of the previous two numbers

in the sequence, (i.e. 1 + 2 = 3, 2 + 3 = 5). A value of '1' would be trivial, such as performing a

find and replace refactor on a term. A value of '89' would be very complex, usually reserved for

user stories where the design is unknown or a way forward is unclear. Fibonacci numbers make

good story point values because the increasing gap between the available values nicely

represents the increase in uncertainty when estimating larger user stories. By using story points,

the team can determine the amount of work they can perform in a given time period, known as

'velocity'.

Velocity is a measure of a team‘s rate of progress. It is calculated by summing the number of

story points assigned to each user story that the team completed during a sprint. If a team

averages X story points in the past sprints, they are likely to complete X story points in future

sprints. Because story points are estimates of relative size, this will be true whether they work

on two five-point stories or five two-point stories.

As the development sprints begin, the team‘s true velocity will become apparent over the first

few sprints. This points-based approach to estimation is self-correcting. As the true velocity

becomes known, the schedule can be re-adjusted to reflect the actual number of story points that

can be completed during a sprint.

So far we've discussed 'why' you estimate, but not 'how'. How you estimate can be performed

through a fun process called planning poker. Planning poker takes place by gathering the team

and giving each team member cards with estimate (Fibonacci) numbers on them. The team

discusses a user story and then, at the same time, each person throws down a card with the

number of the estimation for that user story. Then the team discusses the numbers that were

thrown and normalizes on a number. For instance, if a team consisting of five members throws a

2, 5, 5, 5, and a 13, the person who threw the 2 would be asked "Why so low?" and the person

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 9-46

who threw a 13 would be asked "Why so high?". Through this process the team each gets to

voice their opinion about the complexity of the requirements and a group consensus forms on the

estimation of this complexity. More info on planning poker can be found on its Wikipedia page

http://en.wikipedia.org/wiki/Planning_poker.

Time required to achieve a completed user story is purposely left out of this section. This takes

place during a sprint planning session which will be described in the following section. It is

important to treat time estimation and complexity estimation separately, as complexity does not

always directly equate to time. Furthermore, time estimations require a breakdown of work at

the task level which is not performed until a user story has been committed to a sprint.

9.3 Planning

Just like other activities within Agile methodologies, planning also occurs iteratively and

incrementally in order to reflect reality and to embrace change. Each planning activity is driven

by the cost, schedule and performance constraints. It is recommended that a program have three

levels of planning: release, iteration, and daily.

Release planning is strategic in nature, and considers the user stories that will be developed for

major releases of the program. The goal of release planning is to determine the appropriate

scope, schedule, and resources for the entire project. This planning occurs at the beginning of

the project after the initial product backlog has been developed. The release plan is updated

throughout the project (usually at the start of a sprint). It is important to note that release

planning is a form of intent, not commitment. Commitment is agreed upon at the individual

sprint level. This ensures scope is properly optimized and remains current throughout the life of

the project.

Figure 9-3: Iteration Planning Meeting Flow

http://en.wikipedia.org/wiki/Planning_poker

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 9-47

Iteration or sprint planning, shown in Figure 9-3, is where the development team commits to

completing a set of user stories in a given time period. Iteration planning is conducted by the

development team and the product owner. This planning is more tactical in nature, and is

conducted before the start of each sprint. Based on the work accomplished in the previous

sprints, the product owner identifies high priority items from the product backlog to be

completed in the sprint. During iteration planning, the team establishes the engineering tasks

needed to transform a backlog item into working and tested software. It includes all tasks

necessary to start with a user story and to finish with a fully functioning, potentially shippable

product. For the high risk user stories, use cases should be developed that outline the details of

the user story (a use case template can be found in 11Appendix E). During this planning meeting

the team estimates (in hours) how long each task will take. All analysis, design, user interface

design, integration, testing, certification, accreditation, and documentation tasks need to be

indentified and estimated in terms of hours. After a user story's tasks have been estimated, hours

are summed and stored for the user story along with its story point value. This comparison will

also help the estimates improve over time.

Daily planning (referred to as the 'daily scrum' or stand-up) occurs daily and is the forum where

the scrummaster, product owner, and development team assess and revise their sprint plan. Its

goal is make adaptations that optimize the value of the next workday. During the daily stand-up

sessions, the product owner, scrummaster and development team constrain the planning horizon

to be no further away than the next day, when they will meet again. The focus is on the planning

and coordination of individuals‘ activities and the assignment of the tasks produced in iteration

planning to individuals. These daily stand-up meetings should last no more than fifteen minutes.

This is not the forum to discuss any topic in great depth. These discussions should be directly

coordinated with only the required individuals and discussed outside of the daily stand-ups.

Each development team member discusses the following:

1) What he or she has done since the last daily stand-up.

2) What he or she is going to do before the next daily stand-up.

3) What obstacles are in his or her way.

9.4 Sprint Execution

9.4.1 Sprint Development

Program work should be confined to a regular, repeatable cycle, known as a sprint. Sprints are

usually 2 – 6 weeks in length. The length of a sprint is usually determined by the speed in which

important requirements emerge. In a very fast paced environment where competing high-priority

requirements change from week to week, or even day to day, a smaller sprint length should be

chosen. Sprint length is often tweaked based on past performance, but it should not be changed

during a sprint, as sprints are time-boxed once underway.

Once the development team commits to the work in a sprint, the sprint‘s scope cannot be altered.

This is important because it ensures the sprint will have an achievable finish line. The work is

finite and fixed, i.e. new user stories are not being added to the sprint and existing user stories

are not being augmented to include new functionality. This also ensures that work, once started,

is carried through to completion. In environments where high priority requirements change

weekly, or even daily, it is common to start a development task without finishing it to move on to

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 9-48

the newer, higher priority task. In environments like this, it may beneficial to undertake short

sprint durations such as 2 weeks.

Figure 9-4: Sample Burn Down Chart

At the end of each day, development team members should enter the hours remaining for his/her

assigned tasks in an Agile project management tool. Team members‘ data will be aggregated

and displayed in a burn down Chart, as shown in Figure 9-4. The X-axis represents days in the

sprint, while the Y-axis is the estimated effort remaining (usually in ideal engineering hours).

The planned activities, with associated completion times, can be compared to the actual

activities, with associated actual completion times, to help monitor project performance.

Source code repository, internal configuration management, automated testing, Agile

management and defect management tools should be used by the development team. These tools

are discussed more in Section 7.

9.4.2 Sprint Integration

The development team should strive for continuous integration, described in Section 6.1.3.

Developers should integrate their work at least once daily, using continuous integration software

to automate the verification of a build and detect integration errors as quickly as possible.

Integration testing will ensure that newly developed capabilities integrate successfully into the

evolving enterprise software baseline.

9.4.3 Sprint Testing

Testers should be fully integrated into the development team. This ensures the testers are always

up-to-date and can readily communicate with the developers and the product owner.

During planning meetings, testing should be discussed amongst the development team to identify

the best way to fulfill testing requirements. Automated testing and continuous integration should

be implemented to the fullest extent possible. Having continual builds running unit tests and

functional tests will allow testers to perform more exploratory testing.

No user story can be marked as complete until its testing has been successfully completed.

There should be four major types of testing performed during the sprint:

1. Unit/Component Testing – Unit tests verify functionality of the smallest subset of the

system, such as an object or method. Component tests verify the behavior of a larger part of

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 9-49

the system, such as a grouping of classes that provide a service or a logical grouping of

functionality. Both types of tests are usually automated with a member of the xUnit family

of test automation tools.

2. User Story Testing – User story tests are derived from examples provided by the customer

team and documented in the capability requirements. They describe the details of each

capability. Operational-facing tests run at a functional level, each one verifying an

operational satisfaction condition. They are written in a way end users can easily understand

using the operational domain language. The domain experts will use these tests to define the

external quality of the product. It's possible this testing could duplicate some of the tests that

were done at the unit level; however, these tests are oriented toward illustrating and

confirming desired system behavior at a higher level.

3. User Assessment Testing (UAT) – UAT gives end users a chance to evaluate the system in

an operational context to assess its effectiveness and to suggest new capability requirements.

4. Ility Testing – Ility tests are technology-facing tests that are discussed in technical, rather

than end user terms. Technology-facing are intended to critique product characteristics such

as human factors, performance, robustness, and security (Barbaci, Klein, Longstaff,

Weinstock, 1995).

The testing process is continuously improved by applying feedback from the team.

Improvements to the testing process (as well as any other process in the sprint) are also discussed

in the sprint retrospective.

9.4.4 Sprint Retrospective

The program should hold a sprint retrospective at the end of each sprint. A sprint retrospective is

a meeting in which only the development team, scrummaster, and product owner discuss how the

sprint went and how future sprints can be improved. When providing feedback, it is important

not to dwell on specific failings or shortcomings of specific team members, rather discuss how

things could be improved the next time around. Scrum is an adaptive framework and

retrospectives are a chance to ensure that Scrum is being properly applied to the specific

environment in which you operate.

9.4.5 Sprint Review

The sprint review is a meeting that takes place at the end of each sprint, in which the

development team demonstrates the functionality created in that sprint. This meeting is led by

the development team and is attended by anyone who is interested, but specifically the product

owner and other interested stakeholders. Users are encouraged to participate as well.

Typically, the developer who implemented the user story will demonstrate the functioning of that

user story. Questions are fielded and feedback is garnered. Once the demonstrations have

completed, and the product backlog has been updated to reflect the feedback, the product

backlog is then re-prioritized by the group, but with ultimate approval from the product owner.

9.5 Tools

Based upon the Agile project management tool study, it is recommended that SoftwareForge

offered by Forge.mil be the Agile project management tool of choice. SoftwareForge provides

development tools such as software version control, bug tracking, requirements management,

and release packaging along with collaboration tools such as wikis, discussion forums, and

document repositories to enable collaborative development amongst distributed developers. As

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 9-50

discussed in Agile Project Management Tools (Section 7.2), SoftwareForge stands out from the

rest of the tools in that it is the only tool that is hosted as a cloud-based, software-as-a-service

application provided by DISA.

In addition, a product from each of the following categories of tools would be beneficial:

 Continuous Integration and Build Tool – Necessary features include easy integration with

popular source code management tools, support for commonly used test frameworks, support

for various build tools, notification and alerting, and reporting. Examples include Hudson

(MIT-licensed) and Bamboo (Atlassian Software Systems).

 Automated Testing Tool – Necessary features include testing of web applications with

AJAX and JavaScript elements, automated capture and replay of user actions, support for

functional, compatibility (cross-browser) and regression testing, and support for code-driven

testing. Examples include Selenium (open source) and TestComplete (AutomatedQA).

 Source Code Management or Revision Control Tool – Necessary features are support for

baseline or trunk, revisions at the source file level, version merging, conflict management,

commits, release tagging, and branching. This may be included or integrated with a project

management tool. Examples include SubVersion (open-source), Mercurial (open-source)

and Perforce (Perforce Software Inc.).

 Integrated Development Environment Tool – Necessary features include a source code

editor, a compiler or interpreter, a debugger, integration with a source code management tool.

Examples include Eclipse (open source), NetBeans (Sun) and Komodo (ActiveState).

9.6 Roles

This section discusses five specific roles that should be present on a DOD IT program: 1)

Product Owner, 2) ScrumMaster, 3) Integration Team, 4) Stakeholders, and 5) Users.

9.6.1 Product Owner

The Product Owner, a critical role in Scrum, is responsible for understanding and

communicating the users' and stakeholders' concept of operations to the engineering team,

including the product vision and value proposition. The Product Owner is responsible for

managing the product backlog and refining its contents on a daily basis, including prioritization

of the backlog to ensure the most important operational concepts are being addressed by both the

defined and derived requirements. The Product Owner also must collaborate with the team on a

daily basis to answer questions when they arise, provide feedback, and sign off on work results.

The Product Owner is often thought of as ―a single wringable neck‖ because this one person is

ultimately responsible for the success or failure of the project.

9.6.2 ScrumMaster

It is recommended that the program designate a team ScrumMaster whose job is to perform

ScrumMaster duties. The ScrumMaster facilitates the scrum process, protects the team from

interference, and removes obstacles so that the team can deliver the sprint goal. The

ScrumMaster role is loosely mapped to the role of project manager in traditional software

engineering methodologies; however, he does not control the team as a traditional project

manager would, since the team is self-organizing.

The ScrumMaster has many duties, but most importantly, the ScrumMaster should:

 Act as a buffer between the team and any distracting influences.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 9-51

 Ensure that the Scrum process is used as intended.

 Be the enforcer of team rules.

 Remove obstacles and protect the team to keep them focused on the task at hand.

9.6.3 Integration Team

The integration team is responsible for developing and integrating the software required to meet

program capability requirements. The term "integration team" is used synonymously with

"development team". The integration team includes software engineers, data specialists, security

engineers, testers, and other specialists as needed. This team should be self-organizing. The

concept of self-organizing teams is discussed in Section 4.11

9.6.4 Stakeholders

The term "stakeholder" is applied to anyone who has a vested stake in the project. This includes

those people who enable the project or who receive an agreed upon benefit.

9.6.5 Users

The term "user" refers to anyone who will be a direct or indirect user of the program system. A

direct user is anyone who uses a program service or component. An indirect user includes those

who use a service or component, not directly, but through another piece of software. In other

words, another software application is consuming a service and the use of this software makes

that user an indirect user of the program.

9.7 Trade Studies

System analysts use trade studies to support decisions about capability requirements and design

alternatives, especially when analyzing commercial off the shelf (COTS) or Government off the

shelf (GOTS) products for integration. These trade studies target performance drivers and

constraints from the program.

Agile development uses a similar concept referred to as ‗spikes‘, which are time boxed periods

of research and development to investigate a concept or COTS product to assess its suitability of

fulfilling a requirement. The duration and objective(s) of a spike should be agreed upon between

the product owner, scrummaster and development team before it starts. Spikes will normally be

shorter than a standard sprint; however, they can range in duration from a few hours to a few

weeks.

Unlike sprints, spikes may or may not deliver tangible, shippable, valuable functionality. For

example, the objective of a spike might be to research COTS products to determine if they are

the best way to implement a capability. The recommendation may very well be to create an in-

house product because no suitable COTS, GOTS, or open-source alternative could be found.

This is consistent with DISA's strategy of adopt-buy-create that has been successfully used by

NCES and other DISA programs (Browne, 2006).

Spikes will usually take place in between sprints and are often introduced before the delivery of

capability in order to:

 Secure budget

 Expand knowledge

 Proof of concept prior to committing resources to a particular vendor

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 9-52

Table 9-1 Cost Effectiveness Parameters

 Cost Containment Parameters System Effectiveness Parameters

 Research, design, and development cost

Production cost

System operation cost

Maintenance and support cost

System performance

Availability, reliability, supportability and

usability

System quality

Security

Other technical factors

Part of the trade study process should include cost-benefit and cost-containment analyses. This

will be used to provide economic balance to the systems engineering decision-making process.

Cost-benefit analyses weigh the total cost of design alternatives against their effectiveness in

order to determine the relative value of solutions. These analyses attempt to capture all short-

term and long-term costs associated with an item. The potential costs and effectiveness

parameters to be considered in the analyses are listed in Table 9-1.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 10-53

10 Conclusion
This handbook provides guidelines focused on Agile development methodologies and tools to

enable a DOD IT program to rapidly field new capabilities to the Warfighter. Agile development

is a set of industry accepted software development practices that are now beginning to emerge in

DOD acquisition programs. This handbook includes background information on Agile principles

and methodologies from multiple open source and peer reviewed materials, as well as interviews

with members of Government Agile software programs. It also includes the results of a market

survey on Agile project management tools.

The information provided in this handbook demonstrates that the emerging Agile practices

within the Government Acquisition community combined with the proven Agile development

methodologies of the commercial sector can decrease time-to-field of valuable new capabilities.

Agile software development is not a "silver bullet" and these practices and methodologies must

be implemented with care.

Each commercial practice comes with benefits and drawbacks and there is no "one size fits all"

approach to adopting a single method. As with all engineering processes, tailoring is required to

satisfy the uniqueness of a given project. Using existing models and practices as frameworks, a

hybrid approach is one option that allows a DOD program to capitalize on the benefits and

minimize the drawbacks of various approaches.

An exemplary hybrid approach is an Agile development methodology based primarily on Scrum

supplemented with Extreme Programming practices. Scrum itself is not a software development

methodology, rather an iterative, incremental process for development that focuses on delivering

capabilities to the end user; it is thought of more as a framework or an Agile project management

methodology. When implemented correctly, Scrum focuses on quick insertion of incremental

capability that is driven by user feedback. It also creates a program management structure that is

conducive to dealing with constant change.

While Scrum's strong points focus around project management, it does not specify low-level

engineering practices that help ensure product quality. To address this lack of specificity, and to

ensure product quality, low-level engineering practices from XP are recommended as a

supplement to the Scrum approach. As Kniberg describes in Scrum and XP from the Trenches

(2007), this is a common approach and these two methodologies complement each other well.

Section 9 contains a systems engineering plan (SEP) modeled around Scrum and XP. This SEP,

which incorporates the findings of this report, is intended to serve as a tailorable foundation for

DOD programs.

Forge.mil's SoftwareForge received the highest evaluation score in the Agile Project

Management tool trade study. SoftwareForge provides development tools such as software

version control, bug tracking, requirements management, and release packaging along with

collaboration tools such as wikis, discussion forums, and document repositories to enable

collaborative development amongst distributed developers. As discussed in Agile Project

Management Tools Section 7.2, SoftwareForge stands out from the pack in that it is the only tool

that is hosted as a cloud-based, software-as-a-service application provided by DISA.

Agile training is crucial to the success of the project for teams that are transitioning to an Agile

methodology. This is based on a finding of Section 4.4 and a lesson learned from the JOPES

program in Section 8.2. A course on Agile development or hands-on training from an Agile

coach are both effective means to train teams. Specialized Agile training in the form of Scrum

training is recommended for teams adopting an Agile methodology using Scrum.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

MITRE 2010 10-54

A change to the Defense Acquisition System resulting from the Defense Science Board's (2009)

report is likely in 2011. Therefore, as a final recommendation, programs are urged to take

advantage of the Agile Acquisition and Contracting guidance discussed in Section 5 and Section

4.10, respectively.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-1

11 References

ACQuipedia (2008). Systems Engineering Plan (SEP). Retrieved from

https://acc.dau.mil/CommunityBrowser.aspx?id=29041

Advanced Development Methods, Inc. (2010). XP @ Scrum diagram. Retrieved from

http://www.controlchaos.com/about/xp.php

Atkinson, R., Crawford, L., & Ward, S. (2006). Fundamental uncertainties in projects and the

scope of project management. International Journal of Project Management, 24(8), 687-698.

doi: 10.1016/j.ijproman.2006.09.011

Barbaci, M., Klein, M., Longstaff, T., & Weinstock, C., (1995). Quality attributes. Carnegie

Melon University Software Engineering Institute. Retrieved from

http://www.sei.cmu.edu/reports/95tr021.pdf

Beck, K., Beedle, M., Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., et al. (2001).

Manifesto for Agile software development. Retrieved from http://agilemanifesto.org/

Boehm, B., & Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed.

Boston, MA: Pearson Education, Inc.

Barry, B. (2006). A view of 20th and 21st century software engineering. Paper presented at the

Proceedings of the 28th international conference on Software engineering, Shanghai, China.

Browne H. A., (2006). DISA enters new era of opportunity. Signal Online, Retrieved from

http://www.afcea.org/signal/articles/templates/SIGNAL_Article_Template.asp?articleid=1095&

zoneid=9

Chow, T., & Cao, D.-B. (2008). A survey study of critical success factors in Agile software

projects. Journal of Systems and Software, 81(6), 961-971. doi: 10.1016/j.jss.2007.08.020

Cockburn, A., & Williams, L., (2000). The costs and benefits of pair programming.

Proceedings of the First International Conference on Extreme Programming and Flexible

Processes in Software Engineering (XP2000). Retrieved from

http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF

Cohan, S. (2007). Successful integration of Agile development techniques within DISA. Paper

presented at the Agile 2007 Conference.

Cohen, M. (2007). Advice on conducting the Scrum of Scrums meeting. Retrieved from

http://www.scrumalliance.org/articles/46

Davis, J. P., Eisenhardt, K. M., & Bingham, C. B. (2009). Optimal structure, market dynamism,

and the strategy of simple rules. Administrative Science Quarterly, 54(3), 413-452. doi:

10.2189/asqu.2009.54.3.413

https://acc.dau.mil/CommunityBrowser.aspx?id=29041
http://www.controlchaos.com/about/xp.php
http://www.sei.cmu.edu/reports/95tr021.pdf
http://agilemanifesto.org/
http://www.afcea.org/signal/articles/templates/SIGNAL_Article_Template.asp?articleid=1095&zoneid=9
http://www.afcea.org/signal/articles/templates/SIGNAL_Article_Template.asp?articleid=1095&zoneid=9
https://docs.google.com/viewer?url=http%3A%2F%2Fcollaboration.csc.ncsu.edu%2Flaurie%2FPapers%2FXPSardinia.PDF
http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF
http://www.scrumalliance.org/articles/46

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-2

Defense Science Board. (2000). Report of the Defense Science Board Task Force on: Defense

Software. Retrieved from http://www.acq.osd.mil/dsb/reports/ADA385923.pdf

Defense Science Board. (2009). Report of the Defense Science Board Task Force on:

Department of Defense policies and procedures for the acquisition of information technology.

Retrieved from http://www.acq.osd.mil/dsb/reports/ADA498375.pdf

Deming, W. E. (1982). Out of the crisis. Cambridge, MA: MIT Press.

Demmer, P., Benefield, G., Larman, C., & Vodde, B. (2009). The Scrum primer, V1.2.

Retrieved from http://scrumtraininginstitute.com/home/stream_download/scrumprimer

Design Patterns. (2010, March 26). In Wikipedia, the free encyclopedia. Retrieved April 1,

2010, from http://en.wikipedia.org/wiki/Design_pattern_(computer_science)

Dubakov, M., & Stevens, P. (2008). Agile tools. The good, the bad and the ugly. Retrieved

from http://targetprocess.com/download/whitepaper/agiletools.pdf.

Duquette, J., Bloom, M., & Crawford, L. (2008). Transitioning Agile/Rapid Acquisition

initiatives to the Warfighter. The MITRE Corporation, MITRE Technical Report WN080041.

Duquette, J., Bloom, M., Crawford, L., & Osgood, D. (2007). Final report: E520 technical

initiative project Agile/Rapid Acquisition. The MITRE Corporation, MITRE Working Note

WN070047.

Fernandez, D., & Fernandez, J. (2008). Agile project management - Agilism versus traditional

approaches. The Journal of Computer Information Systems, 49(2), 10-17.

Fowler, M., (2006). Continuous integration. Retrieved April 1, 2010, from

http://martinfowler.com/articles/continuousIntegration.html.

Glazer, H., Dalton, J., Anderson, D., Konrad, M., & Shrum, S. (2008). CMMI or Agile: Why not

embrace both! Retrieved on January 5, 2010 from http://www.sei.cmu.edu/reports/08tn003.pdf

United States General Accounting Office. (2002). Acquisition workforce Department of

Defense‘s plans to address workforce size and structure challenges. Retrieved from

http://www.gao.gov/new.items/d02630.pdf

Government Accountability Office. (2008a). OMB and agencies need to improve planning,

management, and oversight of projects totaling billions of dollars. Retrieved from

http://www.gao.gov/new.items/d081051t.pdf

Government Accountability Office. (2008b). Better weapon program outcomes require

discipline, accountability, and fundamental changes in the acquisition environment. Retrieved

from http://www.gao.gov/new.items/d08782t.pdf

http://www.acq.osd.mil/dsb/reports/ADA498375.pdf
http://scrumtraininginstitute.com/home/stream_download/scrumprimer
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://targetprocess.com/download/whitepaper/agiletools.pdf
http://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuousIntegration
http://www.sei.cmu.edu/reports/08tn003.pdf
http://www.gao.gov/new.items/d02630.pdf
http://www.gao.gov/new.items/d081051t.pdf
http://www.gao.gov/new.items/d08782t.pdf

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-3

Harmancioglu, N., McNally, R. C., Calantone, R. J., & Durmusoglu, S. S. (2007). Your new

product development (NPD) is only as good as your process: An exploratory analysis of new

NPD process design and implementation. R&D Management, 37(5), 399-424. doi:

10.1111/j.1467-9310.2007.00486.x

Jeffries, R. (2001). What is Extreme Programming? Retrieved from

http://xprogramming.com/xpmag/whatisxp

Johnson, J. (2009). CHAOS 2009. Chaos Activity News, 4(3). Retrieved from

http://www.standishgroup.com/chaos_news/2009/march/index.php

Kniberg, H., (2007). Scrum and XP from the trenches – How we do Scrum. Retrieved from

http://www.infoq.com/minibooks/scrum-xp-from-the-trenches

Koch, A. S. (2005). Agile software development: Evaluating the methods for your organization.

Norwood, MA: Artech House.

Kolawa, A., & Huizinga, D., (2007). Automated defect prevention: Best practices in software

management. Wiley-IEEE Computer Society Press. p. 75. ISBN 0470042125.

Lindstrom, L., & Jeffries, R. (2004). Extreme Programming and Agile software development

methodologies. Information Systems Management, 21(3), 41-60. doi:

10.1201/1078/44432.21.3.20040601/82476.7

Matharu, J., (2005). Reusing safety-critical software components. COTS Journal. Retrieved

from http://www.cotsjournalonline.com/articles/view/100380

Moe, N., Dingsoyr, T., & Dyba, T. (2008). Understanding self-organizing teams in Agile

software development. Retrieved from

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04483195

Mountain Goat Software (2010). Introduction to Scrum – An Agile process. Retrieved from

http://www.mountaingoatsoftware.com/topics/scrum

National Academy of Sciences. (2009). Achieving effective acquisition of information

technology in the Department of Defense. Retrieved from

http://www.nap.edu/catalog.php?record_id=12823

Pair Programming. (n.d.). In Wikipedia, the free encyclopedia. Retrieved March 5, 2010 from

http://en.wikipedia.org/wiki/Pair_programming)

Paulik, M., Davis, N., & Maccherone, L. (2009). On empirical research into Scrum. Retrieved

from http://www.scrumalliance.org/resource_download/1156

Poppendeick, LLC (2009). Lean programming part 1 and 2. Retrieved from

http://www.poppendieck.com/lean.htm

http://xprogramming.com/xpmag/whatisxp
http://www.standishgroup.com/chaos_news/2009/march/index.php
http://www.infoq.com/minibooks/scrum-xp-from-the-trenches
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0470042125
http://www.cotsjournalonline.com/articles/view/100380
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04483195
http://www.mountaingoatsoftware.com/topics/scrum
http://www.nap.edu/catalog.php?record_id=12823
http://en.wikipedia.org/wiki/Pair_programming
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://www.scrumalliance.org/resource_download/1156
http://www.poppendieck.com/lean.htm

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-4

Project Management Institute. (2008). A guide to the project management body of knowledge

(PMBOK guide) (4th ed.). Newtown Square, PA: Project Management Institute.

Schatz, B., & Abdelshafi, I. (2005). Primavera gets agile: a successful transition to Agile

development. IEEE Software, 22(3), 36-42.

Sliger, M., & Broderick, L. (2008). The Software Project Manager's Bridge to Agility. New

York: Addison-Wesley

Steffens, W., Martinsuo, M., & Artto, K. (2007). Change decisions in product development

projects. International Journal of Project Management, 25(7), 702-713. doi:

10.1016/j.ijproman.2007.01.008

Stevens, R. G., King, M. K., & Halley, M. R. (2009). Acquisition strategies for dealing with

uncertainty. The MITRE Corporation. MITRE Public Release 09-1310.

Surendra, N. C. (2008). Using an ethnographic process to conduct requirements analysis for

Agile systems development. Information Technology and Management, 9(1), 55-69. doi:

10.1007/s10799-007-0026-6

Sutherland, J., Jakobsen, C., & Johnson, K. (2007). Scrum and CMMI Level 5: A magic potion

for code warriors. Agile Conference. Denver, CO, July 2005. Retrieved from

http://jeffsutherland.com/2007/09/scrum-and-cmmi-level-5-magic-potion-for.html

Takeuchi, H., & Nonaka, I. (1986). The new product development game. Harvard Business

Review, 64(1), 137-146.

The Standish Group, Inc. (2009). Chaos manifesto: The laws of chaos and the CHAOS 100 best

PM practices. Retrieved from

http://www.standishgroup.com/custom_chronicles/showfile.php?File=CHAOS-Manifesto.pdf

Vaihansky, P. Sutherland, J. & Victorov, A. (2008). Hyperproductivity in large projects though

distributed Scrum. Agile Journal, Dec 2008. Retrieved from

http://www.agilejournal.com/articles/columns/column-articles/190-hyperproductivity-in-large-

projects-though-distributed-scrum

VersionOne, Inc. (2009). 4th annual state of Agile survey: State of Agile development.

Retrieved March 15, 2010 from http://www.versionone.com/Resources/Whitepapers.asp

Vinekar, V., Slinkman, C. W., & Nerur, S. (2006). Can Agile and traditional systems

development coexist? An ambidextrous view. Information Systems Management, 23(3), 31-42.

doi: 10.1201/1078.10580530/46108.23.3.20060601/93705.4

Waterfall model. (n.d.). In Wikipedia. Retrieved December 15, 2010 from

http://en.wikipedia.org/wiki/Waterfall_model

Xia, W., & Lee, G. (2004). Grasping the complexity of IS development projects.

Communications of the ACM, 47(5), 68-74. doi: 10.1145/986213.986215

http://jeffsutherland.com/2007/09/scrum-and-cmmi-level-5-magic-potion-for.html
http://www.standishgroup.com/custom_chronicles/showfile.php?File=CHAOS-Manifesto.pdf
http://www.agilejournal.com/articles/columns/column-articles/190-hyperproductivity-in-large-projects-though-distributed-scrum
http://www.agilejournal.com/articles/columns/column-articles/190-hyperproductivity-in-large-projects-though-distributed-scrum
http://www.versionone.com/Resources/Whitepapers.asp
http://en.wikipedia.org/wiki/Waterfall_model

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-5

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-6

Appendix A Results

A.1 SoftwareForge

Grade Weight Total Actual Characteristic

4 5 25 20 Collaboration

5 5 25 25 Security

4 3 15 12 Tracking of user stories/defects

5 3 15 15 Configuration Management

5 3 15 15

Handles multiple projects, releases,

sprints

5 3 15 15 Time estimation/reporting

3 3 15 9 Ease of use/access

5 3 15 15 Portability

5 3 15 15 Support

5 2 10 10 Cost

5 2 10 10

Automation of Metrics, Charts and

Reports

5 2 10 10

Integrates into repositories (wiki, svn,

etc.)

5 1 5 5 Ease of install

3 1 5 3 Ability to make modifications

195 179

SoftwareForge enables the collaborative development and distribution of open source software

and DOD community source software. For open source and community source development

projects within the DOD, SoftwareForge provides software development tools such as software

version control, bug tracking, requirements management, and release packaging along with

collaboration tools such as wikis, discussion forums, and document repositories to enable

collaborative development amongst distributed developers. SoftwareForge is currently built on

the open source Subversion version control system and CollabNet TeamForge application life

cycle management tool. As of February 2010, SoftwareForge was updated to include the

TeamForge version 5.3 which includes Agile planning capabilities, making SoftwareForge an

Agile project management tool.

SoftwareForge stands out from all the rest of the tools in that it is the only tool that is hosted as a

cloud-based, software-as-a-service application provided by DISA. As such, DISA has done the

legwork of certification and accreditation to operate on DOD networks. Furthermore, they have

tailored the tool to the DOD environment, making it a very attractive offering to any DOD

program that needs a project management and code hosting solution. For these reasons, and the

fact that it is offered for free, it receives a very good score of 179.

SoftwareForge is part of a larger program called Forge.mil. Forge.mil (which can be accessed at

http://www.forge.mil) is a family of services aimed at improving the ability of the DOD to

rapidly deliver dependable software, services and systems in support of net-centric operations

and warfare. Currently, it has two offerings, SoftwareForge and ProjectForge. It is working on

three other services, TestForge, CertificationForge, and StandardsForge. TestForge will provide

hosting space for the development of testing tools and environments, CertificationForge will

provide a collaborative space for managing the certification of net-centric enterprise services.

http://www.forge.mil/

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-7

StandardsForge will provide a collaborative space for developing and reviewing standards

programs.

ProjectForge is like SoftwareForge in that they use the exact same software platform. The only

difference is that ProjectForge is for projects that need to operate privately. The cost for

ProjectForge is hefty at $60k per year for 100 users. SoftwareForge is completely free, but has

the caveat that all content can be read by anyone who has access to SoftwareForge. Access to

SoftwareForge is limited to only those individuals who possess a valid DOD Common Access

Card (CAC) or a PKI certificate issued by a DOD approved External Certificate Authority

(ECA). By performing authentication in this fashion, SoftwareForge effectively limits access to

only the DOD community. In fact, they created a new type of software license called DOD

Community Source which, like an Open Source license is free and open for anyone to use,

however it is limited to only those individuals associated with the DOD. It should be noted that

this license only applies to software hosted on their site. A DOD organization could use

SoftwareForge for its Agile project management aspects alone and not be restricted to releasing

their software with an Open Source or a DOD Community Source license.

The ability to collaborate on SoftwareForge is very good for people who have access to the

service. However, for those who do not have a CAC or ECA, there is no way for them to access

the content contained inside. While most of the DOD individuals who work on base have a CAC

card, those contractors who do not work on base may not. This is problematic considering the

widespread use of contractors throughout the DOD.

SoftwareForge receives very high marks in every category except "tracking of user

stories/defects", "ease of use/access" and "open source". Currently there is no way to associate a

task to a user story or to a defect. This poses a problem when trying to breakdown user stories

into individual tasks. Hopefully, this will be remedied in a future version. Ease of use and

access is also a problem in that the site can be kind of slow and sometimes very verbose. Lastly,

the TeamForge code in which SoftwareForge is based on is not open source. This doesn‘t

particularly pose a problem as DISA is the maintainer of this code base and they do listen to user

feedback in cases of bugs or feature requests.

Overall, SoftwareForge is a very impressive Agile project management tool. It has a few

caveats, but no showstoppers. Furthermore, it is actively being developed and should get even

better over time.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-8

A.2 Atlassian JIRA with GreenHopper

Grade Weight Total Actual Characteristic

5 5 25 25 Collaboration

4 5 25 20 Security

4 3 15 12 Tracking of user stories/defects

5 3 15 15 Configuration Management

5 3 15 15

Handles multiple projects, releases,

sprints

5 3 15 15 Time estimation/reporting

4 3 15 12 Ease of use/access

5 3 15 15 Portability

5 3 15 15 Support

3 2 10 6 Cost

5 2 10 10

Automation of Metrics, Charts and

Reports

5 2 10 10

Integrates into repositories (wiki, svn,

etc.)

5 1 5 5 Ease of install

3 1 5 3 Ability to make modifications

195 178

JIRA is an issue tracking and project management tool for software development that aims to

improve code quality and increase the speed of development. GreenHopper is an Agile project

management add-on to JIRA that allows for customizable work flows. JIRA without

GreenHopper does not utilize Agile concepts. JIRA with GreenHopper scored very well with a

178 due to its very mature and well-thought out design. This evaluation was performed on

version 4.1 of JIRA and version GreenHopper version 4.2.

JIRA with GreenHopper comes as either a hosted solution or an installable application. It fosters

collaboration with users outside of the firewall by operating over the Web. It complies with

DOD regulations regarding security with the exception of authentication through PKI certificate.

It handles multiple projects, releases, sprints, and user stories very well and it also has very good

time reporting and estimation capabilities. It is generally easy to use, though there is a somewhat

steep learning curve due to its flexibility and customization, which is to be expected. The level

of support provided by JIRA is excellent. They have community forums and seem to engage

well with their customers. It supports multiple operating systems including Windows, Mac and

Linux. The report generation is very robust with capabilities to help forecast future cost. The

installation is fairly straightforward, but not turn-key. It integrates well with various code

repositories and has built in bug tracking support through JIRA. It is a proprietary product and

not an open source tool, so there is no access to the underlying code.

The pricing for JIRA with GreenHopper is very competitive, though somewhat complicated.

Atlassian provides JIRA for free to open source projects, and organizations that are non-profit,

non-government, non-academic, non-commercial, non-political, and secular. For commercial

customers, the full source code is available under a developer source license.

Starting with JIRA 4, a 10-user starter license costs $10 with all proceeds benefiting charity. The

price then jumps to $1,800 for 25 users and $3,300 for 50 users. There are also fees for

maintenance and upgrades. Overall, JIRA with GreenHopper is a very good tool. The only

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-9

downsides are cost and the fact that there isn't PKI authentication for use with Common Access

Cards (CAC).

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-10

A.3 Agilo Free

Grade Weight Total Actual Characteristic

5 5 25 25 Collaboration

3 5 25 15 Security

5 3 15 15 User stories/defect management

4 3 15 12 Configuration management

4 3 15 12 Management of multiple projects/releases/sprints

4 3 15 12 Time reporting/estimation

3 3 15 9 Ease of use/access

5 3 15 15 Portability

5 3 15 15 Support

5 2 10 10 Cost

4 2 10 8 Automation of Metrics, Charts and Reports

5 2 10 10 Integrates with development tools/repositories

5 1 5 5 Ease of install

5 1 5 5 Ability to make modifications

195 168

Agilo Free is a plug-in for the popular development tool Trac. Trac is an open source, web-

based project management and bug-tracking tool. Along with Agilo it delivers a robust platform

of streamlined functionality for managing Scrum. Agilo targets the challenges of a distributed

development environment, is highly configurable, allowing you to adapt the tool to a specific

workflow, and provides a single tool to support a team‘s daily work. This evaluation was

performed on version 1.3.0.7 of Agilo Free and version 0.11.1 of Trac.

Agilo scores very well in the areas of collaboration, portability, support and cost. This is mainly

due to its open-source nature. The project was created with the intent to allow distributed teams

to collaborate easily on open source projects. It installs on any operating system that runs

Python (as this is a Python based tool). The open source version is free, but there is also a

professional version of this tool available for purchase. The professional version only offers a

few extra features and most likely isn‘t worth the cost unless professional support is a must have.

The tool scores less highly for security and ease of use. Security is an issue in that it currently

does not run over SSL and offers no authentication for PKI. Ease of use is also an issue with

Agilo for Trac. There isn't much of use AJAX, thus requiring a new page load every time a

request is sent to the server, which is tedious. Also, the layout of form fields is clunky.

Overall, Agilo Free is a very good tool. With some modifications to the code base to make it a

little more secure it could be a very good choice for use in a DOD environment.

http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Project_management
http://en.wikipedia.org/wiki/Bugtracker

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-11

A.4 ScrumWorks Pro

Grade Weight Total Actual Characteristic

5 5 25 25 Collaboration

4 5 25 20 Security

4 3 15 12 Tracking of user stories/defects

2 3 15 6 Configuration Management

5 3 15 15

Handles multiple projects, releases,

sprints

5 3 15 15 Time estimation/reporting

3 3 15 9 Ease of use/access

5 3 15 15 Portability

5 3 15 15 Support

3 2 10 6 Cost

5 2 10 10

Automation of Metrics, Charts and

Reports

5 2 10 10

Integrates into repositories (wiki, svn,

etc.)

5 1 5 5 Ease of install

3 1 5 3 Ability to make modifications

195 166

ScrumWorks Pro is an Agile project management tool from CollabNet that focuses on building

the Scrum framework directly into the product management workflow. There is also a free

version of ScrumWorks called ScrumWorks Basic that is meant to give you a taste of the tool

line in hopes that you will buy the professional version. The basic version is also reviewed in

this study because it is almost a completely different tool. This evaluation was performed on

version 4.5 of ScrumWorks Pro.

ScrumWorks Pro is a very nice tool with many well-thought out features. It comes complete

with drag and drop interface, return on investment analyst tools, coordination between multiple

projects and integration with other tools such as JIRA and Eclipse. While the features they've

implemented are generally good, there are a few questionable "features" of the GUI. In

particular, there is a component docking system that allows you to place components where you

want them. Secondly, they've gone overboard with the notion of tabs. Seeing their interface, it

becomes obvious now why there are quite a bit of Agile development tools that stress simplicity.

ScrumWorks Pro allows for distributed collaboration by using Java Web Start as a mobile

application platform for deploying the application. The data is stored in a central database that is

accessed through web services from the Web Start application. This works, but may cause the

organization to need to open a port in the firewall to allow outside access.

The security of ScrumWorks looks to be fairly sound. They have support for SSL, but no

support for PKI. There is a lack of configuration management for user stories, however the user

could add a configuration management field into the notes section for each user story if needed.

The pricing seems reasonable at $500 per seat for life, or $289 per seat per year. There is also

enterprise and concurrent licensing options available upon request.

The return on investment feature adds the notion of business weight that takes into account the

benefit of implementing a user story verses the penalty of implementing it (time it takes to do

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-12

so). From these two pieces of information they can deduce a return on investment for each user

story.

There is also integration with Bugzilla and JIRA for bug and issue tracking. Being able to track

your user stories, bugs and issues all from the same place is nice. In this case, they let someone

else who has worked with this area for many years do the heavy lifting, a commendable

approach.

Another useful feature is their web "Team Task Board", that lets users quickly update their status

from the web, rather than having to start the somewhat lengthier process of launching the Java

app.

Overall, the Pro version is a good tool, but not the best available. By adding a wealth of features

and GUI options the tool is powerful but can be overwhelming.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-13

A.5 tinyPM

Grade Weight Total Actual Characteristic

5 5 25 25 Collaboration

2 5 25 10 Security

4 3 15 12 Tracking of user stories/defects

5 3 15 15 Configuration Management

5 3 15 15

Handles multiple projects, releases,

sprints

2 3 15 6 Time estimation/reporting

5 3 15 15 Ease of use/access

5 3 15 15 Portability

5 3 15 15 Support

4 2 10 8 Cost

2 2 10 4

Automation of Metrics, Charts and

Reports

4 2 10 8

Integrates into repositories (wiki, svn,

etc.)

4 1 5 4 Ease of install

1 1 5 1 Ability to make modifications

195 153

tinyPM is a lightweight Agile project management tool written in Java. It emphasizes its simple

and straightforward approach to project management while still packing in the features. While it

scored very well in most of the grading categories, it scored poorly in security, time

estimation/reporting, and automation of metrics, charts and reports, resulting in a score of 153.

This evaluation was performed on version 2.0 of tinyPM.

tinyPM does a very good job at fostering an environment of collaboration around the project. It

comes with email and RSS notifications to ensure team members stay in the loop. It also

operates over the web as a web application ensuring that anyone with a web browser can get

access to the tool.

There is no mention of it being able to run over SSL or using PKI authentication, thus without

modifications it is lacking adequate security. It does a fairly good job of tracking user stories

and bugs, however there is no way to differentiate between and user story and a bug so in order

to track bugs you would need to somehow designate a user story to be a bug, possibly in the title

or notes section. It handles multiple projects, releases and sprints very well. The time estimation

and reporting is a little lacking. There doesn‘t seem to be a way to keep track of fine grained

hours worked on the project, which is important for determining burn rates and velocity, which

most likely explains why it lacks in the generation of metrics and meaningful charts.

tinyPM does a very good job of making the tool easy to use and easy to access. It can be

installed on the three major operating systems which makes it very portable. tinyPM is not open

source, and offers support with the purchase of the license. The install is fairly straightforward

and easy.

tinyPM packs a few unexpected features and does them quite nicely. There is a wiki embedded

in the tool for documentation. It also does a very good job at tracking changes and compiling

changes into an activity stream. It also integrates with other tools such as JIRA and supports

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-14

web services so that it can be extended if needed. tinyPM is a nice, lightweight tool that takes

minimal time to set up and can get your team up and working quickly. If it can fix a few of the

problems listed previously it could be a very good choice for use in the DOD environment.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-15

A.6 ScrumNinja

Grade Weight Total Actual Characteristic

5 5 25 25 Collaboration

4 5 25 20 Security

3 3 15 9 Tracking of user stories/defects

2 3 15 6 Configuration Management

4 3 15 12

Handles multiple projects, releases,

sprints

3 3 15 9 Time estimation/reporting

3 3 15 9 Ease of use/access

5 3 15 15 Portability

5 3 15 15 Support

3 2 10 6 Cost

2 2 10 4

Automation of Metrics, Charts and

Reports

0 2 10 0

Integrates into repositories (wiki, svn,

etc.)

3 1 5 3 Ease of install

3 1 5 3 Ability to make modifications

195 136

ScrumNinja, as its name implies, is a Scrum based project management tool that aims to keep it

simple. Overall, it is a fairly straightforward and simple tool. It's web based, though you can host

it yourself.

There is a backlog for managing your user stories and there is a "card wall" for managing the

tasks associated with the current sprint. Both seem easy to use and understand. One thing that

was disappointing with the backlog, however, is that there isn't a backlog. All user stories are

committed to sprints as soon as they are created. In order for a user story to be in the backlog, it

must not have been committed to a sprint. That's why it's called the backlog, because it's on the

backburner and hasn't yet been agreed upon to be implemented.

The pricing is staggered depending on how many users are buying a seat. 1-9 members is a one-

time payment of $289 per user and the price increases from there. This includes support and

maintenance for the first year, after which support and maintenance is 20% per user of the

original price.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-16

A.7 ScrumDesk

Grade Weight Total Actual Characteristic

3 5 25 15 Collaboration

2 5 25 10 Security

3 3 15 9 Tracking of user stories/defects

2 3 15 6 Configuration Management

5 3 15 15

Handles multiple projects, releases,

sprints

4 3 15 12 Time estimation/reporting

3 3 15 9 Ease of use/access

5 3 15 15 Portability

4 3 15 12 Support

3 2 10 6 Cost

5 2 10 10

Automation of Metrics, Charts and

Reports

5 2 10 10

Integrates into repositories (wiki, svn,

etc.)

2 1 5 2 Ease of install

3 1 5 3 Ability to make modifications

195 134

ScrumDesk is an intuitive Agile project management tool geared for performing Scrum with

distributed teams. ScrumDesk comes with many features including planning poker, a story

board, integration with external repositories like bug trackers, a sprint retrospective tool, and

informative graphs. It's not a web application, rather it's a .Net application that runs on the

desktop and open a database connection directly to a SQL server. This can pose security

problems. This evaluation was performed on version 4.0.5.6 of ScrumDesk.

ScrumDesk has pretty much every feature one could ask of a Scrum tool, though it tends to be a

bit buggy. It's difficult to tell how much of it is user error and how much is system error.

ScrumDesk uses the Microsoft .NET Windows Presentation Foundation which strays from

typical GUI conventions like using "Ok" and "Cancel" buttons. It takes a little getting used to

and can lead to some frustrating moments.

ScrumDesk has a good grasp of Scrum practices. Everything inside the tool looks dead on and

very useful. There are alternate views of the content, and they have a very nice way to visualize

your user stories called TreeMap. It takes each user story and based on the amount of task hours

projected to complete the User Story, it prints a square on the screen representing the size of that

user story until the screen is completely full. This allows you to easily see what your biggest and

smallest user stories are.

The pricing structure for this tool is fair. The complete tool, not a watered down version, is free

for up to 5 users (up to 20 for a non-profit company), and then it's $15 per user per month after

that.

ScrumDesk only installs on Windows. The install is fairly complex as well.

Overall, ScrumDesk is a decent tool but it probably isn't a good choice to use in a DOD

environment due to its security problems.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-17

A.8 ScrumWorks Basic

Grade Weight Total Actual Characteristic

4 5 25 20 Collaboration

3 5 25 15 Security

3 3 15 9 Tracking of user stories/defects

2 3 15 6 Configuration Management

5 3 15 15

Handles multiple projects, releases,

sprints

3 3 15 9 Time estimation/reporting

3 3 15 9 Ease of use/access

5 3 15 15 Portability

3 3 15 9 Support

5 2 10 10 Cost

3 2 10 6

Automation of Metrics, Charts and

Reports

0 2 10 0

Integrates into repositories (wiki, svn,

etc.)

5 1 5 5 Ease of install

3 1 5 3 Ability to make modifications

195 131

ScrumWorks Basic is a free Agile project management tool from CollabNet that focuses on

building the Scrum framework directly into the product management workflow. This is the free

version of ScrumWorks that is like the Pro version, but hasn't been developed in a few years.

ScrumWorks Basic is a bare-bones tool that gets the job done. There are a few quirks with the

tool and few missing features. This evaluation was performed on version 1.8.4 of ScrumWorks

Basic.

ScrumWorks Basic allows for distributed collaboration by using Java Web Start as a mobile

application platform for deploying the application. The data is stored in a central database that is

accessed through web services from the Web Start application. This works, but may cause the

organization to need to open a port in the firewall to allow outside access. There is no support

for SSL or for PKI which is a drawback.

The tool tracks user stories and defects in an acceptable fashion, though there is some room for

improvement. Defect tracking isn't specifically called out, but can still be performed. There is

no configuration management built-in, though it could be performed in the notes section of user

stories. The time estimation and reporting could also be improved upon. There is initial

estimation of work to be performed for the user story and then for each task there is a work left

to be done. There is no way to see the history of how much work was left to be done for a task

which would be nice to have.

Since the tool is a Web Start application it has to load itself each time before it can run, which

can be cumbersome. A web application tends to provide faster access. Also, it isn't the most

straightforward of tools, though after some practice it can be understood and used quite well.

CollabNet offers support for this tool but not as substantial as with the Pro version. There is no

integration with other repositories unless the integration is performed manually through the web

services that are offered by ScrumWorks. The install was very easy. Lastly, modifications

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-18

couldn‘t be made to the tool, but they could be made to the data with access of the tools web

services.

ScrumWorks Basic, while lacking in features and sophistication is a good tool that can get the

job done. The security is lacking which can be a deal breaker for use in the DOD environment

unless remedied.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-19

A.9 XPlanner+

Grade Weight Total Actual Characteristic

5 5 25 25 Collaboration

2 5 25 10 Security

2 3 15 6 Tracking of user stories/defects

3 3 15 9 Configuration Management

4 3 15 12

Handles multiple projects, releases,

sprints

2 3 15 6 Time estimation/reporting

3 3 15 9 Ease of use/access

5 3 15 15 Portability

3 3 15 9 Support

5 2 10 10 Cost

3 2 10 6

Automation of Metrics, Charts and

Reports

1 2 10 2

Integrates into repositories (wiki, svn,

etc.)

3 1 5 3 Ease of install

5 1 5 5 Ability to make modifications

195 127

XPlanner+ is an open source project planning and bug tracking tool. It is written in Java and is

based on the open source tool XPlanner (XPlanner is not reviewed because it only runs on Java

1.4.2 and has a disclaimer that states "not for production use"). XPlanner+ gets a modest score

of 127 mainly due to its free, portable and open source nature. This evaluation was performed

on version 1.1a2 of XPlanner+.

XPlanner+ can be installed on any operating system that can run Java. It allows for collaboration

between users by running over the web as a web application. There is no mention of it being

able to run over SSL or using PKI authentication, thus, without modifications it is lacking

adequate security. The handling of user stories and bugs isn't as mature as some other tools. It

does however, handle multiple projects and iterations very well, though it doesn‘t allow for

release management. Configuration Management of user stories is somewhat lacking in that a

user story can be in various stages like "planned", "defined" or "estimated", but there isn't a

concrete process for gaining approval from a person or a group of persons. The time reporting

and estimation is a little lacking. There is only the ability to record estimated remaining hours.

The cost of the tool is free because it is open-source; however, there is no option for paid support

by the main developer. The report/chart generation is also somewhat lacking in that there are

only a handful of charts and metrics to view. The install looks to be fairly straightforward, but

not turnkey. Lastly, there is no integration with a documentation system or code versioning

system.

XPlanner+ is vast upgrade from XPlanner, but it is still not quite a strong enough or mature tool

to be used in the DOD environment for Program of Record use.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 A-20

A.10 Rally

Rally was slated for inclusion in this report, but the Rally Software Development Corporation

failed to respond to multiple requests for a trial version, therefore an evaluation could not be

performed.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 B-21

Appendix B CMMI and Agile Paradigm Comparison
This comparison table is from CMMI or Agile: Why Not Embrace Both! (Glazer, Dalton,

Anderson, Konrad, & Shrum, 2008, pp. 35-37).

Table 11-1 CMMI and Agile Paradigm Comparison Table

Dimension CMMI Paradigm Agile Paradigm

Organizational

focus of

attention

The focus is on the organization or enterprise.

Most benefit occurs when CMMI is implemented

at organizational level so that all functions and

capabilities contributing to the development of

products and services are addressed by the process

improvement effort.

The focus is on the project and team.

Agile methods can isolate (i.e., insulate)

the project/team from the organization

and still be effective.

Management Management plays an important role in ensuring

project success. There is much attention to project

management, including ensuring that plans

affecting the project are integrated with the project

plan, dependencies are managed, coordination

issues are resolved, there is a shared vision for the

work, and risk management is performed.

Management is a coaching function (as

opposed to traditional command-and

control) that helps to eliminate barriers to

progress. This view of management may

be expanding as Agile approaches are

extended to address larger project

contexts.

Trust Some CMMI practices assume the need to

compensate for a low-trust environment (a key

concern of the Agilistas). A low trust environment

is often characterized by (1) safety and mission

critical objectives, (2) high risk of failure, and

most of all (3) multiple stakeholders who cannot

be totally transparent relative to their intensions

and commitments.

Agile methods originated from the

recognition that teams work best when

they are composed of task-mature

individuals operating in high trust groups.

An Agile environment fosters high trust.

Planning CMMI promotes macro (project-level) planning

with an emphasis on establishing a suitable

defined process enabling the project to achieve its

objectives.

Traditional planning approaches assume a long

time horizon. Detailed plans are not required by

CMMI but many of the examples encourage such

an interpretation. Nevertheless, many who use

CMMI also use ―rolling plans‖ (detailed only to

the next iteration or quarter). There is emphasis on

re-planning and conditional change.

In Agile methods, there are multiple

levels of planning, including high-level

product planning (including release

planning) and at the beginning of each

iteration, more detailed planning around

the features to be addressed in that

iteration. There is a strong emphasis on

flexibility and re-planning as conditions

change.

Use of Gantt charts (that map tasks to

calendar time) and graphs of task

networks is discouraged because the

requirements on which the tasks are based

change frequently.

Market/User

Assumption

CMMI is broadly beneficial but particularly so

when the target market becomes more mature and

process innovation becomes a more important

differentiator to organization success.

Agile methods have the most benefit in an

emergent and not well-understood

target/market.

Design

Presumptions

CMMI presumes the product architecture is

selected or created in the early stages of a project

and is revisited when it becomes clear the selected

architecture is no longer valid or when using an

iterative lifecycle.

Projects are most successful when

corporate standard architectures are

adopted with flexibility applied as the

project progresses. Some Agile methods

downplay the importance of architectures

on the general principle that such are

often prematurely specified.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 B-22

Learning Learning happens in many ways, including: (1)

organizational training based on analyses of

process and skill needs and priorities and the

design of appropriate training vehicles; (2) through

the development activities of the project itself

(e.g., the evaluation of proposed product

requirements and solutions for feasibility and cost,

schedule, quality, and risk impact); (3) through

the planning and use of the processes on projects,

measurements, and lessons learned are gathered

and shared across the organization; (4) as part of a

causal analysis process; and (5) through an

analysis of how well the organization‘s and

project‘s quality and process performance

objectives are being met by the processes in use.

Learning happens at project/iteration

levels, typically bottom-up and just-in-

time (i.e., comparable to Kaizen).

Perspective CMMI takes, has, and assumes a longer term view. Agile takes, has, and assumes a short to

medium-term view.

Appraisals The SCAMPI method compares the organization‘s

processes against the practices of CMMI to

evaluate whether the organization has

implemented processes that achieve CMMI goals.

The desire of Agile practitioners is that

appraisals are made only by looking at

results (i.e., customer satisfaction and

other project outcomes).

Human

Development

CMMI has a limited people focus at the project

level. There is an expanded people focus at the

organizational level. CMMI does not advocate

heroics, but instead creating an environment in

which people can excel without heroics (i.e., an

effective process appropriately leverages people

and technology).

Agile has a team and individual focus

(i.e., people over process). There has

been a tendency among many in the Agile

community to advocate ―just hire good

people‖ with an implicit undercurrent of

developing ―hero developers‖ within a

work-life balanced culture.

Life-Cycle

Emphasis

CMMI has a strong ―review-as-you develop‖

emphasis. There is also a tendency to read in

CMMI the approach ―verify often and validate at

the end,‖ which is NOT the correct way to

understand what CMMI is saying.

CMMI is consistent with an environment in which

there is a high cost of failure (see Trust above).

The objective is to proactively avoid the high costs

associated with product failure (or time-to-market

failure). The conclusion is that we cannot rely on

testing alone. Therefore, CMMI encourages

documentation, analyses, and reviews before

product components are integrated into a

functional product. CMMI also encourages

frequent (early and mid-course) validations to

ensure the right product is being built. The project

determines the appropriate application and timing

of these review and testing steps.

Agile methods employ concurrent

development, test iterations, and informal

peer reviews of work products as

necessary.

There is a tendency to see in Agile a

―validate often and verify second

approach‖ which may be a more correct

reading.

―Fail early, fail fast, and learn‖ are central

to Agile methods. The trade-off is seen as

favoring the development of a useable and

testable product vs. developing and

analyzing requirements and product

components.

A low cost of delay or low cost of failure

is assumed. There is an assumption of

incremental delivery being viable.

Burn out can arise from repeated time-

boxed iterations, so special provisions

should be made for this eventuality (e.g.,

by revising the time-box duration based

on experience feedback and by providing

some slack around iterations).

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 B-23

Predictability Predictability is achieved for critical sub-processes

(those process steps that are leading contributors to

or indicators of quality and process performance)

through statistical management (which involves,

among other things, use of control charts).

Predictability is achieved at the project, iteration,

or level by monitoring the performance of critical

sub-processes and periodically using the

organization‘s established process performance

models, appropriately calibrated, to evaluate

whether the project is on track to achieving its

objectives. Finally, at the organizational level,

analysis of sub-process performance across

projects provides an increased understanding of

the capability of the organization‘s processes and

thus of which areas to target for innovation.

Using time-boxed scope-limited

iterations, evolving designs/solutions,

driving out defects as early as possible,

and failing quickly leads toward a

predictable development velocity.

There is also an expectation of

predictability of iteration delivery and

scope of delivery. The anecdotal

evidence suggests that Agile teams often

struggle with predictability of iteration

scope, often de-scoping iterations (or

sprints) in the final few days. This de-

scoping is rooted in a lack of statistical

convergence of the velocity data

combined with the analysis technique

underlying the scope breakdown.

Cost of Failure Historically, CMMI was developed in a domain of

high cost of failure. If a plane crashes, the cost of

failure is extremely high. Examples within this

domain include the development of aircraft,

weaponry, spacecraft and safety-critical medical

devices.

Agile methods have flourished in a

domain of low cost of failure or linear

incremental cost of failure. Examples

within this domain include Internet

commerce, social networking, and games

development.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 C-24

Appendix C Recommended Reading

C.1 Websites
Table 11-2 Recommended Websites Table

Category Name Source Notes

General Agile Manifesto http://agilemanifesto.org/

General Agile Alliance http://www.agilealliance.org Good articles to download

General Agile Community http://www.agile-community.com/ Community of Interest

General InfoQ http://www.infoq.com/ Videos, articles, and downloads

available.

General Mountain Goat

Software

http://www.mountaingoatsoftware.com/ Lots of downloadable resources

General Version One http://www.versionone.com/ Version One develops Agile

tools but also offers lots of great

information

Lean Lean Software

Development

http://www.poppendieck.com/

The Poppendiecks offer lean

references, papers, and book

reviews

Scrum Manager 2.0: Role

of the Manager in

Scrum

http://scrumtraininginstitute.com/home/stre

am_download/%23%3cUUID:0xb747aba0

%3e-71972

This paper gives an excellent

description of how the role of a

manager changes on a Scrum

team.

Scrum Scrum Alliance http://www.scrumalliance.org/

Scrum Scrum Log Jeff

Sutherland

http://www.jeffsutherland.com/ Jeff Sutherland offers Scrum-

related posts and articles

Scum Control Chaos http://www.controlchaos.com/ Ken Schwaber offers several

downloads and a very clear

explanation of Scrum

XP eXtreme

Programming: A

Gentle Introduction

http://www.extremeprogramming.org Provides a good primer on XP

XP eXtreme

Programming

Yahoo Group

http://tech.groups.yahoo.com/group/extrem

eprogramming/

Community of Interest

XP XP http://www.xprogramming.com Ron Jeffries offers XP-related

posts, articles, and book

reviews

C.2 Books
Table 11-3 Recommended Books Table

Category Source Name ISBN

General The Mythical Man-Month: Essays on Software

Engineering, Anniversary Edition (2nd Edition)

Frederick P. Brooks 9780201835953

Lean Lean Software Development: An Agile Toolkit Mary and Tom

Poppendieck

0321150783

Scrum Agile Project Management with Scrum Ken Schwaber 073561993X

XP Extreme Programming Explained: Embrace

Change (2nd Edition)

Kent Beck and Cynthia

Andres

0321278658

http://agilemanifesto.org/
http://www.agilealliance.org/
http://www.agile-community.com/
http://www.infoq.com/
http://www.mountaingoatsoftware.com/
http://www.versionone.com/
http://www.poppendieck.com/
http://scrumtraininginstitute.com/home/stream_download/%23%3cUUID:0xb747aba0%3e-71972
http://scrumtraininginstitute.com/home/stream_download/%23%3cUUID:0xb747aba0%3e-71972
http://scrumtraininginstitute.com/home/stream_download/%23%3cUUID:0xb747aba0%3e-71972
http://www.scrumalliance.org/
http://www.jeffsutherland.com/
http://www.controlchaos.com/
http://www.extremeprogramming.org/
http://tech.groups.yahoo.com/group/extremeprogramming/
http://tech.groups.yahoo.com/group/extremeprogramming/
http://www.xprogramming.com/

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 C-25

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 D-26

Appendix D Glossary

C&A Certification and Accreditation

CDD Capabilities Development Document

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

CM Configuration Management

COBOL Common Business-Oriented Language

COTR Contracting Officer's Technical Representative

COTS Commercial Off the Shelf

CPD Capability Production Document

DCGS Distributed Common Ground Station

DCGS-DIB Distributed Common Ground Station -Intelligence Backbone

DCGS-IC Distributed Common Ground Station - Intelligence Community

DCGS-MC Distributed Common Ground Station - Marine Corps

DISA Defense Information Systems Agency

DLOE Distributed Limited Objective Event

DOD Department of Defense

DODAF Department of Defense Architecture Framework

FDCE Federation Development Certification Environment

FDD Feature Driven Development

FFRDC Federally Funded Research and Development Center

GOTS Government Off-the-Shelf

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

ICD Initial Capability Document

IIDD Iterative and Incremental Design and Development

IT Information Technology

IV&V Independent Verification and Validation

JCIDS Joint Capabilities Integration Development System

JOPES Joint Operational Planning and Execution System

JROC Joint Requirements Oversight Council

NASA National Aeronautics and Space Administration

NCES Net-Centric Enterprise Services

NIPRNET Non-Classified Internet Protocol Router Network

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 D-27

NRO National Reconnaissance Office

PL3 Protection Level 3

POR Program of Record

RAD Rapid Application Development

RUP Rational Unified Process

SEI Software Engineering Institute

SETA System Engineering and Technical Assistance

SEP Systems Engineering Plan

SIPRNET Secret Internet Protocol Router Network

SSS System /Sub-system Specification

TDD Test Driven Development

TRD Technical Requirement Document

US United States

USASOC United States Army Special Operations Command

XP Extreme Programming

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 E-28

Appendix E Use Case Template

Table 11-4 Use Case Template

System: The system section calls out the system that is being used in the use case.

Name: A use case name provides a unique identifier for the use case. It should be written in verb-

noun format (e.g., Borrow Books, Withdraw Cash), should describe an achievable

goal (e.g., Register User is better than Registering User) and should be sufficient for

the end user to understand what the use case is about.

Actors: An actor is someone or something outside the system that uses system. An actor may be a

person, another system or sub-system, or time.

Summary: A summary section is used to capture the essence of a use case. It provides a quick

overview, which is intended to save the reader from having to read the full contents of a

use case to understand what the use case is about. Ideally, a summary is just a few

sentences or a paragraph in length and includes the goal and principal actor.

Triggers: A trigger section describes the event that causes the use case to be initiated.

Assumptions: Conditions that must be true for the use case to begin and end. For example, if your use

case deals with editing a file in Microsoft Office, an assumption would be: The file the

actor is opening is in Microsoft Office format.

Success Path: The success path of a use case represents the most important course of events or what

happens most of the time, sometimes referred to as the 'Happy Day Scenario' because it is

what occurs when everything goes well -- no errors or exceptions. Another reason why

the success path is so critical is because it is much easier to fully comprehend the

exceptions once the norm is understood and if the basic flow represents 70% of the

system.

Alternate Paths: The alternate flows providing the following:

 An exception or error flow to any line item in your success path

 An additional flow, not necessarily error based, but a flow that COULD happen

A few examples of alternate flows are:

 While a customer places an order, their credit card failed

 While a customer uses an ATM machine, the machine runs out of receipts and needs to

warn the customer

Post-Conditions: The post-conditions section describes what the outcome is when the use case successfully

finishes.

Business Rules: Business rules are requirements that do not fit into the success path. An example would

be: Video shall be encoded in MPEG-4 format.

Open Issues Document any issues that need to be resolved prior to this use case being finalized.

Notes: The Notes section has important information that does not fit under any specific heading.

Traceability to higher level documents such as a CONOPS can go here.

Author: The author of the use case.

Date: The date the use case was last edited.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 F-29

Appendix F Program of Record Technology or Initiative
Transition Barriers/Enablers

This section is taken from Transitioning Agile/Rapid Acquisition Initiatives to the Warfighter

(Duquette, Bloom, & Crawford, 2008, pp. 87 - 103).

F.1 Funding

In transitioning a technology or initiative to a program of record, consideration should be given

to Investment Affordability and Money Phasing.

Investment Affordability is a significant concern in terms of competition for RDT&E (6.3 and

6.4), Procurement, and Operations and Maintenance funds. If you developed the technology with

6.3 RDT&E funds and need to continue development or improvement during or after transition

to a program of record, you are competing with others wanting to do ATDs or JCTDs to prove

operation in a relevant environment. When the program of record begins to use your initiative

and maintain it, they are balancing the need to fund continued procurement and maintenance

associated with the initiative with the fiscal needs of its baseline system. A successful business

case for transition into a program of record will include a strong case for operational utility or the

demonstration of some form of funding offset as a result of leveraging the initiative.

Technology or

Other Initiative

Funding

Money

Phasing

Design Documentation Test
Program of

Record
Sustainment Advocacy

Investment

Affordability

Technology or Initiative
Transition to

Program Of Record
Barriers / Enablers

System Tech

Readiness Level

Hardware Tech

Readiness Level

Software Tech

Readiness Level

Integration Tech

Readiness Level

Design Ability

To Scale Up

Acceptability to

Developer

CONOPS

User Requirement

(CDD)

Interoperability

Open Systems

Standards

Op Utility Assess

COIs,MOE’s,MOPs,

Data Rights &

Proprietary Issues

Design Drawings

Source Code

User’s Manuals

Licenses

DoD 5000

Milestone Docs.

Capabilities

Documented Test

Plans & Results,

Operationally

Relevant Environ.

Program Manager

Commitment

Advancement

Difficulty Degree

Acquisition

Strategy

SOA

Considerations

System Level

Design

Projected

Life Cycle

Field Maintenance

Approach

Depot Maintenance

Approach

Spares

Training

Test & Support

Equipment

Maintenance

Manuals

Technology

Refresh

Software

Maintenance

50/50 and Core

Issues

Infrastructure

Approach

Security

Accreditation.

Information

Assurance.

Network

Certification

Urgent Need

Top-Cover

Ops & Maintenance

Personnel & Skills

User

Feedback

SysPerformance

Impact

Prototype-System

Schedule Sync

Competition

Issues

Champion

Short Chain of

Command

5000 Process

Waivers

Protected

Funding

Leadership &

Partnership

PM Risk

Orientation

SPO Size &

Skill Mix

SPO Personnel

Expertise

PM Network

Manufacturing Tech

Readiness Level

Tech Transition

Agreement

Oversight

Relief

Program

Processes

Program

Metrics

Figure G-11-1 Program of Record Technology or Initiative Transition Barriers/Enablers

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 F-30

 Enabler: Clearly developed demonstration of strong operational utility, or alleviation of need

for appropriations in same or related development, procurement, or operation.

 Barrier: Lack or inability to state distinguishing operational utility, or inability to balance

expenditure for transition with savings / avoidance of cost elsewhere.

Money Phasing is also a significant transition concern. There may need to be an overlap in

RDT&E 6.2 or 6.3 S&T funds and 6.4 R&D in order to manage a smooth transition from the

S&T initiative manager to the R&D program manager. If it has not already been factored into

the 6.4 R&D budget by the Program of Record sponsor (MAJCOM or Agency) then there may

be ―bridge funds‖ available through arrangements like the AF WRAP to carry the transition for a

couple of years until it is funded in the Sponsor‘s POM.

 Enabler: Clearly identified funded overlap, or access to bridge funds or other interim

funding.

 Barrier: Lack of overlapping funding (if a program need), or failure to assess such a need in

transition management.

F.2 Design

Design enablers and barriers in transitioning an initiative or technology into a program of record

are covered in this section. They include the following:

A System or Subsystem Technology Readiness Level 6 is required to transition into System

Design and Development for a DOD 5000 program. A Technology Readiness Level 6 requires

that the system or subsystem model or prototype has been demonstrated in a relevant

environment.

 Enabler: Assessment showing transition subject matter is at or above system/subsystem TRL

6.

 Barrier: Assessment showing transition subject matter is below system/subsystem TRL 6.

Also, failure to perform a system/subsystem technology readiness assessment.

A Hardware Technology Readiness Level (TRL) 6
4
 is required to transition into System Design

and Development (SDD) for a DOD 5000 program. A Hardware TRL 6 requires a representative

model or prototype system, which is well beyond that of TRL 5, is tested in a relevant

environment. This represents a major step up in a technology‘s demonstrated readiness.

Examples include testing a prototype in a high-fidelity laboratory environment or in a simulated

operational environment.

 Enabler: Assessment showing transition subject matter is at or above hardware TRL 6.

 Barrier: Assessment showing transition subject matter is below hardware TRL 6. Also,

failure to perform a hardware technology readiness assessment.

A Software Technology Readiness Level (TRL) 6
5
 is required to transition into System Design

and Development for a DOD 5000 program. A Software TRL 6 is the level at which the

engineering feasibility of a software technology is demonstrated. This level extends to

laboratory prototype implementations on full-scale realistic problems in which the software

technology is partially integrated with existing hardware/software systems.

 Enabler: Assessment showing transition subject matter is at or above software TRL 6.

4
 See DOD TRA Deskbook – May 05 https://acc.dau.mil/CommunityBrowser.aspx?id=18545

5
 Ibid.

https://acc.dau.mil/CommunityBrowser.aspx?id=18545

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 F-31

 Barrier: Assessment showing transition subject matter is below software TRL 6. Also,

failure to perform a software technology readiness assessment.

An Integration Readiness Level (IRL) 3
6
 would show that there is compatibility between the

technologies required for the system to orderly and efficiently integrate and interact. The IRL is

a systematic measurement of the interfacing of compatible interactions for various technologies

and the consistent comparison of the maturity between integration points.

 Enabler: Assessment showing transition subject matter is at or above IRL 3.

 Barrier: Assessment showing transition subject matter is below IRL 3. Also, failure to

perform an integration readiness assessment.

A Manufacturing Readiness Level (MRL) 6
7
 would be required to transition into System

Design and Development for a DOD 5000 program. A Manufacturing Readiness Level of 6

requires that the new technology has been demonstrated in a pre-production environment on

design parts of the same level of complexity and using the same types of materials that would be

used in the intended application. Appropriate quality levels have been achieved.

 Enabler: Assessment showing transition subject matter is at or above MRL 6.

 Barrier: Assessment showing transition subject matter is below MRL 6. Also, failure to

perform a manufacturing readiness assessment.

Design Ability to Scale Up describes (in part) a system whose performance, after adding

hardware, improves at least proportionally to the capacity added. This is said to be a scalable

system. An algorithm, design, networking protocol, program, or other system is said to scale if it

is suitably efficient and practical when applied to broad situations (e.g. a large input data set or

large number of participating nodes in the case of a distributed system). If the design fails when

the quantity or scope increases then it does not scale. If the initiative or prototype has never

been tested with an operational load (or peak operational load), it is possible that the design will

not scale, and instead, will result in adverse operational consequences.

 Enabler: Demonstration of ability to scale

 Barrier: Demonstrated weakness in scaling, or lack of a scaling evaluation.

Acceptability to Developer/Acquirer is the willingness of the prime contractor to the program of

record to adopt a design solution from an external source and integrate it with the other hardware

and software that the prime is responsible for developing and/or integrating.

 Enabler: Operations and maintenance information about the transition capability has been

clearly communicated to developer, who with the leadership of the program of record have

committed to supporting the updated capability.

 Barrier: The developer has adopted a negative view of the transition. Depending on context

and complexity of the transition technology or its integration, failure to achieve an

understanding with the developer could be a significant barrier.

Interoperability
8
 in the broadest sense is the ability of systems, units, or forces to provide

services to and accept services from other systems, units, or forces, and to use the services so

exchanged to enable them to operate effectively together. In this sense, the concern is how the

6 See Determining System Interoperability Using an Integration Readiness Level – Stevens Institute of

Technology NDIA Presentation – 2006
7
 See https://acc.dau.mil/CommunityBrowser.aspx?id=18231

8
 See http://www.rand.org/pubs/monograph_reports/MR1235/MR1235.chap2.pdf

http://encyclopedia.thefreedictionary.com/algorithm
http://encyclopedia.thefreedictionary.com/Protocol+(computing)
http://encyclopedia.thefreedictionary.com/Computer+program
http://encyclopedia.thefreedictionary.com/scale+up
https://acc.dau.mil/CommunityBrowser.aspx?id=18231
http://www.rand.org/pubs/monograph_reports/MR1235/MR1235.chap2.pdf

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 F-32

prototype or technology will improve or hinder the program of record in achieving its stated

interoperability requirements.

 Enabler: Assessment (or demonstration) of interoperability impacts performed with favorable

results.

 Barrier: Assessment (or demonstration) of interoperability impacts performed with negative

results. Failure to consider interoperability impacts is likely a barrier.

Open Systems Standards
9
 are publicly-available documents defining specifications for

interfaces, services, protocols, or data formats, established by consensus. If the target system is

built using open systems standards and your initiative uses open systems interfaces, it is

potentially easier to integrate your prototype or initiative with the target system.

 Enabler: Analysis or demonstration of similarity of open system infrastructures (both

initiative and program of record)

 Barrier: Initiative not based on open system targeted to a program of record that leverages an

open system, although analysis can prove that closed nature of initiative does not hinder

integration or interoperability.

Advancement Degree of Difficulty (AD2) of about 6
10

 would indicate that a transition to system

design and development is appropriate. AD2 is a NASA concept that measures how difficult it

will be to advance the development of the technology in question to the point where it is ―safe to

proceed.‖ An AD2 degree of 6 indicates a 30% development risk where new development is

required but similarity to existing experience is sufficient to warrant comparison across the

board.

 Enabler: Assessment showing transition subject matter is at or above AD2 level 6.

 Barrier: Assessment showing transition subject matter is below AD2 level 6. Also, failure to

perform an assessment of advancement degree of difficulty.

Service Oriented Architecture (SOA) Considerations According to SOA for Dummies, ―SOA is

about reuse. SOA is about taking what you have and structuring it in a way that allows you to

not only continue to use it, but to use it secure in the knowledge that future change will be

simple, straightforward, safe and fast.‖ If your target operational system is using SOA, the

consideration is how your prototype will help or hinder that system, the network, and other

systems that it supports with its SOA services.

 Enablers and barriers may be evaluated subjectively based on the facts and circumstances of

your specific initiative and the program of record.

System Performance Impact If the program manager of the target system is depending on your

prototype or initiative to meet his/her system key or critical operational performance objectives,

the question is how well your present prototype of initiative meets those objectives. Even if the

operational unit commander is not depending on your prototype or initiative to meet his/her key

or critical performance objectives, it is still important to evaluate the extent to which the present

prototype or initiative will help or hinder the unit‘s operational performance.

 Enabler: Prototype or initiative demonstrated to meet expectations relative to impact on

operational performance objectives. In the alternative, prototype / initiative is not relied

9
 See http://www.sei.cmu.edu/opensystems/faq.html

10
 See Mitigating the Adverse Impact of Technology Maturity, James Bilbro, [NASA] Feb 2007

http://pmchallenge.gsfc.nasa.gov/docs/2007Presentations/Presentations/Bilbro_James.pdf

http://www.sei.cmu.edu/opensystems/faq.html
http://pmchallenge.gsfc.nasa.gov/docs/2007Presentations/Presentations/Bilbro_James.pdf

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 F-33

upon to improve operational performance and analysis or demonstration has established that

use of the initiative or prototype will not hinder operational performance.

 Barrier: Prototype / initiative is relied upon to improve operational performance, but

assessment indicates a significant risk that use of the initiative or prototype will hinder

operational performance. Also, failure to perform an assessment of the impact on operational

objectives regardless of reliance factor.

F.3 Documentation

Documentation requirements for a program of record can be a show-stopper for the transition of

technology or an initiative. The following documentation attributes and associated enablers and

barriers should be considered.

CONOPS - What is the Concept of Operations (CONOPS) that the initiative or prototype

supports? Is it referenced in the Initial Capability Document (ICD) or Capability Description

Document (CDD) for the target program of record? If it is a new CONOPS has it been written

and reviewed by the Joint Requirements Oversight Council (JROC)?
11

 Enabler: CONOPS supported by the initiative is consistent with / a subset of the CONOPS of

the program of record.

 Barrier: There is significant potential that the CONOPS supported by the initiative is

inconsistent with the CONOPS of the program of record. Also, failure to assess the potential

conflict of differing CONOPS between initiative and program of record.

Capabilities – The issue is what Capabilities (e.g. JCS Joint Capability Areas (JCA) or Air Force

Master Capabilities Library (MCL) capabilities) are supported by the prototype or initiative.

 Enabler: State JCA or MCL Item

 Barrier: Does not support either JCA or MCL item.

User Requirement – The question is what requirements in the current or draft capabilities

development document
12

, technical requirements document, or other user requirements

document for the target program of record does the prototype or initiative satisfy.
13

 Enabler: Initiative or prototype satisfies explicitly stated requirements.

 Barrier: Initiative or prototype does not correspond to a requirement, even a derived

requirement.

Data Rights and Proprietary Issues
14

 - The focus is on restrictions on the data for your

prototype or initiative that would prevent the target program of record from furnishing the data

or design to their development contractor or integrator.

 Enabler: There are no such restrictions.

 Barrier: There are restrictions that may limit the ability of responsible contractors to the

program of record to obtain data on the initiative relevant to operations, maintenance, or

system evolution. Also, failure to establish certainty that there are no such restrictions.

11

 See CJCSM 3170.01C May 07 http://www.dtic.mil/cjcs_directives/cdata/unlimit/m317001.pdf
12

 See CJCSM 3170.01C May 07, http://www.dtic.mil/cjcs_directives/cdata/unlimit/m317001.pdf
13

 See SEPO Requirements Toolkit, http://sepo1.mitre.org/kits/requirements/index.html
14 See FAR Part 27, http://www.acquisition.gov/far/current/html/FARTOCP27.html

http://www.dtic.mil/cjcs_directives/cdata/unlimit/m317001.pdf
http://www.dtic.mil/cjcs_directives/cdata/unlimit/m317001.pdf
http://sepo1.mitre.org/kits/requirements/index.html
http://www.acquisition.gov/far/current/html/FARTOCP27.html

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 F-34

Design Drawings
15

 - It may be important to have a design drawing package that would permit

follow-on design or fabrication of the prototype or initiative by someone other than the original

developer.

 Enabler: There is such a package.

 Barrier: There is no such package, and the timely procurement of such a package is not

possible or economically feasible.

Source Code
16

 - This topic is concerned with the availability of source code to support software

modification and maintenance of the prototype or initiative.

 Enabler: Source code is available.

 Barrier: Source code is not available, and the timely procurement of source code is not

possible or economically feasible

User’s Manuals
17

 - Key questions follow: Are user‘s or operator‘s manuals available for the

operators of the prototype or initiative? Are the manuals consistent with the skill level of the

operators of the target program of record system?

 Enabler: Properly documented manuals are available.

 Barrier: Properly documented manuals are not available, and the timely procurement of them

is not possible or economically feasible.

Licenses
18

 - The issue is if the prototype or initiatives involve licenses that must be transferred to

or renegotiated by the target program of record for development, use, or deployment to users.

 Enabler: The prototype or initiative does not rely on licenses. Or, the conveyance of any

such licenses does not represent an administrative or economic burden to the program of

record.

 Barrier: The prototype or initiative relies on licenses whose conveyance to program of record

represents an administrative or economic burden.

DOD 5000 Milestone Documentation
19

 - The key question for milestone documentation is if

you have either developed [for a new start program] or evaluated the impact [transition to an

existing program of record] the regulatory and statutory information requirements for milestone

B or C [depending on the technology insertion point].

 Enabler: The acquisition documentation is developed, or is partially developed, and it is

likely the documentation will be ready within a prescribed schedule.

 Barrier: The acquisition documentation is not developed, nor is there a plan in place, properly

resourced, to ensure the documentation will be prepared in a timely manner.

Technology Transition Agreement
20

 - The question is if there is a negotiated Technology

Transition Agreement (TTA) with the target program of record.

15

 See ASME Y14.24-1999 – Table A-1,

http://catalog.asme.org/Codes/PrintBook/Y1424_1999_Types_Applications.cfm
16

 See IEEE/EIA 12207.1-1997, http://standards.ieee.org/reading/ieee/std_public/description/se/12207.1-
1997_desc.html
17

 Ibid.
18

 See FAR Part 12, http://www.arnet.gov/far/current/html/FARTOCP12.html and FAR Part 27

http://www.acquisition.gov/far/current/html/FARTOCP27.html
19

 See DODI 5000.2, Enclosure 3, May 12, 2003, https://akss.dau.mil/dag/DOD5002/Subject.asp
20

 See DOD Technology Readiness Assessment [TRA] Deskbook, Appendix G, May 05,

https://acc.dau.mil/CommunityBrowser.aspx?id=18545

http://catalog.asme.org/Codes/PrintBook/Y1424_1999_Types_Applications.cfm
http://standards.ieee.org/reading/ieee/std_public/description/se/12207.1-1997_desc.html
http://standards.ieee.org/reading/ieee/std_public/description/se/12207.1-1997_desc.html
http://www.arnet.gov/far/current/html/FARTOCP12.html
http://www.acquisition.gov/far/current/html/FARTOCP27.html
https://akss.dau.mil/dag/DoD5002/Subject.asp
https://acc.dau.mil/CommunityBrowser.aspx?id=18545

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 F-35

 Enabler: A TTA has been successfully coordinated.

 Barrier: A TTA has not been successfully coordinated, nor is one likely to be completed in a

timeframe consistent with the successful transition of the initiative.

F.4 Test

Test requirements for a program of record are significant. The following are test attribute

enablers and barriers that should be considered in planning for the transition of a technology or

initiative.

User Feedback – Key questions are as follows: Have you demonstrated the initiative or

prototype for the intended users in a relevant or operational environment and recorded their

feedback? Have you altered the design of the initiative or prototype based on the user feedback?

Has the user requested changes that you have not made? Are the users providing the feedback

involved in requirements and/or budgeting for their organization?

 Enabler: User feedback (including key decision makers or designee, and those who

determine budget recommendations) based on demonstration or use in a relevant or

operational environment has been obtained and as appropriate applied to refine the design

and/or implementation of the initiative.

 Barrier: Such feedback has not been obtained, or the feedback indicates a lack of interest in

furthering the initiative, or actionable feedback was obtained but not applied to refine the

design or implementation.

Operational Utility Assessment COIs, MOEs, MOPs - It is desirable to conduct an Operational

Utility Assessment with a structured set of Critical Operational Issues (COIs), Measures of

Effectiveness (MOEs), and Measures of Performance (MOPs). Positive, documented results

should be contrasted with any deficiencies or recommendations for improvement.

 Enabler: An operational utility assessment was conducted, with minimal deficiencies and

actionable recommendations.

 Barrier: An operational utility assessment revealed significant deficiencies, or such an

assessment was not performed.

Documented Test Plans and Results - The plans used for testing or demonstrating the prototype

or initiative were well documented and include specific objectives, measurements, and/or

expectations. The results of the test or demonstration were well documented and

reviewed/validated with the operational users following test or demonstration completion.

 Enabler: Test plans and results were well documented and properly reviewed.

 Barrier: Test plans or results were not completely documented, and their review was limited.

Security Accreditation
21

 - If the initiative or prototype processes classified information, has it

been accredited for use in an operational environment? A DOD Information Assurance

Certification and Accreditation Process (DIACAP) Authority To Operate (ATO) is an

authorization granted by a Designated Approving Authority (DAA) for a DOD intelligence

system to process, store, or transmit information. An ATO indicates a DOD intelligence system

has adequately implemented all assigned information assurance controls to the point where

residual risk is acceptable to the DAA. ATOs may be issued for up to 3 years.

 Enabler: All ATOs have been granted.

21

 See DODI 8510.01, November 28, 2007, https://acc.dau.mil/CommunityBrowser.aspx?id=186871

https://acc.dau.mil/CommunityBrowser.aspx?id=186871

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 F-36

 Barrier: At least one ATO has not been issued, and there is an indefinite or unacceptable

delay associated with its issuance.

Information Assurance
22

 - Mission Assurance Category (MAC) I, II, or III and Confidentiality

Level (Classified, Sensitive, or Public) have been designated in the User Requirements document

and tested.

 Enabler: MAC and confidentiality levels have been designated, and testing is both complete

and satisfactory.

 Barrier: A MAC or confidentiality level has been designated, or testing is either incomplete

or unsatisfactory.

Network Certification
23

 - The system been certified as Net-Ready (if applicable) by Joint

Interoperability Test Command or been given an Interim Certificate to Operate (ICTO).

 Enabler: The prototype or initiative has been certified net-ready or given an ICTO.

 Barrier: The operational system has a net-ready requirement, and the prototype or initiative

has not passed certification testing or has not undergone such testing.

F.5 Program of Record

The following are attributes of the program of record that can be enablers or barriers to the

transition of a technology or initiative.

Program Manager Commitment - The Program Manager (intended receiver of the technology or

initiative) has signed a Technology Transition Agreement
24

 (TTA) (or other Memorandum of

Agreement(MOA)) with the Science and Technology developer to develop, deliver and integrate

the technology or initiative into an acquisition program.

 Enabler: A TTA or MOA has been signed.

 Barrier: There is no compelling evidence indicating a commitment to the transition on the

part of the program manager.

Acquisition Strategy - The program receiving the initiative has an acquisition strategy that will

permit the transition of the technology or initiative to the program of record.

 Enabler: The acquisition strategy is in place and the transition is incorporated in the strategy

or is well positioned to be incorporated.

 Barrier: The transition appears poorly positioned relative to the acquisition strategy of the

operational unit, or no strategy has been developed.

System Level Design - The system receiving the initiative has a system design that is capable of

accepting the technology or initiative without major rework.

 Enabler: Rework to ensure design consistency is minimal at most.

 Barrier: Rework to ensure design consistency is or may be significant, and that level of

rework is unsatisfactory to the operational unit, or such information is unknown but may be

significant to those deciding on or overseeing the transition.

22

 See DODI 8500.2, 6 February 2003, http://fas.org/irp/doddir/dod/d8500_2.pdf
23

 See CJCSI 6212.01D, 8 March 2006,Current as of 14 March 07,

http://www.dtic.mil/cjcs_directives/cdata/unlimit/6212_01.pdf
24

 See DOD Technology Readiness Assessment [TRA] Deskbook,

https://acc.dau.mil/CommunityBrowser.aspx?id=18545

http://fas.org/irp/doddir/dod/d8500_2.pdf
http://www.dtic.mil/cjcs_directives/cdata/unlimit/6212_01.pdf
https://acc.dau.mil/CommunityBrowser.aspx?id=18545

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 F-37

Infrastructure Approach - The infrastructure approach (e.g. power, network) for the system

receiving the initiative is consistent or compatible with the technology or initiative being

transferred.

 Enabler: The infrastructure approaches are consistent.

 Barrier: The infrastructure approaches are not consistent, or their relative consistency is

undetermined.

Prototype-System Schedule Synchronization - The technology or initiative is ready for

transition at a point in time where it can be synchronized with the requirements or early design

stage of the receiving program or other technology insertion point (pre-production or sustainment

modification).

 Enabler: Schedule synchronization is established and planning for the transition is complete

or considered non-problematic.

 Barrier: Schedules do not synchronize, and the inherent delay in transition is unacceptable or

significantly reduces the value of the initiative. Or, synchronization has not been evaluated.

Competition Issues - There are no competition issues that would prevent the technology or

initiative design from being given to a development contractor for incorporation in the system

without redesign, or a Justification and Approval (Federal Acquisition Regulation (FAR) Part

6
25

) has been approved. One issue is if the contractor involved in development/ implementation

of the initiative or prototype has a defined contractual right pertaining to the continued

production or the maintenance of the initiative that is in conflict with the acquisition approach in

use by the program of record.

 Enabler/Barrier: There are no / there are competition issues.

Leadership and Partnership - Leadership is generally charismatic, dynamic, and hard-charging.

This is not to imply ad hoc leadership. Leaders in these circumstances have a clear understanding

of the goal and a success orientation that infects the entire team. Motivation, innovation, and

inspiration are the methods to obtain the maximum from the program team. Partnership is the

willingness of the Program Manager to partner with the S&T Manager to achieve the transition.

 Enabler: These attributes are in evidence in both the initiative and the program of record.

 Barrier: The opposite of these attributes have been demonstrated by either the S&T

management or the program of record.

Program Manager Risk Orientation - Liberal Risk Orientation of management indicated a

willingness to take risk or seize upon opportunities or "game changing" technologies or

innovative approaches. While the team does not "gamble" the team does not have "risk

aversion.‖

 Enabler: Program of record leadership has demonstrated well-reasoned risk taking.

 Barrier: Program of record leadership has demonstrated that it is strongly risk averse.

Program Office Size and Skill Mix - The program team is of the Right Size and the Right Mix

of qualified individuals to optimize communication and independent action. Each member of the

team is "self starting" and to a large extent "self directed." Communications are often optimized

because of the "like mindedness" of the program team members. Respect, trust, and teamwork

are characteristic of these teams.

25

 See http://www.acquisition.gov/far/current/html/FARTOCP06.html

http://www.acquisition.gov/far/current/html/FARTOCP06.html

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 F-38

 Enabler: The program of record can be characterized as having right-sizing and right-mix of

staff and it appears this will continue to be the case indefinitely.

 Barrier: The program of record cannot be characterized as having right-sizing and right-mix

of staff.

Program Office Personnel Expertise - Expertise is valued and given the freedom to make

critical and authorative program decisions. A "value added" versus an organizational hierarchy is

in place for decision making. Individual experts have established credibility through a proven

"track record" of sound decision making. They are sought out to participate in the most critical of

program decisions.

 Enabler: The program of record has sufficient expertise in the initiative or technology to

integrate it and operate with it.

 Barrier: The program of record has insufficient expertise.

Program Manager’s Network - The program leadership and team's interpersonal networks are

leveraged to obtained advantageous results in transition.

 Enabler: There is evidence that such networks have been and will continue to be leveraged

in ways salient to the transition.

 Barrier: Limited to no networking has been demonstrated by the leadership of the program of

record.

Program Processes - The Internal Program Office Business Processes are integrated,

predictable, responsive, and well understood by all team members. The program makes an ally of

process and uses it to bind the team together and raise efficiency.

 Enabler: The use of the new initiative or technology can be easily integrated into existing

operational business processes.

 Barrier: There may be issues with the integration of the initiative into existing business

processes, or such processes may not be in place.

Program Metrics - Program Office Agility/Rapidity is sustained and monitored through the

collection of a small but critical set of Program Metrics.

 Enabler: The introduction of the initiative or prototype has a positive influence on the

program of record‘s performance metrics.

 Barrier: The initiative has a negative influence on the program of record‘s performance

metrics.

F.6 Sustainment

Generally in a program of record sustainment planning is a deliberate activity. In transitioning a

technology or initiative the following sustainment attributes and associated enablers and barriers

should be considered.

Projected Life Cycle - The projected life cycle of the technology or initiative is long enough

(more than 5 to 10 years) to warrant inclusion in a program of record rather than: (1) throwing

the item away and replacing it with a newer version when it breaks; (2) handling sustainment

with a ―command support‖ contract; or (3) relying on the S&T developer to sustain it.

 Enabler: The projected life cycle of the initiative is long enough that it makes sense for a

program of record to assume the responsibility of its sustainment.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 F-39

 Barrier: The projected life cycle of the initiative is of such potential brevity that it does not

make sense for a program of record to assume the responsibility of its sustainment.

Field Maintenance Approach - A field (operator, organizational, and intermediate) maintenance

approach exists or is not required (e.g. throw-away or warranty or return to depot) for the

technology or initiative.

 Enabler: A maintenance approach consistent with the initiative exists, or field maintenance

is not required.

 Barrier: Field maintenance is required and the maintenance approach of the program of

record is inconsistent with the initiative.

Depot Maintenance Approach - A depot maintenance approach exists that is compliant with

Title 10 50/50 and Core provisions or is not required (e.g. commercial item warranty or throw-

away).

 Enabler: As described above.

 Barrier: There is no depot maintenance system available, but the initiative is not supported by

warranty, nor is it managed as a throw-away item.

Spares - If the technology or initiative is or includes hardware, spares have been identified and

are available to support maintenance at the specified maintenance levels (operator,

organizational, intermediate, and/or depot) or they are not required (e.g. commercial item

warranty or throw-away).

 Enabler: As described above.

 Barrier: Spares are required, but they are not available, or they are available but are not

composed in a manner consistent with the maintenance level applied by the program of

record.

Training - Operator training and training for organizational, intermediate and depot maintenance

has been conducted and continues to be available for both operator and maintenance at skill

levels appropriate for the designated military or civil service specialty codes.

 Enabler: As described above.

 Barrier: Training is required, but it has not been conducted. Furthermore, there is some

significant obstacle to the development of training materials and the performance of initial

training consistent with the needs of the program of record.

Test and Support Equipment - Any unique test and support equipment (and associated software)

that was developed to support the technology or initiative is available and its design, operation,

and maintenance are documented.

 Enabler: As described above.

 Barrier: Such support equipment is likely to be required, but it is not developed, and there is

some significant obstacle to its timely procurement. Or, available support equipment is

unsupported by documentation to such an extent that its continued use in sustainment is

impaired.

Maintenance Manuals – Hardware, software, and other maintenance manuals have been

developed, verified, and validated. They are up to date and available for maintenance at skill

levels appropriate for the designated military or civil service specialty codes.

 Enabler: As described above.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 F-40

 Barrier: Manuals have not been developed, and there is some obstacle to their timely

development. Or, available manuals are not consistent with the skill levels appropriate for

the designated military or civil service specialty codes.

Technology Refresh - A technology roadmap has been developed for the technology or

initiative. Recommended technology refresh cycles have been established and are consistent

with the maintenance and spares approaches.

 Enabler: As described above.

 Barrier: Recommended technology refresh cycles are not consistent with the maintenance

and spares approaches of the program of record. Or, assessment of technology refresh of the

initiative/prototype has not been performed, and it is of a complexity that indicates failure to

perform this assessment represents an unacceptable risk to the transition.

Software Maintenance - Provisions have been made for software maintenance including

documentation, assignment of responsibility, source code, programmer‘s manuals,

development/maintenance hardware, software and tools. Software maintenance provisions are

consistent with the skill level of the designated software maintenance organization.

 Enabler: As described above.

 Barrier: Appropriate provisions for software maintenance have not been made, and

sustainment of the initiative or prototype includes software maintenance.

50/50 and Core Issues - The introduction of the technology or initiative does not impact Depot

Source of Repair decisions for the program receiving the technology or initiative.

 Enabler: As described above.

 Barrier: The transition of the initiative into the program of record will or might plausibly

represent a conflict with pre-established Depot Source of Repair decisions.

Operations and Maintenance Personnel and Skills - The skill levels and specialty codes for

operating and maintaining the technology or initiative have been specified and are assigned in

sufficient numbers to the operational units which will be operating and maintaining the receiving

system.

 Enabler: As described above.

 Barrier: The skill levels and specialty codes have not been identified, or they are inconsistent

with the approach used by the program of record.

F.7 Advocacy

The following advocacy attributes and the associated enablers and barrier should be considered

in planning the transition of a technology or initiative.

Urgent Need - An Urgent Need exists. This does not necessarily indicate that a rapid acquisition

is needed; it could be a vital or necessary element missing from the current military set of

capabilities.

 Enabler: There is a documented and coordinated level of urgency.

 Barrier: Urgency is not a motivating factor in the transition of the initiative.

Top Cover - Top Cover is a condition of protection provide to the program management and

program team. This top cover is usually provided by senior or political leaders that have an

interest in the program.

Handbook for Implementing Agile in DOD IT Acquisition Dec. 15, 2010

 F-41

 Enabler: The initiative or the program of record has a demonstrated, effective level of top

cover.

 Barrier: Neither the initiative nor the program of record in the context of this transition can

be characterized as having top cover.

Champion - A Champion for the effort exists. It may be the same person(s) providing top cover;

however it could be another person in the chain-of-command or someone that has strong

political, social, technological, economic, or operational needs and leverage. Unlike top cover

whose support may be passive in nature, the champion is active in supporting the effort and

keeps the initiative on the front burner.

 Enabler: As described above.

 Barrier: There is no champion for the initiative.

Short Chain of Command - Short Chain of Command allows quick decisions and eliminated

dilution of decisions. Often the program leader is a direct report to the final decision maker. In

these cases senior decisions make themselves available to the program team.

 Enabler: With respect to the transition of the initiative, there is a short chain of command.

 Barrier: There are multiple levels of decision making, influence, and approval in the chain of

command in the context of this transition.

DOD 5000 Process Waivers or By-pass - By-passing process/rules/regulations etc. is usually a

part of the Agile/rapid environment. This could consist of either finding a path through existing

process, rules, regulations, or law that allows for exception. It could also be accomplished by

requesting and receiving a waiver or deviation (e.g. skunk-works, classified program, etc.).

 Enabler: Significant acquisition process and documentation overhead does not exist, or,

there is a robust set of by-pass and waiver opportunities available to the initiative and its

transition into the program of record.

 Barrier: Significant acquisition process and documentation overhead exist, and there are no

foreseeable by-pass and waiver opportunities.

Protected Funding - Predictable funding flow is obtained (developed or designed by the

team) and used to ensure appropriate planning and execution. The program champion(s) often

play a big role in this area.

 Enabler: As described above.

 Barrier: Funding is not protected, and this vulnerability affects the planning and

implementation of the transition (e.g., inability to secure contractual support of a desired

duration).

Oversight Relief - Often, those responsible for Agile/rapid technology or initiatives are not

comfortable with higher levels of management oversight and management and find ways to

avoid it. Programs of this nature seek out methods to shelter the program team. This is

accomplished through the insulation provided by the program leader, classification of the

program, proactive anticipation of the needs of the HQ, or assuming a posture of "it is easier to

apologize than ask permission".

 Enabler: Oversight relief is unnecessary, or the means to achieve relief are identified and

dependable.

 Barrier: Oversight relief is necessary, and the means to achieve relief are not identified.

