MP110439

MITRE PRODUCT

MITRE The State of Security Automation
Standards - 2011

A Survey

Gerard T. McGuire
Emily E. Reid

August, 2011

This page intentionally left blank.

MITRE

Dept. No.: G026

The views, opinions and/or findings
contained in this report are those of The
MITRE Corporation and should not be
construed as an official government position,
policy, or decision, unless designated by
other documentation.

Approved for public release: 11-3822
Distribution unlimited

©2011 The MITRE Corporation.
All Rights Reserved.

MP110439

MITRE PRODUCT

The State of Security Automation
Standards - 2011

A Survey

Gerard T. McGuire
Emily E. Reid

August, 2011

Abstract

Security automation standards sponsored by the U.S. Government have evolveasiynirfic

the decade since MITRE created and released the Common Vulnerabilitiespasdres (CVE)
dictionary. There are now more than two dozen individual standards in use or under development
supporting a wide range of security information and functionality. These stardarsispported

by a variety of sponsors and governance models as well as an ever-growmgrstynof

developers, implementers, and users.

Reflective of a growing community, the attendance at NIST's Secwitty#ation Conference

has continued to grow over the past several years. The more mature of the steavdabden
incorporated into hundreds of tools and CVE has become virtually ubiquitous in its subject area.
Given the ever-increasing community of adopters, implementers, and contributoctedrithat

the overall security automation effort has been highly successful thuadats @apabilities and
interest in those capabilities continue to grow.

This paper seeks to provide an overview of all the components in security automation as of
August 2011.

Acknowledgements

The authors would like to thank the following people for providing information that is
encapsulated in this document: Jon Baker, Sean Barnum, Drew Buttner, Brant Cheilas, St
Christey, Mark Davidson, Tom Graves, Dan Haynes, Bill Heinbockel, lvand<yiRobert A.
Martin, Dave Mann, Joe Sain, Charles Schmidt, Larry Shields, Matthew Wojcik, and John
Wunder.

Finally, the authors acknowledge our government sponsors and the many dedicated Iadividua
at National Security Agency (NSA), National Institute of Standards anghoemy (NIST),
Defense Information Systems Agency (DISA), Department of HomelanditygguiS), and
throughout the security automation community whose efforts have created andneditites

field for the benefit of many. In particular special thanks to Adam HalbaadaDavid

Waltermire for their help in providing information for this report.

Table of Contents

I I o 11 oo {1 ox o IR PR TR 1-1
I R Yoo o SRR 1-1
2 The Security Automation Standards.........coceecereererieneeneee e e 2-2
2.1 The SCAP STANUAIG........cuuuiiiiiiiiiee et a e e e e e eaaaas 2-2
2. 011 CVE ittt e e e e e e e e e e 2-3
2 I ©)V PR PRPPPTP 2-3
2.1.2.1 The OVAL REPOSITOIY ..ciieiieiiiiieeeeeeeeiiie et e e e e e e 2-4
2.1.3 XCCDF ...ttt ettt e e e e e e 2-5
2 S X O P PPPPRPRR 2-5
205 CPE . et a ittt aaaaaaaan 2-6
2.1.8 CVSS it a e e e 2-7
1225 I A © O | PRI 2-8
2.2 Emerging and Related Standardsoooiiiieeeeeeii e 2-8
2.2.1 EMAP ettt 2-9
2.2. 1.1 CEE . ittt e e e e e e e e e e e e e e e e e e 2-9
2.2.2 INVD ettt taaaaaaaaaaaa e e e e e e aananaarrraes 2-10
2.2.3 REMEAIALIONciiiiiiiee ettt e e e e e e eeeas 2-11
2.2.4 Configuration-Related Standards ..o 2-12
2 X 1 F ST 2-12
2.2.4.2 Gl SS ittt et e e e e e e e e 2-12
2.2.4.3 G S S ittt aaaaaaaaaaas 2-13
2.2.5 Software Assurance-Related Standards...........ccccooiiiiiiiiiiiiiiiiiii e 2-14
2.2.5. 1 CAPEC ...ttt —————————————— 2-14
2.2.5.2 CWWE .ottt ettt e e e e e e e e e e e e e e e e e e n e 2-14
2.2.5.3 CWWRAF ..ttt e ettt e e e e e e e e e e e e e e e e 2-15
2.2.5.4 GV SS Lttt e e e e e e e e e e e e e e e an 2-16
2.2.5.5 MAEC ... ettt e e e e e e e e e e e e e e e e e aa e 2-16
2.2.5.6 CYBOX ittt e e e ettt et it e et e e e e e e e e e e e e e e aaannnne 2-17
2.2.5.7 SAFES .ot 2-18
2.2.6 Reporting-Related StandardsS.........ccooovveeeeeeiiiiiiiiiiiiiiii s 2-19
2.2.6.1 ENErpriSe REPOMINGuuuuuuuiuiiiiiiee e ettt e e e e e e e e e eeeeeeeeanna s 2-19
2.2.6.2 GV RF et 2-21
2.2.7 Related International Standards............ccccuvviiiiiiiiiiiiii 2-21

2271 NODEF ..o 2-21

2.2.7.2 CYBEX ittt 2-22
3 Validation and AdOpPtion ProgramsS.........cccceeeceeieneesiesieeseeseeseesseeseeseesseesessseessens 3-22
O @ g o U o o TSSO 4-23
APPENdiX AACTONYM GIOSSANY ..cveeiveeieeeeie e seesieesee e e e sae e eestesseesreesseeneesseenees A-1

Vil

This page intentionally left blank

viii

1 Introduction

This paper provides an overview of the status of security automation standardsduse, a
community as of August 2011. While it does not cover any particular topic in great tlepth, i
seeks to touch on all significant aspects with sufficient detail to giveaddermra general
overview of the status of security automation standards. Readers should be ablmateve
idea of the coverage of this space, and also find pointers to more detailed imionvien
available.

1.1 Scope

This paper summarizes the status of security automation standards. 8lhgdificonsiders

topical standards which have some level of U.S. government involvement or ai teelate
recognized international standards bodies. To be considered, these standards should be under
active development, are currently or are intended to be publicly known, and seek $pditieain

the broader sphere of efforts related to standardization of security informatioxchadge.

This scoping choice excludes several efforts that are interesting arfecargnbut fail one or
more of the above criteria. For example, the Common Malware Enumeration (CRME-bke
enumeration of malware, was developed under contract from US-CERT, but is nouodeger
active development. As such, this effort is not discussed in this document. Additionadly, the
may be other standards efforts that fit our broad scope but have missed inclusionditiohis e
of the document.

2 The Security Automation Standards

This section details all security automation standards within the scope of thimettc The
standards range in maturity from highly mature and stable to conceptual. HoaVlestandards
listed here are being actively developed and supported at some level. For redatd ste

identify the current sponsor, developer, and a URL that serves as the public feceftdrt (if
any). In addition to the above information, this section provides overviews of each standard.

2.1 The SCAP Standard

Sponsor Developer

NIST NIST http://scap.nist.gov/

The Security Content Automation Protocol (SCAP, pronounced "ess-cap") is a brgesdrpro
implemented by leveraging a suite of individual standards intended to supporttteeditzation

of security measurement and expression to promote interoperability otyg@caducts. While

the SCAP content leverages seven standards (CVE, CCE, CPE, XCCDF, OVALaQ(lI

CVSS), it is both more and less than the sum of its parts: More because it incluifés spe

guidance for how the individual standards should be used in combined operation; less because it
explicitly does not encompass all the features of individual components.

Most of the standards that define the SCAP content predate SCAP itself, whifttstvas
introduced (version 1.0) in 2006. There were preceding efforts coordinating betweendstanda
for as long as there has been more than one standard, but these efforts werbmisedltyp

single pairs of standards. SCAP provided a valuable service by creatin¢easpugitory for
housing content based on the standard interoperation of the base standards and is ninder a ce
authority.

The first major revision of SCAP was released in February of 2011. SCAP 1.1 grimaril
extends SCAP 1.0 by including OCIL 2.0 as a requisite standard and updating the OVAL
standard to version 5.8 (previously it was version 5.4).

SCAP continues to evolve. Work has commenced on SCAP 1.2, which was released in its first
draft form for public comment in July 2011 and closed in August 2011. Some significant
additions proposed for SCAP 1.2 include electronic signatures of source and restifedats, s

the adoption of CPE 2.3, and the addition of the Common Configuration Scoring system (CCSS).

SCAP is primarily concerned with describing interactions and establistetrics to validate
compliance with content written against sets of the component standards. Tversiet of the
validation program requirements (NIST IR 7511) was produced in 2009. The second version of
the validation program requirements is (NIST IR 7511 R 2) was published in February 2011.

The rest of this section looks at the individual standards that make up the foundadioaheidst
used within SCAP. Each standard is discussed without reference to any limhsS@A® itself
might place on its usage in creating SCAP content.

2-2

2.1.1 CVE

Sponsor Developer

DHS MITRE http://cve.mitre.org/

The Common Vulnerabilities and Exposures list (CVE) is an enumeration of uniqueiédentif
for publicly known security vulnerabilities. CVE was created under inteesalarch and
development funds by MITRE and first published in 1999, making it the oldest of all the
standards discussed in this document. The inspiration for this effort came frometmalint
MITRE tasks: a comparison of vulnerability scanning tools, and an attempt to mapatiéon
security advisories to specific software vulnerabilities. Both of theee®fiiere stymied by the
inconsistent naming of software vulnerabilities among vendors and researtiecksaders of
the two MITRE tasks realized the need for a common, vendor/researcher-nayttalrefer to
individual vulnerabilities. From this initial observation, MITRE created CVE to deoai
common name for vulnerabilities to support inter-product comparison and compatibility.

CVE has been a huge success and is actively sponsored by the U.S. Governmente There a
currently more than 46,000 CVE IDs and over 280 products from over 160 organizations that are
either officially CVE Compatible or that have made declarations of comigtiGIVEs are now
included in the initial bug reports of almost all major vendors (over 70 organizationgasinig

in total) as well as many other vulnerability announcement portals (e.gSé86nia, US-

CERT, etc.) Many would argue that the current breadth of security automaioiasts owes its
existence to the success of the initial CVE program.

2.1.2 OVAL

Sponsor Developer

DHS MITRE http://oval.mitre.org/

The Open Vulnerability and Assessment Language (OVAL) is a languagekong logical
assertions about the state of an endpoint system. OVAL was developed by MITR&tand f
released in October of 2002. The motivation for this effort was the observatiorvératheugh
vulnerability assessment tools could use CVE IDs to provide a mutually corepatibit of
vulnerabilities, tools would often disagree as to whether a particular vuligralais present
because they would use different system state artifacts as indi€%X& was developed as a
way to define a canonical description of the state associated with the preSanailnerability.
In its original version, OVAL definitions were written in an SQL-like languageabutML
version of the language was quickly added, and in 2004 the SQL version was deprecated.

The OVAL Language consists of several parts:
» Definitions Schema, which is used to identify acceptable system statelsaaadteristics
» System Characteristics Schema, which is used to record the discoveratdsgste

* Results Schema, which records pass/fail findings as determined by the gests
definition file

Both the OVAL Definitions Schema and OVAL System Characteristicsrialage extended
through additional component schemas which define platform-specific struttatesd needed

2-3

to represent checks of specific system entities or related findisggatesely. For example, the
Windows Definition component schema defines the structures used to identifg anthe
Windows registry or Active Directory, while the Linux Definition component sehédefines
structures to identify and evaluate RPM (RPM Package Manager) informatiog.tfwe of
system artifact that can be located and evaluated by OVAL needs to have appsiprctures
defined in both a Definition and System Characteristics component schema.

In addition to the language itself, the OVAL team also maintains an open-sa@rgeater (the
OVAL Definition Interpreter, or OVALDI) for the OVAL Language. Thistérpreter takes

OVAL Definitions as input and evaluates the state of a target system awg@pateporting

back the state that it actually found (in the OVAL System charactsjisind whether the
discovered state matched the requirements dictated in the OVAL definitidre @MAL

Results). The interpreter is provided as a reference implementation to adhempérs seeking

to create their own OVAL tools. The OVALDI does not support all of the component schemas
although it does offer extensive support for all structures in the core larnggiagdl as the
Windows and Linux component schemas. It is primarily intended to serve as an esathggle
than a full featured OVAL interpreter.

The current version of OVAL is 5.9. OVAL has continued to evolve through several selease
The last four releases have added both low level technical features and a numnigetesfel
capabilities. Among the major innovations, OVAL 5.6 added support for a new regular
expression language syntax and the ability to evaluate system artifantt agdtiple states.

OVAL 5.8 added extensive support for Linux, Mac OS, Solaris, UNIX, and Windows platforms
enhanced the OVAL Results directives (allowing for more flexibility incvetents of OVAL
Results), and supported more granular OVAL Item collection.

Still pending final release, OVAL 5.10 adds features to support a malwasaetntiinting use
case and support for Windows PowerShell. The latter provides greater powexanitityl to
content authors on Microsoft Windows platforms.

As part of an effort to provide an authoritative source of development information, imgcom
versions of OVAL will be released with an accompanying specification.

2.1.2.1 The OVAL Repository

Sponsor Developer

http://oval.mitre.org/repository/index.htm|

In addition to the OVAL Language and the OVAL Interpreter, the OVAL teaimtains the
OVAL Repository. The repository is a public collection of OVAL content including
vulnerability, patch and inventory OVAL Definitions. It is a place for the comiptoi
develop, share, and discuss a large body of content for use in relevant tools. Repasicory
is contributed by the community — the MITRE OVAL team generally only ped@yntactic
review and management of the repository.

Currently the OVAL Repository contains nearly 11,000 definitions and has growatata r
approximately 30% annually over the course of the past few years.

2.1.3 XCCDF

Sponsor Developer

NSA/NIST MITRE http://scap.nist.gov/specifications/xccdf

The eXtensible Configuration Checklist Description Format (XCCDF) waallgitieveloped

by NSA and first published in 2004. XCCDF provides a common language to express,eprganiz
and manage security guidance. XCCDF also supports references to checlang $gsth as
OVAL), allowing an XCCDF interpreter to direct checking tools to perfonraatomated
assessment of a system. Special tailoring capabilities and pre-gdreratiles allow users to
customize such an assessment based on broad security postures or individualize based on the
needs of their environments. Finally, the XCCDF language can also encapseil@sults of

such assessments.

As noted above, the original XCCDF release candidates were published in 2004 arsdl fié fir
version was published as a NIST Interagency Report (NIST IR 7188) in earlyBioke
September 2011, the most recent revision of XCCDF was version 1.1.4, finalized in early 2008
as NIST IR 7275 r3. Recently, the community has been actively working on changes riext
version, 1.2, which will include several new features such as the ability to rbpokt results
individually when multiple checks are executed for a single rule. NISTW 74, the XCCDF

1.2 Specification, was released in September 2011.

The XCCDF 1.1.4 Reference Implementation Interpreter, a command-lineaigpii

demonstrating interpretation of XCCDF Benchmarks, was first releaseavieniber 2010. This

tool focuses on the automated benchmark use case of XCCDF. A revised releamsele/as

public in January 2011, and has resulted in many downloads. In April 2011, a draft release of an
interpreter for the new version of XCCDF occurred to demonstrate the functioniogpefod

the recently accepted features. In October 2011, an XCCDF 1.2 version of the tetevase
released.

2.1.4 CCE

Sponsor Developer

NSA MITRE http://cce.mitre.org/

The Common Configuration Enumeration (CCE) is an enumeration of security-relevant
configuration elements for applications and operating systems. In the suitna of CVE,
which was initially called the Common Vulnerability Enumeration, the need to address
misconfiguration-based vulnerabilities led to renaming CVE to its currerdfuExposure” to
cover the topics now addressed by CCE. First published in 2006, CCE provides a common name
by which configuration elements might be referred, regardless of the mveysah that
configuration action might be implemented. For example, on a Windows machinecalgarti
security feature might be enabled either via a registry change or theac@gpup Policy Object,
but because these both control a single functional feature, they would be assatiadesivgle
CCE. CCEs are divided into “platform groups”. A CCE platform group roughly identlie
operating system or application to which a CCE entry applies. CCE’s platfoupsgadhere to
the same level of granularity commonly found in security configuration guidanca¢hatitten

2-5

for individual platforms, as well as in the sets of checks and other features found guaiidn
audit and management tools. For example, Microsoft Windows XP and Sun Solaris 10 are CCE
platform groups.

In addition to an ID, entries contain a short description, the ways in which the cotdigura
change might be effected (in the previous example, this would identify the relegestity key
and GPO (Group Policy Object)), a list of the settings for the given coafign item (e.g.,
enable/disable), and a few sample references where the given configigatientioned in
guidance documents. Entries do not contain any recommendation as to a "coriegtfaeany
configuration item. This allows CCE entries to be applicable across mukiglefs
recommendations, many of which may have differing requirements.

The number of CCE entries currently stands at 10,300, and the CCE team is workingeath Ci
and Mozilla to generate CCEs for their platforms. The current list of ptatfjooups includes

IBM AIX 5.3, HP-UX 11.23, Microsoft IE7 and IE8, Office 2007, Office 2010, RHEL4,

RHELS5, Solaris 8, Solaris 9, Solaris 10, Oracle WebLogic Server 11G, Windows 2000,

Windows XP, Windows 2003, Windows Vista, Windows Server 2008, Windows Server 2008

R2, and Windows 7. The team is also working on augmenting the CCE supporting infrastructure
to increase its ability to respond to requests for additions, updates and corrections.

2.1.5 CPE

Sponsor Developer

NSA MITRE http://cpe.mitre.org/

The Common Platform Enumeration (CPE) is a structured naming scheme usediftp ide
information technology systems, platforms, and packages. CPE is predated ley afioth

called XCCDF-P, which was active in 2005 and 2006. CPE was inspired by XCCDF-P, but
pursued the same goal using a completely different approach. First published inRB07, C
provides standard product names to ensure that there is a shared understanding aswarthe sof
and hardware that is referenced in security recommendations and reports. ig&EcNaently

take the form of a structured URI with colon-separated components, e.g.,

cpe:/a: mcrosoft:word: 2010: spl: enterprise: en-us

As illustrated above, CPE names consist of seven compopartt§:a” for “application”),

vendor (“microsoft”), product name (“word”), version (“2010"), update (“spl” for “service pack

17), edition (“enterprise”), andanguage (“en-us” for US English). The Official CPE dictionary

is maintained and managed by NIS@gntains over 32,000 CPE names, and receives hundreds
of new or modified entries each month.

Version 2.2 of the CPE specification was released in March 2009. Development of a
maintenance release—designated version 2.3—began in March 2010 with the formation of the
CPE Core team—including MITRE, NIST, DoD, Cisco, McAfee, and nCircle. ®ddfthe

CPE version 2.3 specifications were released by NIST for public commentiirmAgdune

2011. The specification of CPE v2.3 has been broken out into four separate specification
documents: Naming, Matching, Dictionary, and Language (NIST IRs 7695, 7696, 7697, and
7898 respectively). MITRE is the principal author for the Naming and Matchingisp&oifis,

while NIST authored the Dictionary and Language specifications.

! The Official CPE Dictionary can be accessed atHitvd.nist.gov/cpe.cfm
2-6

Version 2.3 of CPE maintains full backward compatibility with version 2.2, but improves upon it
by being more rigorous, detailed, and precise, and by adding several new femjuessed by
members of the CPE community. A related ISO “software identificasigging” effort is
standardizing a way to tag software products of all Kindlsignificant difference between CPE
and software ID tags (SWIDs) is that SWIDs are intended to be installéé corhputing

endpoint at installation, and would require the participation of the software vendors ts.do thi
The CPE team is currently in dialogue with leaders of the SWID effort torexpiays for each

effort to leverage and collaborate with the other.

2.1.6 CVSS

Sponsor Developer

FIRST http://www.first.org/cvss/

The Common Vulnerability Scoring System (CVSS) is a metric to assigara to software
vulnerabilities to help users prioritize risk. The CVSS algorithm is split mt®tsub-
computations: the base metric, the temporal metric, and the environmental Tetrbase
metric measures inherent characteristics of the vulnerability itaet, & whether it can be
exploited remotely, how difficult it is to exploit, whether prior access tdatget is required,
and its impact on confidentiality, integrity, and availability (CIA). Thaperal score reflects
aspects of the attack that change with time, such as whether remediasgnshesther there
have been instances of exploitation, and the general belief in the accuracy of thebilitine
report. The environmental score attempts to measure characteristics@bahé tvulnerability
will affect a specific enterprise, considering such things as the powsage, the level of
exposure of vulnerable systems, and the enterprise's requirements foh€#ase metric is
required to create a final score, but the other metrics are optional and need aolydei if
deemed necessary or informative. The final score, regardless of the sids-of&isen, ranges
between 0 (no concern) and 10 (extreme risk). In addition to the final score, the choeen val
for the component characteristics can be presented in a condensed vector. Thradloestar
viewer to understand the choices that resulted in the score.

CVSS is not currently sponsored by US government agencies but is relevanttwtinsent
both because it is one of the six core SCAP standards and because of the strong influence
government agencies played in its creation. CVSS was originally develop@dagsca of the
National Infrastructure Advisory Council (NIAC) within DHS and with sigrafit contributions
from NIST. The first version of CVSS was published in early 2005. Shortly thereafter
management of the effort was transitioned to the Forum of Incident Responsearity Se
Teams (FIRST). FIRST oversaw an extensive review of CVSS resuitihg release of version
2 in 2007. FIRST continues to perform advocacy and provide assistance for users of the
standard.

The second version of CVSS has increased the community support and acceptasace of thi
standard. Although FIRST’'s CVSS Special Interest Group (SIG) curiemigcussing some
changes (e.g., reduce the scoring bias towards the physical host and focusesshurgical
applications and data that reside on the host), there is no formal revision schedusetinae thi

2 See http://www.iso.orgliso/iso_catalogue/catalogeieatalogue_detail.htm?csnumber=53670.

2-7

2.1.7 OCIL

Sponsor Developer

NSA/NIST MITRE http://scap.nist.gov/specifications/ocil/

The Open Checklist Interactive Language (OCIL) is a language to prat@adard way of
guerying a human user. While focused primarily on serving the needs of sbemétymarks,

OCIL could easily be applied to broader use cases. It contains structuneajpsdate

guestions, present procedures for determining answers to questions, evalusteareselven
provide a tree of follow-up questions based on a user's response. The history of OCIL can be
traced back to 2005 when the Center for Internet Security (CIS) releasedianaé®

language called the "Question Schema" for public use and development, but was unable to
support further development on its own. At the same time, MITRE had been developing its own
guestionnaire language for use in benchmarks but this work had not been published. In 2007,
MITRE combined its own work with CIS’s Question Schema and published the "Interactive
Schema". In 2009 the language was renamed OCIL. The second version of the language ha
been adopted by the SCAP community and included in the 2011 release of the SCAP 1.1
specification.

Planned development will extend the use case to embrace an Enterprise modslll Mioige

the standard’s focus from the current per-machine direct query of a singi¢ooe a policy

based administration tool asking questions which would address a number of machingdl This
significantly reduce the interaction needed to manage large populations oisyste

2.2 Emerging and Related Standards

This section discusses several security automation standards and suitedavtistthat cover a
variety of use cases and applications, from software assurance to reamediavent
management. Some grouping has been provided among standards that are relabedhar are
same application space for the sake of easier reading. These groupings sheld not
misinterpreted as a formal umbrella or a strict delineation. For exan\dkR ks a formal
umbrella for four event standards, while the many of the software assurkated-standards are
interrelated but do not have a formal hierarchical structure. Additionally orethips between
standards in different groups exist, as many standards tackle differealdbed pieces of a
security problem.

2-8

22.1 EMAP

Sponsor Developer

NIST NIST/G2/MITRE http://scap.nist.gov/emap/

The Event Management Automation Protocol (EMAP) is a high-level umbrell&fdotserelated
to standardizing the way in which events are recorded and processed. This efferided to

be a peer of SCAP, comprising several related security standards. Theseaftorently in its
early stages and is still in the process of articulating its scope asuatiobg. A whitepaper is
expected out late in 2011. NIST is the sponsor of this work with a partnership between G2,
NIST, and MITRE driving development.

While EMAP's focus is on security relevant events, the effort’s authorselki@gé¢o produce a
framework that is flexible enough to handle all forms of events. A list of pessiiphponent
standards includes:

e Common Event Rule Enumeration (CERE) — An enumeration of vendor-independent
rules and filters for matching and event processing;

» Common Event Expression (CEE) — A language encapsulating the syntax, taxonomy,
and transport of event logs and descriptions;

* Open Event Expression Language (OEEL) — A language to encapsulate instructions
for translating vendor-specific formats of event information into CEE.

» Common Event Scoring System (CESS) — A metric for ranking event severity.

Of the above standards, only CEE currently exists. In addition to these latddrsls, it is
likely that EMAP will make use of existing standards including CybOX, CAPBEECCVE,
CPE, and CCE.

2211 CEE

Sponsor Developer

NSA MITRE http://cee.mitre.org/

As noted above, the Common Event Expression (CEE) is the only component in the EMAP suite
that currently exists and CEE is expected to provide a core piece of its funtiaddahote,

early in the history of CVE, serious consideration of covering “events” was donetbhader

moniker of the Common Intrusion Event List (CIEL) but was not viable at that time. ufiteatC

CEE standardizes the way in which all types of computer events are deéslogged, and
exchanged. The v.0.6 CEE schema was released in July 2011, excluding the Transport
Requirements and Transport Syslog Mapping, which were released in October 2011.

The CEE effort covers four components: a taxonomy of event types called theoGomm
Dictionary and Event Expression Taxonomy (CDET), a standardized log synt&c Callnmon
Log Syntax (CLS), a transport format for the exchange of events called @obog Transport
(CLT), and a set of best practices for logging, called Common Log Reautatiens (CELR).
The first three combine to form the CEE "language". The latter item isstahdard, but
provides guidelines that not only would help improve the efficacy of a product's logging
capabilities, but would also help to make that product's log events more compéahhileevCEE
language.

2-9

The Common Log Transport (CLT) provide features necessary to support the end-ioiend a
process by extending the event record representation to include the essentiahtatify,

integrity, and availability of audit services. This allows systems te@dbgrinformation with

each other, a repository, or end user in a standard way. A CLT Protocol must nveet segof
tiered requirements, which are based on an enterprise’s particular environheseatificlude

core, basic, and optional (optional because these requirements will not be applictble to a
environments). For example, a CLT Protocol core requirement is to be ablestaitra CLS
Encoded CEE Event. More advanced CLT Protocols may provide things like encryption and ful
acknowledgments. The CEE CLT component also defines transport mappings. Aappihgn
defines a standardized way for CEE Events to be transmitted over a céfairaocol.

A website update in October 2011 included the following published documents:
» CEE Profile Specification
* Log Syntax Specification
» Profile Repository
* Log Transport Requirements

222 NVD

Sponsor Developer

DHS NIST http://nvd.nist.gov/home.cfm

The National Vulnerability Database (NVD) is a resource provided by Nd8Tuanded by US-
CERT at DHS. NVD serves as the web portal for all NIST's SCAP resourcksling libraries

of benchmarks, links to the component standards, and support for the validation program. Of
primary relevance to this document, NVD also refers to a database of intorikeyed off the
complete list of CVE identifiers. Every CVE identifier is annotated withi/&€ score and

vector; a set of references to related solutions, advisories, and tools; LI @ntries

denoting the affected software, and a CWE entry indicating the nature of thi/ungder
weakness. This list is updated daily as new CVEs are created.

NVD is a follow on to NIST's ICAT "metabase”, which served a simileippse. (The term

ICAT was not used as an acronym, although in its initial conception it was idtemte one.)

In 2005, NVD was launched as a replacement. NVD has undergone several revisionatin form
and structure and is currently at version 2.2.

2-10

2.2.3 Remediation

Sponsor Developer

NSA MITRE None

Currently the standards contained within SCAP focus on capabilities for tlttialete
description, scoring, and reporting of flaws, misconfigurations, and attacksveiguee date
there has been little standardization of actions to take in response to thesebiliijnera
indicators. Standardizing remediation actions has recently become a topitifafasig) interest.
NIST initiated this effort and in April 2011 published IR-7670: “Proposed Open Spicifis
for an Enterprise Remediation Automation Framework”. This overview maps out several
constituent standards:

* Common Remediation Enumeration (CRE) — An enumeration where each entry will
describe one set of actions one could take in order to address a vulnerability,
misconfiguration, or policy violation. Descriptions will be in prose (human-
comprehensible vs. machine-comprehensible) format. Because any givaabilitye
etc., might be dealt with in multiple ways, there will likely be multiple @REsociated
with any given issue. CRE describes the data that is required to support the tesenica
cases identified; it does not prescribe a database format, schemaeotgiress model.

* CRE Data Exchange Format (CRE-DEF) — An exchange format for CRE entries and
related metadata. This transport format allows the exchange of eithearttiarst CRE
list or organization-specific CREs. The CRE data exchange format is envisgpaed a
lightweight, XML-based schema that serves as the standard import, exportchadgx
format for basic remediation information as provided by CRE.

* Extended Remediation Information (ERI) — A dictionary with additional data about
each CRE. Examples of relevant data could include references to CPEs, CVEs, and
CCEs; prerequisites for the remediation action; extended descriptions of trokatom
steps; and follow-up actions for both successful and failed attempts to apply the
remediation. ERI does not prescribe a database format or schema or any other
presentation model. It simply identifies the additional data that may beedédair
support the identified technical use cases, beyond the base CRE entries.

* Extended Remediation Data Exchange Format (ERI-DEF) — The Extended
Remediation Information Data Exchange Format is proposed as a meanilioigena
efficient interchange of ERI data. The ERI data exchange format is@mdsas an
XML-based schema that extends the CRE schema, allowing ERI documents to refer
the CRE entries they extend by CRE ID alone, or to contain the full contents dkhe C
entry.

* Remediation Policy Specification (RPS) The Remediation Policy Specification defines
how to associate particular remediations with various classes or typesssel$.&5uch a
capability allows organizations to specify allowed, preferred, or retjugrediations for
specified collections of IT assets. For example, RPS might filter ®B&ed on platform
type, software inventory, vulnerability presence, configuration states, and fuhotiona
organizational categories.

* Remediation Tasking Language (RTL) — provides a standardized format to direct
compliant tools to enact specific remediations on specific assets. RTL dasume

2-11

represent the output of the remediation decision process, and function as a standardized
input format for remediation tools. Similar in concept to PLARR, RTL would be used to
initiate remediations and control where and how those remediations should be @érform

* Remediation Results— A language to encapsulate the results of a remediation attempt.
Remediation Results convey the outcome (e.g., success/failure/erraengbted
remediation actions as reported by the remediation tool. Remediation Risuéieable
roll-up reporting and provide enhanced situational awareness.

This initial list of proposed standards and their contents is preliminary andhaage as
either the overall architecture or each standard is further refined.

2.2.4 Configuration-Related Standards
2241 CCl

Sponsor Developer

http://iase.disa.mil/cci/index.htm

The Common Configuration Identifier (CCI) effort seeks to create an entiomes&information
assurance controls and standards. Specifically, it enumerates high-lewebpgictives that are
atomic, actionable, and measurable. For example, "enforce minimum passvgind Veould be
a high level policy objective appropriate for encapsulating in a CCIl. A benchmark
recommendation, which specifies values for configuration elements, could betedingth a
CCI ID. This would indicate the high-level policy objective that a given recordaten
supports. In this regard, CCI provides a valuable service by mapping low-lemgimendations
to the high-level objectives they serve. Since many policy statementsiditidgarequirements
are written in terms of high-level objectives, this mapping is useful forgirayevidence of
organizational audit and policy compliance.

Originally published in 2008, version 2 release 0.1 of the CCI specification wasae|im
February 2011, and the list currently contains over 1600 entries. In addition to the eimmnerat
the CCI effort includes a proposal for a dictionary that will annotate thei€®@lith additional
information linking entries to important high-level policy documents, such as thosshaabby
the DoD, NIST, and other organizations. Currently, CCls are created by DIS#y atko
manages the CCI list and dictionary.

224.2 CCSS

Sponsor Developer

NIST NIST http://csrc.nist.gov/publications/nistir/ir7502/nistir
7502_CCSS.pdf

The Common Configuration Scoring System (CCSS) is a method for scoring theysafverit
software security configuration issues. Conceptually, it adds the samdw&Qa& entries that
CVSS adds to CVE entries, but there is a significant difference. BecalsedoGot imply any
particular setting for a given configuration control, CCSS only makes séreseasnsidering

2-12

some specific setting thereof. That is, while a CCE identifies the cortfguintrol, CCSS

applies to one (or more) specific configurations of that control. The firsoves$iCCSS was
published in 2008, with a final NIST Interagency Report (IR) published in 2010. CCSS 1.0 may
be included in the SCAP 1.2 specification.

The design of CCSS closely follows the design of CVSS. Like CVSS, CCSS jsisedof
three component metrics: a base metric, a temporal metric, and an environne¢mtalline
base metric covers characteristics such as whether a particulgucatiéin will allow
unauthorized access (active exploit) versus preventing authorized access (p&gloit),
whether the exploitation can be done locally or remotely, whether priorsasaesgjuired, and
what the impact is on CIA (Confidentiality, Integrity, and Availability). Teeporal metric
considers such concerns as whether there are known exploits taking advantaggi@ilarp
configuration and whether measures other than changing the specific cdrdigara available
to mitigate exploits. The environmental metric reflects issues such #isevtige given
configuration is common within an enterprise, what the value of a vulnerableitaigan
attacker, whether mitigations are in place, and what the CIA impact is on gorieatéAs with
CVSS, only the base metric is required to produce a score and final scoresaan@ed 10. A
vector allows viewers to see the choices that went into the creation of a score

2243 CMSS

Sponsor Developer

NIST NIST http://csrc.nist.gov/publications/drafts/nistir-
7517/Draft-NISTIR-7517.pdf

The Common Misuse Scoring System (CMSS) is a metric to rank softwaresfeasuse
vulnerabilities. According to the CMSS specification, "a software featigase vulnerability is
present when the trust assumptions made when designing software featureaslgeten a
way that violates security." A misuse vulnerability differs from a normilerability (such as
one that might warrant a CVE) in that the latter is caused by an erroplem@ntation that
allows unintended actions. A misuse vulnerability reflects violations of sgouaide possible
by software features that were intentionally included to provide some toteniéfe user. The
first draft of CMSS was published in early 2009, and the IR is still in Draft.form

CMSS follows the designs of CCSS and CVSS. There are three component mettjog,eal r
base metric and optional temporal and environmental metrics that combined produee a scor
between 0 and 10. The characteristics considered in the CMSS temporal and envitonmenta
metrics are identical to those of CCSS and its base metric. It differgnahigt it does not
consider active versus passive exploits and instead attempts to provide a vattiagefie
complexity of exploiting the misuse vulnerability.

The CMSS specification notes that the concept of "software feature naidnseability” is not

as simple as those of a software flaw or a configuration error, as sgotad3%s or CCSS,
respectively. To address this confusion, the authors of CMSS have proposed the creation of a
dictionary of such vulnerabilities. While the nature of this dictionary is not sipaliein detail,

this could imply the need to create and maintain a new enumeration.

2-13

2.2.5 Software Assurance-Related Standards
2.25.1 CAPEC

Sponsor Developer

DHS/NSA MITRE http://capec.mitre.org/

The Common Attack Pattern Enumeration and Classification (CAPEC) is a digtiona
identifying and describing attack patterns and their characterifhiesdea of discussing

patterns of attack was originally publicly introduced by Gary McGraw and Buglund in the
book "Exploiting Software" in 2004, and has been refined and expanded into today's CAPEC
initiative and content which was originally published in 2007. Attack patterns are mvaysch
attacks on software occur. Buffer overflows, session hijacking, various forms sfsit®s
scripting, and control injection are just some examples of attack patterdglitiorato an ID

and a short description, CAPEC entries can contain such information as the (aftejpsabf a
typical exploit; the typical severity and likelihood of exploit; indicatamsl mitigations; related
weaknesses, vulnerabilities, and other CAPECSs; and related security and dasigtepr

In 2011 CAPEC made several significant expansions and revisions. CAPEC now contains 15
attack pattern categories, including four added this year: Network Ressance, Physical
Security Attacks, Social Engineering Attacks, and Supply Chain Attatlkese additions
expanded CAPEC from solely addressing attacks against software ks aifyamst systems.
CAPEC is currently at version 1.6 and contains 460 identified patterns. AdditionraEC
established and then made significant revisions to an Observables sub-schemia ndv

being pulled out as a separate schema called the Cyber ObservablesieXpt34sDX).

CybOX will be shared and utilized by CAPEC, MAEC, and CEE.

2252 CWE

Sponsor Developer

DHS MITRE http://cwe.mitre.org/

The Common Weakness Enumeration (CWE) is an encyclopedia identifying and dgscribi
weaknesses in software architecture, design, implementation, and deploymeriraC¥gkis
history back to MITRE's 2005 Preliminary List Of Vulnerability ExamptasResearchers
(PLOVER), a collection of 1500 illustrative CVE entries divided up into 290 types. CVEE, fir
released in 2006, focused on the underlying weaknesses themselves and expandedratetiela
on this type list.

The current version of CWE, released in September 2011, is CWE 2.1 which represents a
significant milestone since the original release of CWE 1.0 in September 2008 ti$:n, over

150 new entries have been added. Major changes were also made to 93% of the 73dagntries t
were in CWE 1.0. More than half of the CWE 1.0 entries had their descriptions or réligisons
change; more than 30% had changes in their names or demonstrative code exampéesaskhe

of CWE 2.0 coincided with the releases of the 2011 CWE/SANS Top 25, CWSS, and CWRAF,
all of which also drove improvements to CWE itself.

CWE now includes 886 identified weaknesses and weakness categories. CVeEgsdaim a
variety of hierarchies with more general weaknesses serving as parentsdampecific
weaknesses. Entries contain information such as a text description of the weakpasa)av

2-14

how the weakness is usually introduced, common consequences, code examplegngjtigati
known examples in CVEs, and cross references to other CWEs and CAPECs. The CWE web si
presents multiple hierarchies or views of this data to aid researchers arapdesel

CWE is seeing good penetration with code analysis tools and is generaitjebga the most
comprehensive public list of software weaknesses available. Since 2009, thee@WHhkas been
working with SANS to publish the Top 25 Most Dangerous Software Ermhich is a list of
25 of the most serious software weaknesses. Recently, the third annual lisehesira great
deal of national media attention and has proven to be a valuable tool for both educating
developers and raising awareness of secure programming practicesiés eommunity.

2253 CWRAF

Sponsor Developer

DHS MITRE http://cwe.mitre.org/cwraf/

The Common Weakness Risk Analysis Framework (CWRAF) provides a means farsoftw
developers and consumers to prioritize software weaknesses that aaatrietheir business,
mission, and deployed technologies. In certain circumstances, a software sgezdméead to an
exploitable vulnerability.

By providing a repeatable way to apply the Common Weakness Scoring System)(loVdSS
specific type of application for a specific type of business, CWRAF enablespeaphson and
communicate about the relative importance of different weaknesses withontie&toof their
business.

Users can automatically generate a more targeted specificatibamN" lists of weaknesses
that are the most critical for the software that is used in the relevant lsudoreains, missions,
and technology groups. In conjunction with other activities, CWRAF ultimatepsluevelopers
and consumers to introduce more secure software into their operational environments.

CWRAF includes a mechanism for measuring risk of weaknesses in a waydbaelyg linked
with the risk to the business or mission supports the automatic selection and gtikni tix
relevant weaknesses.

Customized to the specific needs of the business or mission in conjunction with th@comm
Weakness Scoring System it can be used by consumers to identify the most important
weaknesses for their business domains. CWRAF provides a methodology for applyisgt€ WS
rank classes of weaknesses independently of any particular softwaag@acokorder to

prioritize them relative to each other (e.g. "buffer overflows are highenrtgrthan memory
leaks"). This approach, sometimes referred to as a "Top-N list," is uskbd BYNE/SANS Top

25 Most Dangerous Software Errors effort. In practice, CWRAF will allowsiutsecreate their
own custom Top-N lists and CWSS will allow their tools to be driven by that saroé set
priorities.

? http://www.sans.org/top25-software-errors/

2-15

2254 CWSS

Sponsor Developer

http://cwe.mitre.org/cwss/index.html

The Common Weakness Scoring System (CWSS) provides a mechanism for ssfosiages
weaknesses and is currently at version 0.8. Modeled after CVSS, this standard provides
method for calculating the score for individual CWEs.

It has been observed that different scanning tools assign different secerig to software
design weaknesses, some assigning one priority while others assign ¢hitagaemother value.
In a recent experiment, running a set of such tools against a large open-sourceliscmgeeted
over ten-thousand findings, many that were un-exploitable false-positives. t Thakear that
researchers need to apply some sort of culling decision to pare the list of fidowgs$o a
manageable size. A CWSS metric addresses the inconsistencies beevamretity scores that
existing tools assign to their findings.

The advantages of CWSS are:

« It provides a common framework for prioritizing security errors ("weaksEst®t are
discovered in software applications;

- It provides a quantitative measurement of the unfixed weaknesses thatsard piehin
a software application;

- It can be used by developers to prioritize unfixed weaknesses within their owargoftw

+ In conjunction with the Common Weakness Risk Analysis Framework (CWRAF} it ca
be used by consumers to identify the most important weaknesses for their business
domains, in order to inform their acquisition and protection activities as one paet of t
larger process of achieving software assurance.

2255 MAEC

Sponsor Developer

DHS MITRE http://maec.mitre.org/

Malware Attribute Enumeration and Classification (MAEC, pronounced "miket)anguage
for characterizing malware based on its attributes, most notably in teattaak patterns, low-
level observables, and behaviors. MAEC is still in the early stages of developntiengnsion
1.1 of the XML schema released in January 2011. The current focus is on the completion of
version 2.0 of the schema, which incorporates several major revisions over the prexsouss,
most notably in terms of incorporating the objects defined in CybOX. Unlike the Gomm
Malware Enumeration (CME), an earlier MITRE effort that is no longer undetapewaent,
MAEC does not attempt to provide an ID for specific instances of malware batdrssteks to
provide a common language with which to describe the characteristics of malle matches
the broader shift among anti-malware vendors of moving away from enumeramnatyse-
based detection mechanisms and towards more heuristic-based detections.

2-16

MAEC currently consists of an XML schema which defines the language, itslgad
constructs. The current version of the schema, version 1.1, is focused primarilynamgdét
actions performed by malware at the system level. Such actions can bdgpfinstrumenting
a system to observe the state changes effected by malware, sometltiai¢ytgipne through
dynamic analysis tools. Examples of such actions include changes to thetéite sysegistry,
process modification, and the establishment of network connections. The MAEC stéeema a
defines constructs called behaviors, which serve to group collections of ttiese hased on
their higher order functionality. For example, an email address harveshiagitwecan consist of
several low-level file searches and read operations that target spgusfscof files.

The MAEC effort is intended to solve the issues of non-standardized malwarengporti
duplication of malware analysis efforts, delayed malware detection, iodarad signature
sharing, and others that stem from the lack of a standard for communicatingidetaile
unambiguous information about malware. MAEC currently links to other standards incorder t
better characterize elements relevant to malware, including CPE fossixgréhe platforms
targeted by malware and CVE for specifying any vulnerabilitiesogepl by malware. In
addition, a script was developed to take MAEC XML instances, extract relevacisatgdined
as created by the malware (e.qg. files, registry keys) and convert tree@\AL XML,
permitting malware detection based on these objects. The next version of MAEGpeItt and
utilize the object types defined in CybOX, establishing compatibility betwbservables
expressed through CEE and CAPEC.

2.25.6 CybOX

Sponsor Developer

DHS MITRE Website expected to go live late 2011
http://capec.mitre.org/data/xsd/observables_v0.4\xsd

The Cyber Observable eXpression (CybOX) is a language schema fdyisgecapturing and
communicating information on Cyber Observables in a consistent, structured dndemac
consumable manner. The Cyber Observables construct is intended to capture ateticearac
events or stateful properties that are observable in the operational domain. T eadc
initial schema were developed as part of the CAPEC effort in order to annotatie sbaments
of an attack pattern’s detailed attack execution flow in order to descrilighahalement of the
attack might look like in the real world. The initial schema was published asfga®PEC v1.4
and a significantly updated and enhanced version was included as part of CAPEC v1.6. Shortly
after the publication of the initial schema, it was discovered that a need foorthept and
construct was not unique to CAPEC but was also relevant to MAEC (for chariagienialware
actions), CEE (for modeling events) and other operational information staradienifforts. It
is currently fully integrated into CAPEC, patrtially integrated into MAE@ & in the process of
being integrated into CEE. Beyond these efforts, it is a key element in the woakpfother
parties, including US-CERT, NIST’s EMAP effort, and several independerarobsprojects.
CybOX has been the topic of presentations at a great many conferencésaagheesubject of
a recent article in the September/October 2010 {ssfu@rosstalk magazine.

4 http://www.crosstalkonline.org/storage/issue-arebi2010/201009/201009-Barnum.pdf

2-17

CybOX will provide an open specification to capture observable events oukgatgderties to
be parsed, filtered, and correlated among other standards. The dedicateel foelsibOX is
scheduled to go live late in 2011 and will be integrated into the overall set of Makingysecur
Measurable sites.

2.25.7 SAFES

Sponsor Developer

NSA MITRE Website expected to go live in late 2011

The Software Assurance Findings Expression Schema (SAFES) is a setilema that will
provide the ability to report, integrate and analyze findings in a consisterdrfaghis
establishes more structured tool results that are more useful to users, eaghdéiant of results
from multiple tools/services and enable automated processing of tool/sesttts.r

This is a collaborative community effort with MITRE providing primary tecahieadership but
with the involvement and contributions of interested software assurance tool and gendors
and other members of the software assurance community.

The primary artifact for this effort is an XML-based schema that not onljiges a common
communication mechanism for findings but does so in a structured fashion that ereddies gr
flexibility in its application and its future growth and enhancement. No such ebemmive
common schema exists or is openly under development anywhere today; all tool vendors and
assessment practitioners utilize their own unique, proprietary schemas. gternsthema will
also aid in development of automated processing of tool findings.

SAFES is currently in early development. Once it reaches an adequate leaehbility and
stability, SAFES is planned to be transitioned to the Object Management Group @3MG
formal standard development effort in their Cyber Ecosystem portfolio.

Initial and current sponsorship for SAFES comes from the NSA Center foredisSoftware
(CAS). Additional sponsorship is expected soon from DHS. A dedicated website for SAFES
scheduled to go live in late 2011 and will be integrated into the overall set of Makingysecuri
Measurable sites.

® http://measurablesecurity.mitre.org/

2-18

2.2.6 Reporting-Related Standards
2.2.6.1 Enterprise Reporting

Sponsor Developer

NSA MITRE/NSA -

Enterprise Asset Reporting is implemented through several closslydstandards: Asset
Reporting Format (ARF), Asset Identification (Al), and Assessment SuyriReporting (ASR).
In addition, there is also an emerging Report Tasking Language whiamaldle the definition
of task requests. Tasking, which does not yet have a formal name, is still early inr@gmm
development. More details, including the scope and purpose, will be available as the
specification becomes more clearly defined. The Policy Language fesgxasnt Results
Reporting (PLARR) is a legacy control language whose functionalityoeiteplaced by these
other standards.

These standards and related specifications are described below.

22.6.1.1 ARF

Sponsor Developer

NSA MITRE/NSA http://scap.nist.gov/specifications/arf/

Asset Reporting Format a data model for expressing the transport format of information about
assets and the relationships between assets and reports. Previously known &ssinecAss
Results Format, this standardized data model and language facilitategdtiang, correlating,

and fusing of asset information throughout and between organizations.

ARF is vendor- and technology-neutral, flexible, and is suited for a wide vafietporting
applications. The intent of ARF is to provide a uniform foundation for the expression of
reporting results, fostering more widespread application of sound IT maeageractices. ARF
can be used for any type of asset (e.g., buildings, sites, and resources),Ihagssts.

22.6.1.2 Al

Sponsor Developer

NSA MITRE/NSA http://scap.nist.gov/specifications/ai/

Asset Identification defines the constructs and methods for representthidassification
information and thus can be leveraged by any other specification where igendigets is
required or beneficial. The scope of Asset Identification is limited to@igaen of how asset
management tools can represent asset identification information when contingrida other
tools. It is out of scope of Asset Identification to recommend which identifiergtorus
require that identification information be collected in a certain way or froertain place.
Higher-level specifications, tools, and organizations that implement Alesgtfication,
however, are encouraged to make these recommendations or specify theseegtsiiin order
to support the particular needs of their use cases.

2-19

2.2.6.1.3 ASR

Sponsor Developer

NSA MITRE/NSA -

Asset Summary Reporting is intended to define how to represent summary daita. used to
represent aggregate information. It may be used by entities who wish to teelvcdume of
reporting data by providing a layer of abstraction. The work is in a prelimiraagy of
community development. More details will be available as the specificatiomiesdetter
defined.

2.2.6.1.4 Legacy Reporting Specifications

This section describes three standards efforts closely related to thermtrgrise Reporting
efforts. None of these three efforts are under active development today, but leeg@se
sometimes referenced in discussion, and because their names have a potertftigitygcon
overlap with efforts listed above, they are covered here.

ARF 0.41

The Assessment Results Format (ARF) is a language to provide a gedestaimbard format
for assessment results, such as might be created by running a benchmark oahiltylisean.
While XCCDF and OVAL both have their own result reporting formats, ARF improves and
generalizes these formats. ARF also supports the creation of summéts; cesubining
component results from multiple assessments. ARF follows from and replatBE N
Common Results Format (CRF) effort. The initial specification of ARF wasgheldl in 2009
and is in active use within the Department of Defense (DoD).

(Ref: http://measurablesecurity.mitre.org/incubator/arf/)

ASR 041

Assessment Summary Results (ASR) is an open specification that providegaedt language
for exchanging summarized assessment results data between assexsg)ergset databases,
and other products that manage asset information. It is intended to be used byttooletiia
detailed configuration data about IT assets and is in active use within the DoD.

(Ref: http://measurablesecurity.mitre.org/incubator/astr/)

PLARR

The Policy Language for Assessment Results Reporting (PLARR, prondimitad) is a
control language for ARF 0.41. It is used to query scanning tools, supply parametean$or s
and to dictate the format of responses. PLARR is explicitly tied to the DoB&sasent
Reporting format and is a legacy language. Although it is presently in uke ByD, it is not
being actively developed further in the SCAP context.

(Ref: http://measurablesecurity.mitre.org/incubator/plarr/)

2-20

22.6.2 CVRF

Sponsor Developer

ICASI http://www.icasi.org/cvrf

The Common Vulnerability Reporting Framework (CVRF) 1.0 is an XML basediéaygg
designed to provide a documentation standard for security related information.

Recently there has been significant progress in information systemahilitgrcategorization
and severity ranking. However there is a gap in that documentation of these vuliegabili
occurs in an ad-hoc, vender specific and non-standard format.

Existing security documentation contains similar information (e.g., datks fieVerview-type
fields, impact, and remediation fields) but there is no common format or nomeadansistent
across the various reports. The proposed solution, the Common Vulnerability Reporting
Framework (CVRF) is an XML-based framework that predefines a large muhfelds
designed with extensibility and robustness in mind. The CVRF project has be¢edrbyahe
Industry Consortium for the Advancement of Security on the Internet (ICASI), aveedival
industry-wide think tank.

The ICASI CVRF working group has assembled experts to establish a corthsgacould
expand existing security documentation formats and subsequently integratefldresd
solution into a common XML-based framework. An initial white paper was publishedyin Ma
2011.

2.2.7 Related International Standards

2.2.7.1 |0ODEF

Sponsor Developer

IETF IETF http://xml.coverpages.org/iodef.html

http://lwww.ietf.org/rfc/rfc5070.txt

The Incident Object Description Exchange Format (IODEF) is a proposeddnEargineering
Task Force (IETF) standard. It defines a defines a data representatiprotha@es a framework

for sharing information commonly exchanged by Computer Security IncicesmidRse Teams
(CSIRTs) or Computer Emergency Readiness Teams (CERTS) about computgr secur
incidents. IODEF is focused on human-to-human communication involving incident response.
IODEF has the ability to reference other standards (CEE, for exampledyvtdginformation
related to an incident.

IODEF is currently used by many CERTS for sharing incident informatioludimg the DHS
NCSD (National Cyber Security Division) US-CERT. IODEF effortgehaow given way to a
new IETF effort called Managed Incident Lightweight Exchange @
https://www.ietf.org/mailman/listinfo/mile), which is being followed imembers of the MITRE
standards team.

2-21

2.2.7.2 CYBEX
Sponsor Developer URL

ITU-T ITU-T http://ccr.sigcomm.org/online/files/p59-
3v40n5i-takahashi3A.pdf

http://www.itu.int/itu-
t/workprog/wp_item.aspx?isn=7305

The Cybersecurity Information Exchange (CYBEX) is a pre-published Iitik@nah
Telecommunications Union (ITU-T) standard (X.1500). It was a proposed standdifdU¢a
recommendation) that was accepted in April 2011, and the final specificatiomeistiyubeing
published. CYBEX is intended to describe ways in which cybersecurity entinesxchange
assured cybersecurity information. The parties exchanging such infonmali often be CERTSs
and private companies developing software or network-based systems.

CYBEX references and advocates the use of many of the standards mentioneplapehis
including CVE, CPE, CCE, CAPEC, CWE, MAEC, CEE, OVAL, ARF, CWSS, CVSS,
XCCDF, and IODEF. These standards are only references from CYBEXficatidn of each is
still through the core standard itself. DHS is involved in writing the CYBEX fpation. Due
to CYBEX’s referencing each of the SCAP standards, USGCB (Uniteds &ateernment
Configuration Baseline) compliance becomes a use case for CYBEX.

IODEF and CYBEX could be used to move cybersecurity information around as ng¢essar
support incident management amongst the organizations involved in its various aspects and
stages.

3 Validation and Adoption Programs

In the early 2000s as CVE and OVAL were gaining community acceptance, somengener
agencies began putting language in acquisition documents that required the support of these
standards. This necessitated the development of formal method of measuring aamylian
these standards. To meet this need, MITRE began compatibility programs foMioadn@

OVAL. MITRE was able to support this activity at a relatively low levduoding for several
years, and discovered that it promoted the adoption of the standards. MITRE’s Compatibilit
Program provided users and vendors with certainty that a product that succeasaky p
compatibility testing would be interoperable with other products that had passexperability
testing.

When NIST developed SCAP, they discussed standards functional testing wREMId the

two organizations agreed that MITRE’s Compatibility Program would bewutistied for

OVAL and NIST would begin a Validation Program to replace it, although MITR&Edv

continue to oversee compatibility with CVE. In the NIST SCAP Validation Progitaertesting

is conducted by independent labs which have been accredited by the NIST Natiomnghiyol
Laboratory Accreditation Program (NVLAP). NIST has documented theeggsirements in

NIST IR 7511 ,Security Content Automation Protocol (SCAP) Version 1.0 Validation Program

Test Requirements. This document is undergoing its second revision, which was made available
for public comment in January 2011 and lays out the testing requirements for each of lhe SCA

3-22

standards. Furthermore, requirements for independent laboratories to condicY&l@iation
are defined in NIST Handbook 150, and NIST Handbook 150-17.

Complete details on The SCAP Validation Program can be found on the NIST SCAP site:
http://scap.nist.gov/validation/.

4 Conclusions

This document has provided a brief overview of the security automation space. Ingraneul
have included an overview of each of the components that make up this space, both in terms of
individual standards as well as the forces that guide the standards.

In over 10 years security automation has grown from a single standard with a handful of
participants, to a large community and that is growing every year. The ratweerof the
standards have been incorporated into hundreds of tools and CVE has become virtually
ubiquitous in its subject area. Given the ever-increasing community of adopfgesnenters,
and contributors, it is clear that the overall security automation effort leashighly successful
thus far, and its capabilities and interest in those capabilities continue to grow.

4-23

Appendix A Acronym Glossary

Al Artificial Intelligence

ARF Asset Reporting Format OR Assessment Results Format
ASR Asset Summary Reporting OR Assessment Summary Results
CAPEC Common Attack Pattern Enumeration and Classification
CCE Common Configuration Enumeration

CCl Common Configuration ldentifier

CCSS Common Configuration Scoring System

CEE Common Event Expression

CDET Common Dictionary and Event Expression Taxonomy
CELR Common Log Recommendations

CERE Common Event Rule Enumeration

CERT Computer Emergency Readiness Team

CESS Common Event Scoring System

CIA Confidentiality, Integrity, and Availability

CIRT Computer Incident Response Team

CLS Common Log Syntax

CLT Common Log Transport

CME Common Malware Enumeration

CMSS Common Misuse Scoring System

CPE Common Platform Enumeration

CRE Common Remediation Enumeration

CRE-DEF CRE Data Exchange Format

CSIRT Computer Security Incident Response Team

CVE Common Vulnerabilities and Exposures

CVRF Common Vulnerability Reporting Framework

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

CWRAF Common Weakness Risk Analysis Framework

CWSS Common Weakness Scoring System

CybOX Cyber Observable eXpression

A-1

CYBEX
DHS
DISA
DoD
EMAP
ERI
ERI-DEF
FIRST
GPO
ICASI
ICAT
|ODEF
ISS
MAEC
NIAC
NIST
NIST IR
NIST NVLAP
NSA
NSA CAS
NVD
OCIL
OEEL
OMG
OVAL
OVALDI
PLARR
RPM
RPS
RTL
SAFES

Cybersecurity Information Exchange

Department of Homeland Security

Defense Information Systems Agency
Department of Defense

Event Management Automation Protocol
Extended Remediation Language

ERI Data Exchange Format

Forum of Incident Response and Security Teams

Group Policy Object

Industry Consortium for the Advancement of Security on the Internet

ICAT (not an acronym)

Incident Object Description Exchange Format
Internet Security Systems

Malware Attribute Enumeration and Classification
National Infrastructure Advisory Council

National Institute of Standards and Technology
NIST Interagency Report

NIST National Voluntary Laboratory Accreditation Program
National Security Agency

NSA Center for Assured Software

National Vulnerability Database

Open Checkilist Interactive Language

Open Event Expression Language

Object Management Group

Open Vulnerability and Assessment Language
OVAL Definition Interpreter

Policy Language for Assessment Results Reporting
RPM Package Manader

Remediation Policy Specification

Remediation Tasking Language

Software Assurance Findings Expression Schema

® RPM is a recursive acronym. It once stood for “Ried Package Manager”.

A-2

SANS
SCAP
SIG

SQL
SWID
URI

URL
US-CERT
USGCB
XCCDF
XML

SysAdmin, Audit, Networking, and Security

Security Content Automation Protocol

Special Interest Group

Structured Query Language

Software Identification

Uniform Resource Identifier

Uniform Resource Locator

United States Computer Emergency Readiness Team
United States Government Configuration Baseline
eXtensible Configuration Checklist Description Format

eXtensible Markup Language

A-3

	Introduction
	Scope

	The Security Automation Standards
	The SCAP Standard
	CVE
	OVAL
	The OVAL Repository

	XCCDF
	CCE
	CPE
	CVSS
	OCIL

	Emerging and Related Standards
	EMAP
	CEE

	NVD
	Remediation
	Configuration-Related Standards
	CCI
	CCSS
	CMSS

	Software Assurance-Related Standards
	CAPEC
	CWE
	CWRAF
	CWSS
	MAEC
	CybOX
	SAFES

	Reporting-Related Standards
	Enterprise Reporting
	ARF
	AI
	ASR
	Legacy Reporting Specifications

	CVRF

	Related International Standards
	IODEF
	CYBEX

	Validation and Adoption Programs
	Conclusions
	Acronym Glossary

