

The State of Security Automation
Standards - 2011

A Survey

Gerard T. McGuire
Emily E. Reid

August, 2011

MP 1 1 04 3 9

MIT R E P R O D U C T

ii

This page intentionally left blank.

The State of Security Automation
Standards - 2011

A Survey

Gerard T. McGuire
Emily E. Reid

August, 2011

MP 1 1 04 3 9

MIT R E P R O D U C T

Dept. No.: G026

The views, opinions and/or findings
contained in this report are those of The
MITRE Corporation and should not be
construed as an official government position,
policy, or decision, unless designated by
other documentation.

Approved for public release: 11-3822
Distribution unlimited

©2011 The MITRE Corporation.
All Rights Reserved.

iv

Abstract

Security automation standards sponsored by the U.S. Government have evolved significantly in
the decade since MITRE created and released the Common Vulnerabilities and Exposures (CVE)
dictionary. There are now more than two dozen individual standards in use or under development
supporting a wide range of security information and functionality. These standards are supported
by a variety of sponsors and governance models as well as an ever-growing community of
developers, implementers, and users.

Reflective of a growing community, the attendance at NIST's Security Automation Conference
has continued to grow over the past several years. The more mature of the standards have been
incorporated into hundreds of tools and CVE has become virtually ubiquitous in its subject area.
Given the ever-increasing community of adopters, implementers, and contributors, it is clear that
the overall security automation effort has been highly successful thus far, and its capabilities and
interest in those capabilities continue to grow.

This paper seeks to provide an overview of all the components in security automation as of
August 2011.

v

Acknowledgements

The authors would like to thank the following people for providing information that is
encapsulated in this document: Jon Baker, Sean Barnum, Drew Buttner, Brant Cheikes, Steven
Christey, Mark Davidson, Tom Graves, Dan Haynes, Bill Heinbockel, Ivan Kirillov, Robert A.
Martin, Dave Mann, Joe Sain, Charles Schmidt, Larry Shields, Matthew Wojcik, and John
Wunder.

Finally, the authors acknowledge our government sponsors and the many dedicated individuals
at National Security Agency (NSA), National Institute of Standards and Technology (NIST),
Defense Information Systems Agency (DISA), Department of Homeland Security (DHS), and
throughout the security automation community whose efforts have created and maintained this
field for the benefit of many. In particular special thanks to Adam Halbardier and David
Waltermire for their help in providing information for this report.

vi

Table of Contents

1 Introduction ... 1-1

1.1 Scope ... 1-1

2 The Security Automation Standards ... 2-2

2.1 The SCAP Standard ... 2-2

2.1.1 CVE ... 2-3

2.1.2 OVAL .. 2-3

2.1.2.1 The OVAL Repository ... 2-4

2.1.3 XCCDF .. 2-5

2.1.4 CCE ... 2-5

2.1.5 CPE .. 2-6

2.1.6 CVSS ... 2-7

2.1.7 OCIL .. 2-8

2.2 Emerging and Related Standards .. 2-8

2.2.1 EMAP .. 2-9

2.2.1.1 CEE ... 2-9

2.2.2 NVD .. 2-10

2.2.3 Remediation ... 2-11

2.2.4 Configuration-Related Standards .. 2-12

2.2.4.1 CCI.. 2-12

2.2.4.2 CCSS .. 2-12

2.2.4.3 CMSS.. 2-13

2.2.5 Software Assurance-Related Standards ... 2-14

2.2.5.1 CAPEC ... 2-14

2.2.5.2 CWE ... 2-14

2.2.5.3 CWRAF .. 2-15

2.2.5.4 CWSS ... 2-16

2.2.5.5 MAEC ... 2-16

2.2.5.6 CYBOX .. 2-17

2.2.5.7 SAFES .. 2-18

2.2.6 Reporting-Related Standards ... 2-19

2.2.6.1 Enterprise Reporting ... 2-19

2.2.6.2 CVRF .. 2-21

2.2.7 Related International Standards ... 2-21

vii

2.2.7.1 IODEF .. 2-21

2.2.7.2 CYBEX ... 2-22

3 Validation and Adoption Programs .. 3-22

4 Conclusions .. 4-23

Appendix A Acronym Glossary .. A-1

viii

 This page intentionally left blank

1-1

1 Introduction
This paper provides an overview of the status of security automation standards, use, and
community as of August 2011. While it does not cover any particular topic in great depth, it
seeks to touch on all significant aspects with sufficient detail to give the reader a general
overview of the status of security automation standards. Readers should be able to develop an
idea of the coverage of this space, and also find pointers to more detailed information when
available.

1.1 Scope

This paper summarizes the status of security automation standards. Specifically, it considers
topical standards which have some level of U.S. government involvement or are related to
recognized international standards bodies. To be considered, these standards should be under
active development, are currently or are intended to be publicly known, and seek to fill a space in
the broader sphere of efforts related to standardization of security information and exchange.

This scoping choice excludes several efforts that are interesting and significant, but fail one or
more of the above criteria. For example, the Common Malware Enumeration (CME), a CVE-like
enumeration of malware, was developed under contract from US-CERT, but is no longer under
active development. As such, this effort is not discussed in this document. Additionally, there
may be other standards efforts that fit our broad scope but have missed inclusion in this edition
of the document.

2-2

2 The Security Automation Standards
This section details all security automation standards within the scope of this document. The
standards range in maturity from highly mature and stable to conceptual. However, all standards
listed here are being actively developed and supported at some level. For each standard we
identify the current sponsor, developer, and a URL that serves as the public face of the effort (if
any). In addition to the above information, this section provides overviews of each standard.

2.1 The SCAP Standard

Sponsor Developer URL

NIST NIST http://scap.nist.gov/

The Security Content Automation Protocol (SCAP, pronounced "ess-cap") is a broad program
implemented by leveraging a suite of individual standards intended to support the standardization
of security measurement and expression to promote interoperability of security products. While
the SCAP content leverages seven standards (CVE, CCE, CPE, XCCDF, OVAL, OCIL and
CVSS), it is both more and less than the sum of its parts: More because it includes specific
guidance for how the individual standards should be used in combined operation; less because it
explicitly does not encompass all the features of individual components.

Most of the standards that define the SCAP content predate SCAP itself, which was first
introduced (version 1.0) in 2006. There were preceding efforts coordinating between standards
for as long as there has been more than one standard, but these efforts were usually limited to
single pairs of standards. SCAP provided a valuable service by creating a single repository for
housing content based on the standard interoperation of the base standards and is under a central
authority.

The first major revision of SCAP was released in February of 2011. SCAP 1.1 primarily
extends SCAP 1.0 by including OCIL 2.0 as a requisite standard and updating the OVAL
standard to version 5.8 (previously it was version 5.4).

SCAP continues to evolve. Work has commenced on SCAP 1.2, which was released in its first
draft form for public comment in July 2011 and closed in August 2011. Some significant
additions proposed for SCAP 1.2 include electronic signatures of source and result data streams,
the adoption of CPE 2.3, and the addition of the Common Configuration Scoring system (CCSS).

SCAP is primarily concerned with describing interactions and establishing metrics to validate
compliance with content written against sets of the component standards. The first version of the
validation program requirements (NIST IR 7511) was produced in 2009. The second version of
the validation program requirements is (NIST IR 7511 R 2) was published in February 2011.

The rest of this section looks at the individual standards that make up the foundational standards
used within SCAP. Each standard is discussed without reference to any limits which SCAP itself
might place on its usage in creating SCAP content.

2-3

2.1.1 CVE

Sponsor Developer URL

DHS MITRE http://cve.mitre.org/

The Common Vulnerabilities and Exposures list (CVE) is an enumeration of unique identifiers
for publicly known security vulnerabilities. CVE was created under internal research and
development funds by MITRE and first published in 1999, making it the oldest of all the
standards discussed in this document. The inspiration for this effort came from two internal
MITRE tasks: a comparison of vulnerability scanning tools, and an attempt to map information
security advisories to specific software vulnerabilities. Both of these efforts were stymied by the
inconsistent naming of software vulnerabilities among vendors and researchers. The leaders of
the two MITRE tasks realized the need for a common, vendor/researcher-neutral way to refer to
individual vulnerabilities. From this initial observation, MITRE created CVE to provide a
common name for vulnerabilities to support inter-product comparison and compatibility.

CVE has been a huge success and is actively sponsored by the U.S. Government. There are
currently more than 46,000 CVE IDs and over 280 products from over 160 organizations that are
either officially CVE Compatible or that have made declarations of compatibility. CVEs are now
included in the initial bug reports of almost all major vendors (over 70 organization participating
in total) as well as many other vulnerability announcement portals (e.g., ISS, Secunia, US-
CERT, etc.) Many would argue that the current breadth of security automation standards owes its
existence to the success of the initial CVE program.

2.1.2 OVAL

Sponsor Developer URL

DHS MITRE http://oval.mitre.org/

The Open Vulnerability and Assessment Language (OVAL) is a language for making logical
assertions about the state of an endpoint system. OVAL was developed by MITRE and first
released in October of 2002. The motivation for this effort was the observation that, even though
vulnerability assessment tools could use CVE IDs to provide a mutually compatible count of
vulnerabilities, tools would often disagree as to whether a particular vulnerability was present
because they would use different system state artifacts as indicators. OVAL was developed as a
way to define a canonical description of the state associated with the presence of a vulnerability.
In its original version, OVAL definitions were written in an SQL-like language, but an XML
version of the language was quickly added, and in 2004 the SQL version was deprecated.

The OVAL Language consists of several parts:

• Definitions Schema, which is used to identify acceptable system states and characteristics

• System Characteristics Schema, which is used to record the discovered system state

• Results Schema, which records pass/fail findings as determined by the tests in a
definition file

Both the OVAL Definitions Schema and OVAL System Characteristics Schema are extended
through additional component schemas which define platform-specific structures that are needed

2-4

to represent checks of specific system entities or related findings, respectively. For example, the
Windows Definition component schema defines the structures used to identify entries in the
Windows registry or Active Directory, while the Linux Definition component schema defines
structures to identify and evaluate RPM (RPM Package Manager) information. Every type of
system artifact that can be located and evaluated by OVAL needs to have appropriate structures
defined in both a Definition and System Characteristics component schema.

In addition to the language itself, the OVAL team also maintains an open-source interpreter (the
OVAL Definition Interpreter, or OVALDI) for the OVAL Language. This interpreter takes
OVAL Definitions as input and evaluates the state of a target system automatically, reporting
back the state that it actually found (in the OVAL System characteristics) and whether the
discovered state matched the requirements dictated in the OVAL definition (in the OVAL
Results). The interpreter is provided as a reference implementation to aid implementers seeking
to create their own OVAL tools. The OVALDI does not support all of the component schemas
although it does offer extensive support for all structures in the core language as well as the
Windows and Linux component schemas. It is primarily intended to serve as an example rather
than a full featured OVAL interpreter.

The current version of OVAL is 5.9. OVAL has continued to evolve through several releases.
The last four releases have added both low level technical features and a number of high level
capabilities. Among the major innovations, OVAL 5.6 added support for a new regular
expression language syntax and the ability to evaluate system artifacts against multiple states.
OVAL 5.8 added extensive support for Linux, Mac OS, Solaris, UNIX, and Windows platforms,
enhanced the OVAL Results directives (allowing for more flexibility in the contents of OVAL
Results), and supported more granular OVAL Item collection.

Still pending final release, OVAL 5.10 adds features to support a malware artifact hunting use
case and support for Windows PowerShell. The latter provides greater power and flexibility to
content authors on Microsoft Windows platforms.

As part of an effort to provide an authoritative source of development information, upcoming
versions of OVAL will be released with an accompanying specification.

2.1.2.1 The OVAL Repository

Sponsor Developer URL

DHS MITRE http://oval.mitre.org/repository/index.html

In addition to the OVAL Language and the OVAL Interpreter, the OVAL team maintains the
OVAL Repository. The repository is a public collection of OVAL content including
vulnerability, patch and inventory OVAL Definitions. It is a place for the community to
develop, share, and discuss a large body of content for use in relevant tools. Repository content
is contributed by the community – the MITRE OVAL team generally only performs syntactic
review and management of the repository.

Currently the OVAL Repository contains nearly 11,000 definitions and has grown at a rate of
approximately 30% annually over the course of the past few years.

2-5

2.1.3 XCCDF

Sponsor Developer URL

NSA/NIST MITRE http://scap.nist.gov/specifications/xccdf/

The eXtensible Configuration Checklist Description Format (XCCDF) was initially developed
by NSA and first published in 2004. XCCDF provides a common language to express, organize,
and manage security guidance. XCCDF also supports references to checking systems (such as
OVAL), allowing an XCCDF interpreter to direct checking tools to perform an automated
assessment of a system. Special tailoring capabilities and pre-generated Profiles allow users to
customize such an assessment based on broad security postures or individualize based on the
needs of their environments. Finally, the XCCDF language can also encapsulate the results of
such assessments.

As noted above, the original XCCDF release candidates were published in 2004 and the first full
version was published as a NIST Interagency Report (NIST IR 7188) in early 2005. Before
September 2011, the most recent revision of XCCDF was version 1.1.4, finalized in early 2008
as NIST IR 7275 r3. Recently, the community has been actively working on changes for the next
version, 1.2, which will include several new features such as the ability to report check results
individually when multiple checks are executed for a single rule. NIST IR 7275 r4, the XCCDF
1.2 Specification, was released in September 2011.

The XCCDF 1.1.4 Reference Implementation Interpreter, a command-line application
demonstrating interpretation of XCCDF Benchmarks, was first released in November 2010. This
tool focuses on the automated benchmark use case of XCCDF. A revised release was made
public in January 2011, and has resulted in many downloads. In April 2011, a draft release of an
interpreter for the new version of XCCDF occurred to demonstrate the functioning of some of
the recently accepted features. In October 2011, an XCCDF 1.2 version of the Interpreter was
released.

2.1.4 CCE

Sponsor Developer URL

NSA MITRE http://cce.mitre.org/

The Common Configuration Enumeration (CCE) is an enumeration of security-relevant
configuration elements for applications and operating systems. In the initial launch of CVE,
which was initially called the Common Vulnerability Enumeration, the need to address
misconfiguration-based vulnerabilities led to renaming CVE to its current use of “Exposure” to
cover the topics now addressed by CCE. First published in 2006, CCE provides a common name
by which configuration elements might be referred, regardless of the ways in which that
configuration action might be implemented. For example, on a Windows machine, a particular
security feature might be enabled either via a registry change or through a Group Policy Object,
but because these both control a single functional feature, they would be associated with a single
CCE. CCEs are divided into “platform groups”. A CCE platform group roughly identifies the
operating system or application to which a CCE entry applies. CCE’s platform groups adhere to
the same level of granularity commonly found in security configuration guidance that are written

2-6

for individual platforms, as well as in the sets of checks and other features found in configuration
audit and management tools. For example, Microsoft Windows XP and Sun Solaris 10 are CCE
platform groups.

In addition to an ID, entries contain a short description, the ways in which the configuration
change might be effected (in the previous example, this would identify the relevant registry key
and GPO (Group Policy Object)), a list of the settings for the given configuration item (e.g.,
enable/disable), and a few sample references where the given configuration is mentioned in
guidance documents. Entries do not contain any recommendation as to a "correct" setting for any
configuration item. This allows CCE entries to be applicable across multiple sets of
recommendations, many of which may have differing requirements.

The number of CCE entries currently stands at 10,300, and the CCE team is working with Cisco
and Mozilla to generate CCEs for their platforms. The current list of platform groups includes
IBM AIX 5.3, HP-UX 11.23, Microsoft IE7 and IE8, Office 2007, Office 2010, RHEL4,
RHEL5, Solaris 8, Solaris 9, Solaris 10, Oracle WebLogic Server 11G, Windows 2000,
Windows XP, Windows 2003, Windows Vista, Windows Server 2008, Windows Server 2008
R2, and Windows 7. The team is also working on augmenting the CCE supporting infrastructure
to increase its ability to respond to requests for additions, updates and corrections.

2.1.5 CPE

Sponsor Developer URL

NSA MITRE http://cpe.mitre.org/

The Common Platform Enumeration (CPE) is a structured naming scheme used to identify
information technology systems, platforms, and packages. CPE is predated by another effort
called XCCDF-P, which was active in 2005 and 2006. CPE was inspired by XCCDF-P, but
pursued the same goal using a completely different approach. First published in 2007, CPE
provides standard product names to ensure that there is a shared understanding as to the software
and hardware that is referenced in security recommendations and reports. CPE Names currently
take the form of a structured URI with colon-separated components, e.g.,

 cpe:/a:microsoft:word:2010:sp1:enterprise:en-us

As illustrated above, CPE names consist of seven components: part (“a” for “application”),
vendor (“microsoft”), product name (“word”), version (“2010”), update (“sp1” for “service pack
1”), edition (“enterprise”), and language (“en-us” for US English). The Official CPE dictionary
is maintained and managed by NIST,1 contains over 32,000 CPE names, and receives hundreds
of new or modified entries each month.

Version 2.2 of the CPE specification was released in March 2009. Development of a
maintenance release—designated version 2.3—began in March 2010 with the formation of the
CPE Core team—including MITRE, NIST, DoD, Cisco, McAfee, and nCircle. Drafts of the
CPE version 2.3 specifications were released by NIST for public comment in April and June
2011. The specification of CPE v2.3 has been broken out into four separate specification
documents: Naming, Matching, Dictionary, and Language (NIST IRs 7695, 7696, 7697, and
7898 respectively). MITRE is the principal author for the Naming and Matching specifications,
while NIST authored the Dictionary and Language specifications.

1 The Official CPE Dictionary can be accessed at http://nvd.nist.gov/cpe.cfm

2-7

Version 2.3 of CPE maintains full backward compatibility with version 2.2, but improves upon it
by being more rigorous, detailed, and precise, and by adding several new features requested by
members of the CPE community. A related ISO “software identification tagging” effort is
standardizing a way to tag software products of all kinds.2 A significant difference between CPE
and software ID tags (SWIDs) is that SWIDs are intended to be installed on the computing
endpoint at installation, and would require the participation of the software vendors to do this.
The CPE team is currently in dialogue with leaders of the SWID effort to explore ways for each
effort to leverage and collaborate with the other.

2.1.6 CVSS

Sponsor Developer URL

--- FIRST http://www.first.org/cvss/

The Common Vulnerability Scoring System (CVSS) is a metric to assign a score to software
vulnerabilities to help users prioritize risk. The CVSS algorithm is split into three sub-
computations: the base metric, the temporal metric, and the environmental metric. The base
metric measures inherent characteristics of the vulnerability itself, such as whether it can be
exploited remotely, how difficult it is to exploit, whether prior access to the target is required,
and its impact on confidentiality, integrity, and availability (CIA). The temporal score reflects
aspects of the attack that change with time, such as whether remediations exist, whether there
have been instances of exploitation, and the general belief in the accuracy of the vulnerability
report. The environmental score attempts to measure characteristics about how the vulnerability
will affect a specific enterprise, considering such things as the potential damage, the level of
exposure of vulnerable systems, and the enterprise's requirements for CIA. The base metric is
required to create a final score, but the other metrics are optional and need only be included if
deemed necessary or informative. The final score, regardless of the sub-metrics chosen, ranges
between 0 (no concern) and 10 (extreme risk). In addition to the final score, the chosen values
for the component characteristics can be presented in a condensed vector. The vector allows a
viewer to understand the choices that resulted in the score.

CVSS is not currently sponsored by US government agencies but is relevant to this document
both because it is one of the six core SCAP standards and because of the strong influence
government agencies played in its creation. CVSS was originally developed as a project of the
National Infrastructure Advisory Council (NIAC) within DHS and with significant contributions
from NIST. The first version of CVSS was published in early 2005. Shortly thereafter,
management of the effort was transitioned to the Forum of Incident Response and Security
Teams (FIRST). FIRST oversaw an extensive review of CVSS resulting in the release of version
2 in 2007. FIRST continues to perform advocacy and provide assistance for users of the
standard.

The second version of CVSS has increased the community support and acceptance of this
standard. Although FIRST’s CVSS Special Interest Group (SIG) currently is discussing some
changes (e.g., reduce the scoring bias towards the physical host and focus on business-critical
applications and data that reside on the host), there is no formal revision scheduled at this time.

2 See http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53670.

2-8

2.1.7 OCIL

Sponsor Developer URL

NSA/NIST MITRE http://scap.nist.gov/specifications/ocil/

The Open Checklist Interactive Language (OCIL) is a language to provide a standard way of
querying a human user. While focused primarily on serving the needs of security benchmarks,
OCIL could easily be applied to broader use cases. It contains structures to encapsulate
questions, present procedures for determining answers to questions, evaluate results, and even
provide a tree of follow-up questions based on a user's response. The history of OCIL can be
traced back to 2005 when the Center for Internet Security (CIS) released a questionnaire
language called the "Question Schema" for public use and development, but was unable to
support further development on its own. At the same time, MITRE had been developing its own
questionnaire language for use in benchmarks but this work had not been published. In 2007,
MITRE combined its own work with CIS’s Question Schema and published the "Interactive
Schema". In 2009 the language was renamed OCIL. The second version of the language has
been adopted by the SCAP community and included in the 2011 release of the SCAP 1.1
specification.

Planned development will extend the use case to embrace an Enterprise model. This will move
the standard’s focus from the current per-machine direct query of a single operator to a policy
based administration tool asking questions which would address a number of machines. This will
significantly reduce the interaction needed to manage large populations of systems.

2.2 Emerging and Related Standards

This section discusses several security automation standards and suites of standards that cover a
variety of use cases and applications, from software assurance to remediation to event
management. Some grouping has been provided among standards that are related or are in the
same application space for the sake of easier reading. These groupings should not be
misinterpreted as a formal umbrella or a strict delineation. For example, EMAP is a formal
umbrella for four event standards, while the many of the software assurance-related standards are
interrelated but do not have a formal hierarchical structure. Additionally, relationships between
standards in different groups exist, as many standards tackle different but related pieces of a
security problem.

2-9

2.2.1 EMAP

Sponsor Developer URL

NIST NIST/G2/MITRE http://scap.nist.gov/emap/

The Event Management Automation Protocol (EMAP) is a high-level umbrella for efforts related
to standardizing the way in which events are recorded and processed. This effort is intended to
be a peer of SCAP, comprising several related security standards. The effort is currently in its
early stages and is still in the process of articulating its scope and objectives. A whitepaper is
expected out late in 2011. NIST is the sponsor of this work with a partnership between G2,
NIST, and MITRE driving development.

While EMAP's focus is on security relevant events, the effort’s authors are seeking to produce a
framework that is flexible enough to handle all forms of events. A list of possible component
standards includes:

• Common Event Rule Enumeration (CERE) – An enumeration of vendor-independent
rules and filters for matching and event processing;

• Common Event Expression (CEE) – A language encapsulating the syntax, taxonomy,
and transport of event logs and descriptions;

• Open Event Expression Language (OEEL) – A language to encapsulate instructions
for translating vendor-specific formats of event information into CEE.

• Common Event Scoring System (CESS) – A metric for ranking event severity.

Of the above standards, only CEE currently exists. In addition to these listed standards, it is
likely that EMAP will make use of existing standards including CybOX, CAPEC, CWE, CVE,
CPE, and CCE.

2.2.1.1 CEE

Sponsor Developer URL

NSA MITRE http://cee.mitre.org/

As noted above, the Common Event Expression (CEE) is the only component in the EMAP suite
that currently exists and CEE is expected to provide a core piece of its functionality. Of note,
early in the history of CVE, serious consideration of covering “events” was done under the
moniker of the Common Intrusion Event List (CIEL) but was not viable at that time. The current
CEE standardizes the way in which all types of computer events are described, logged, and
exchanged. The v.0.6 CEE schema was released in July 2011, excluding the Transport
Requirements and Transport Syslog Mapping, which were released in October 2011.

The CEE effort covers four components: a taxonomy of event types called the Common
Dictionary and Event Expression Taxonomy (CDET), a standardized log syntax called Common
Log Syntax (CLS), a transport format for the exchange of events called Common Log Transport
(CLT), and a set of best practices for logging, called Common Log Recommendations (CELR).
The first three combine to form the CEE "language". The latter item is not a standard, but
provides guidelines that not only would help improve the efficacy of a product's logging
capabilities, but would also help to make that product's log events more compatible with the CEE
language.

2-10

The Common Log Transport (CLT) provide features necessary to support the end-to-end audit
process by extending the event record representation to include the essential confidentiality,
integrity, and availability of audit services. This allows systems to share log information with
each other, a repository, or end user in a standard way. A CLT Protocol must meet a given set of
tiered requirements, which are based on an enterprise’s particular environment. These include
core, basic, and optional (optional because these requirements will not be applicable to all
environments). For example, a CLT Protocol core requirement is to be able to transmit a CLS
Encoded CEE Event. More advanced CLT Protocols may provide things like encryption and full
acknowledgments. The CEE CLT component also defines transport mappings. A CLT mapping
defines a standardized way for CEE Events to be transmitted over a certain CLT Protocol.

A website update in October 2011 included the following published documents:

• CEE Profile Specification

• Log Syntax Specification

• Profile Repository

• Log Transport Requirements

2.2.2 NVD

Sponsor Developer URL

DHS NIST http://nvd.nist.gov/home.cfm

The National Vulnerability Database (NVD) is a resource provided by NIST and funded by US-
CERT at DHS. NVD serves as the web portal for all NIST's SCAP resources, including libraries
of benchmarks, links to the component standards, and support for the validation program. Of
primary relevance to this document, NVD also refers to a database of information keyed off the
complete list of CVE identifiers. Every CVE identifier is annotated with a CVSS score and
vector; a set of references to related solutions, advisories, and tools; a list of CPE entries
denoting the affected software, and a CWE entry indicating the nature of the underlying
weakness. This list is updated daily as new CVEs are created.

NVD is a follow on to NIST's ICAT "metabase", which served a similar purpose. (The term
ICAT was not used as an acronym, although in its initial conception it was intended to be one.)
In 2005, NVD was launched as a replacement. NVD has undergone several revisions in format
and structure and is currently at version 2.2.

2-11

2.2.3 Remediation

Sponsor Developer URL

NSA MITRE None

Currently the standards contained within SCAP focus on capabilities for the detection,
description, scoring, and reporting of flaws, misconfigurations, and attacks. However, to date
there has been little standardization of actions to take in response to these vulnerability
indicators. Standardizing remediation actions has recently become a topic of significant interest.
NIST initiated this effort and in April 2011 published IR-7670: “Proposed Open Specifications
for an Enterprise Remediation Automation Framework”. This overview maps out several
constituent standards:

• Common Remediation Enumeration (CRE) – An enumeration where each entry will
describe one set of actions one could take in order to address a vulnerability,
misconfiguration, or policy violation. Descriptions will be in prose (human-
comprehensible vs. machine-comprehensible) format. Because any given vulnerability,
etc., might be dealt with in multiple ways, there will likely be multiple CREs associated
with any given issue. CRE describes the data that is required to support the technical use
cases identified; it does not prescribe a database format, schema or presentation model.

• CRE Data Exchange Format (CRE-DEF) – An exchange format for CRE entries and
related metadata. This transport format allows the exchange of either the standard CRE
list or organization-specific CREs. The CRE data exchange format is envisioned as a
lightweight, XML-based schema that serves as the standard import, export, and exchange
format for basic remediation information as provided by CRE.

• Extended Remediation Information (ERI) – A dictionary with additional data about
each CRE. Examples of relevant data could include references to CPEs, CVEs, and
CCEs; prerequisites for the remediation action; extended descriptions of the remediation
steps; and follow-up actions for both successful and failed attempts to apply the
remediation. ERI does not prescribe a database format or schema or any other
presentation model. It simply identifies the additional data that may be required to
support the identified technical use cases, beyond the base CRE entries.

• Extended Remediation Data Exchange Format (ERI-DEF) – The Extended
Remediation Information Data Exchange Format is proposed as a means of enabling
efficient interchange of ERI data. The ERI data exchange format is envisioned as an
XML-based schema that extends the CRE schema, allowing ERI documents to refer to
the CRE entries they extend by CRE ID alone, or to contain the full contents of the CRE
entry.

• Remediation Policy Specification (RPS) The Remediation Policy Specification defines
how to associate particular remediations with various classes or types of IT assets. Such a
capability allows organizations to specify allowed, preferred, or required remediations for
specified collections of IT assets. For example, RPS might filter CREs based on platform
type, software inventory, vulnerability presence, configuration states, and functional or
organizational categories.

• Remediation Tasking Language (RTL) – provides a standardized format to direct
compliant tools to enact specific remediations on specific assets. RTL documents

2-12

represent the output of the remediation decision process, and function as a standardized
input format for remediation tools. Similar in concept to PLARR, RTL would be used to
initiate remediations and control where and how those remediations should be performed.

• Remediation Results – A language to encapsulate the results of a remediation attempt.
Remediation Results convey the outcome (e.g., success/failure/error) of attempted
remediation actions as reported by the remediation tool. Remediation Results also enable
roll-up reporting and provide enhanced situational awareness.

This initial list of proposed standards and their contents is preliminary and may change as
either the overall architecture or each standard is further refined.

2.2.4 Configuration-Related Standards

2.2.4.1 CCI

Sponsor Developer URL

DISA DISA http://iase.disa.mil/cci/index.html

The Common Configuration Identifier (CCI) effort seeks to create an enumeration of information
assurance controls and standards. Specifically, it enumerates high-level policy objectives that are
atomic, actionable, and measurable. For example, "enforce minimum password length" would be
a high level policy objective appropriate for encapsulating in a CCI. A benchmark
recommendation, which specifies values for configuration elements, could be annotated with a
CCI ID. This would indicate the high-level policy objective that a given recommendation
supports. In this regard, CCI provides a valuable service by mapping low-level recommendations
to the high-level objectives they serve. Since many policy statements and auditing requirements
are written in terms of high-level objectives, this mapping is useful for providing evidence of
organizational audit and policy compliance.

Originally published in 2008, version 2 release 0.1 of the CCI specification was released in
February 2011, and the list currently contains over 1600 entries. In addition to the enumeration,
the CCI effort includes a proposal for a dictionary that will annotate the CCI list with additional
information linking entries to important high-level policy documents, such as those published by
the DoD, NIST, and other organizations. Currently, CCIs are created by DISA, which also
manages the CCI list and dictionary.

2.2.4.2 CCSS

Sponsor Developer URL

NIST NIST http://csrc.nist.gov/publications/nistir/ir7502/nistir-
7502_CCSS.pdf

The Common Configuration Scoring System (CCSS) is a method for scoring the severity of
software security configuration issues. Conceptually, it adds the same value to CCE entries that
CVSS adds to CVE entries, but there is a significant difference. Because CCEs do not imply any
particular setting for a given configuration control, CCSS only makes sense when considering

2-13

some specific setting thereof. That is, while a CCE identifies the configuration control, CCSS
applies to one (or more) specific configurations of that control. The first version of CCSS was
published in 2008, with a final NIST Interagency Report (IR) published in 2010. CCSS 1.0 may
be included in the SCAP 1.2 specification.

The design of CCSS closely follows the design of CVSS. Like CVSS, CCSS is comprised of
three component metrics: a base metric, a temporal metric, and an environmental metric. The
base metric covers characteristics such as whether a particular configuration will allow
unauthorized access (active exploit) versus preventing authorized access (passive exploit),
whether the exploitation can be done locally or remotely, whether prior access is required, and
what the impact is on CIA (Confidentiality, Integrity, and Availability). The temporal metric
considers such concerns as whether there are known exploits taking advantage of a particular
configuration and whether measures other than changing the specific configuration are available
to mitigate exploits. The environmental metric reflects issues such as whether the given
configuration is common within an enterprise, what the value of a vulnerable target is to an
attacker, whether mitigations are in place, and what the CIA impact is on an enterprise. As with
CVSS, only the base metric is required to produce a score and final scores range from 0 to 10. A
vector allows viewers to see the choices that went into the creation of a score.

2.2.4.3 CMSS

Sponsor Developer URL

NIST NIST http://csrc.nist.gov/publications/drafts/nistir-
7517/Draft-NISTIR-7517.pdf

The Common Misuse Scoring System (CMSS) is a metric to rank software feature misuse
vulnerabilities. According to the CMSS specification, "a software feature misuse vulnerability is
present when the trust assumptions made when designing software features can be abused in a
way that violates security." A misuse vulnerability differs from a normal vulnerability (such as
one that might warrant a CVE) in that the latter is caused by an error in implementation that
allows unintended actions. A misuse vulnerability reflects violations of security made possible
by software features that were intentionally included to provide some benefit to the user. The
first draft of CMSS was published in early 2009, and the IR is still in Draft form.

CMSS follows the designs of CCSS and CVSS. There are three component metrics, a required
base metric and optional temporal and environmental metrics that combined produce a score
between 0 and 10. The characteristics considered in the CMSS temporal and environmental
metrics are identical to those of CCSS and its base metric. It differs only in that it does not
consider active versus passive exploits and instead attempts to provide a value reflecting the
complexity of exploiting the misuse vulnerability.

The CMSS specification notes that the concept of "software feature misuse vulnerability" is not
as simple as those of a software flaw or a configuration error, as scored by CVSS or CCSS,
respectively. To address this confusion, the authors of CMSS have proposed the creation of a
dictionary of such vulnerabilities. While the nature of this dictionary is not spelled out in detail,
this could imply the need to create and maintain a new enumeration.

2-14

2.2.5 Software Assurance-Related Standards

2.2.5.1 CAPEC

Sponsor Developer URL

DHS/NSA MITRE http://capec.mitre.org/

The Common Attack Pattern Enumeration and Classification (CAPEC) is a dictionary
identifying and describing attack patterns and their characteristics. The idea of discussing
patterns of attack was originally publicly introduced by Gary McGraw and Greg Huglund in the
book "Exploiting Software" in 2004, and has been refined and expanded into today's CAPEC
initiative and content which was originally published in 2007. Attack patterns are ways in which
attacks on software occur. Buffer overflows, session hijacking, various forms of cross-site
scripting, and control injection are just some examples of attack patterns. In addition to an ID
and a short description, CAPEC entries can contain such information as the (abstract) steps of a
typical exploit; the typical severity and likelihood of exploit; indicators and mitigations; related
weaknesses, vulnerabilities, and other CAPECs; and related security and design principles.

In 2011 CAPEC made several significant expansions and revisions. CAPEC now contains 15
attack pattern categories, including four added this year: Network Reconnaissance, Physical
Security Attacks, Social Engineering Attacks, and Supply Chain Attacks. These additions
expanded CAPEC from solely addressing attacks against software to attacks against systems.
CAPEC is currently at version 1.6 and contains 460 identified patterns. Additionally, CAPEC
established and then made significant revisions to an Observables sub-schema which is now
being pulled out as a separate schema called the Cyber Observables eXpression (CybOX).
CybOX will be shared and utilized by CAPEC, MAEC, and CEE.

2.2.5.2 CWE

Sponsor Developer URL

DHS MITRE http://cwe.mitre.org/

The Common Weakness Enumeration (CWE) is an encyclopedia identifying and describing
weaknesses in software architecture, design, implementation, and deployment. CWE traces its
history back to MITRE's 2005 Preliminary List Of Vulnerability Examples for Researchers
(PLOVER), a collection of 1500 illustrative CVE entries divided up into 290 types. CWE, first
released in 2006, focused on the underlying weaknesses themselves and expanded and elaborated
on this type list.

The current version of CWE, released in September 2011, is CWE 2.1 which represents a
significant milestone since the original release of CWE 1.0 in September 2008. Since then, over
150 new entries have been added. Major changes were also made to 93% of the 734 entries that
were in CWE 1.0. More than half of the CWE 1.0 entries had their descriptions or relationships
change; more than 30% had changes in their names or demonstrative code examples. The release
of CWE 2.0 coincided with the releases of the 2011 CWE/SANS Top 25, CWSS, and CWRAF,
all of which also drove improvements to CWE itself.

CWE now includes 886 identified weaknesses and weakness categories. CWE is arranged in a
variety of hierarchies with more general weaknesses serving as parents for more specific
weaknesses. Entries contain information such as a text description of the weakness, when and

2-15

how the weakness is usually introduced, common consequences, code examples, mitigations,
known examples in CVEs, and cross references to other CWEs and CAPECs. The CWE web site
presents multiple hierarchies or views of this data to aid researchers and developers.

CWE is seeing good penetration with code analysis tools and is generally regarded as the most
comprehensive public list of software weaknesses available. Since 2009, the CWE team has been
working with SANS to publish the Top 25 Most Dangerous Software Errors3, which is a list of
25 of the most serious software weaknesses. Recently, the third annual list has received a great
deal of national media attention and has proven to be a valuable tool for both educating
developers and raising awareness of secure programming practices to a wider community.

2.2.5.3 CWRAF

Sponsor Developer URL

DHS MITRE http://cwe.mitre.org/cwraf/

The Common Weakness Risk Analysis Framework (CWRAF) provides a means for software
developers and consumers to prioritize software weaknesses that are relevant for their business,
mission, and deployed technologies. In certain circumstances, a software weakness can lead to an
exploitable vulnerability.

By providing a repeatable way to apply the Common Weakness Scoring System (CWSS) to a
specific type of application for a specific type of business, CWRAF enables people to reason and
communicate about the relative importance of different weaknesses within the context of their
business.

Users can automatically generate a more targeted specification of "Top-N" lists of weaknesses
that are the most critical for the software that is used in the relevant business domains, missions,
and technology groups. In conjunction with other activities, CWRAF ultimately helps developers
and consumers to introduce more secure software into their operational environments.

CWRAF includes a mechanism for measuring risk of weaknesses in a way that is closely linked
with the risk to the business or mission supports the automatic selection and prioritization of
relevant weaknesses.

Customized to the specific needs of the business or mission in conjunction with the Common
Weakness Scoring System it can be used by consumers to identify the most important
weaknesses for their business domains. CWRAF provides a methodology for applying CWSS to
rank classes of weaknesses independently of any particular software package, in order to
prioritize them relative to each other (e.g. "buffer overflows are higher priority than memory
leaks"). This approach, sometimes referred to as a "Top-N list," is used by the CWE/SANS Top
25 Most Dangerous Software Errors effort. In practice, CWRAF will allow users to create their
own custom Top-N lists and CWSS will allow their tools to be driven by that same set of
priorities.

3 http://www.sans.org/top25-software-errors/

2-16

2.2.5.4 CWSS

Sponsor Developer URL

DHS MITRE http://cwe.mitre.org/cwss/index.html

The Common Weakness Scoring System (CWSS) provides a mechanism for scoring software
weaknesses and is currently at version 0.8. Modeled after CVSS, this standard provides a
method for calculating the score for individual CWEs.

It has been observed that different scanning tools assign different severity scores to software
design weaknesses, some assigning one priority while others assign the same flaw another value.
In a recent experiment, running a set of such tools against a large open-source project discovered
over ten-thousand findings, many that were un-exploitable false-positives. Thus it is clear that
researchers need to apply some sort of culling decision to pare the list of findings down to a
manageable size. A CWSS metric addresses the inconsistencies between the severity scores that
existing tools assign to their findings.

The advantages of CWSS are:

• It provides a common framework for prioritizing security errors ("weaknesses") that are
discovered in software applications;

• It provides a quantitative measurement of the unfixed weaknesses that are present within
a software application;

• It can be used by developers to prioritize unfixed weaknesses within their own software;
• In conjunction with the Common Weakness Risk Analysis Framework (CWRAF), it can

be used by consumers to identify the most important weaknesses for their business
domains, in order to inform their acquisition and protection activities as one part of the
larger process of achieving software assurance.

2.2.5.5 MAEC

Sponsor Developer URL

DHS MITRE http://maec.mitre.org/

Malware Attribute Enumeration and Classification (MAEC, pronounced "mike") is a language
for characterizing malware based on its attributes, most notably in terms of attack patterns, low-
level observables, and behaviors. MAEC is still in the early stages of development, with version
1.1 of the XML schema released in January 2011. The current focus is on the completion of
version 2.0 of the schema, which incorporates several major revisions over the previous versions,
most notably in terms of incorporating the objects defined in CybOX. Unlike the Common
Malware Enumeration (CME), an earlier MITRE effort that is no longer under development,
MAEC does not attempt to provide an ID for specific instances of malware but instead seeks to
provide a common language with which to describe the characteristics of malware. This matches
the broader shift among anti-malware vendors of moving away from enumerative, signature-
based detection mechanisms and towards more heuristic-based detections.

2-17

MAEC currently consists of an XML schema which defines the language, its objects, and
constructs. The current version of the schema, version 1.1, is focused primarily on defining the
actions performed by malware at the system level. Such actions can be profiled by instrumenting
a system to observe the state changes effected by malware, something typically done through
dynamic analysis tools. Examples of such actions include changes to the file system or registry,
process modification, and the establishment of network connections. The MAEC schema also
defines constructs called behaviors, which serve to group collections of these actions based on
their higher order functionality. For example, an email address harvesting behavior can consist of
several low-level file searches and read operations that target specific types of files.

The MAEC effort is intended to solve the issues of non-standardized malware reporting,
duplication of malware analysis efforts, delayed malware detection, indicator and signature
sharing, and others that stem from the lack of a standard for communicating detailed,
unambiguous information about malware. MAEC currently links to other standards in order to
better characterize elements relevant to malware, including CPE for expressing the platforms
targeted by malware and CVE for specifying any vulnerabilities exploited by malware. In
addition, a script was developed to take MAEC XML instances, extract relevant objects defined
as created by the malware (e.g. files, registry keys) and convert them into OVAL XML,
permitting malware detection based on these objects. The next version of MAEC will import and
utilize the object types defined in CybOX, establishing compatibility between observables
expressed through CEE and CAPEC.

2.2.5.6 CybOX

Sponsor Developer URL

DHS MITRE Website expected to go live late 2011
http://capec.mitre.org/data/xsd/observables_v0.4.xsd

The Cyber Observable eXpression (CybOX) is a language schema for specifying, capturing and
communicating information on Cyber Observables in a consistent, structured and machine
consumable manner. The Cyber Observables construct is intended to capture and characterize
events or stateful properties that are observable in the operational domain. The concept and
initial schema were developed as part of the CAPEC effort in order to annotate specific elements
of an attack pattern’s detailed attack execution flow in order to describe what that element of the
attack might look like in the real world. The initial schema was published as part of CAPEC v1.4
and a significantly updated and enhanced version was included as part of CAPEC v1.6. Shortly
after the publication of the initial schema, it was discovered that a need for this concept and
construct was not unique to CAPEC but was also relevant to MAEC (for characterizing malware
actions), CEE (for modeling events) and other operational information standardization efforts. It
is currently fully integrated into CAPEC, partially integrated into MAEC and is in the process of
being integrated into CEE. Beyond these efforts, it is a key element in the work of many other
parties, including US-CERT, NIST’s EMAP effort, and several independent research projects.
CybOX has been the topic of presentations at a great many conferences as well as the subject of
a recent article in the September/October 2010 issue4 of Crosstalk magazine.

4 http://www.crosstalkonline.org/storage/issue-archives/2010/201009/201009-Barnum.pdf

2-18

CybOX will provide an open specification to capture observable events or stateful properties to
be parsed, filtered, and correlated among other standards. The dedicated website for CybOX is
scheduled to go live late in 2011 and will be integrated into the overall set of Making Security
Measurable sites.5

2.2.5.7 SAFES

Sponsor Developer URL

NSA MITRE Website expected to go live in late 2011

The Software Assurance Findings Expression Schema (SAFES) is a unified schema that will
provide the ability to report, integrate and analyze findings in a consistent fashion. This
establishes more structured tool results that are more useful to users, enable integration of results
from multiple tools/services and enable automated processing of tool/service results.

This is a collaborative community effort with MITRE providing primary technical leadership but
with the involvement and contributions of interested software assurance tool and service vendors
and other members of the software assurance community.

The primary artifact for this effort is an XML-based schema that not only provides a common
communication mechanism for findings but does so in a structured fashion that enables greater
flexibility in its application and its future growth and enhancement. No such comprehensive
common schema exists or is openly under development anywhere today; all tool vendors and
assessment practitioners utilize their own unique, proprietary schemas. A consistent schema will
also aid in development of automated processing of tool findings.

SAFES is currently in early development. Once it reaches an adequate level of capability and
stability, SAFES is planned to be transitioned to the Object Management Group (OMG) as a
formal standard development effort in their Cyber Ecosystem portfolio.

Initial and current sponsorship for SAFES comes from the NSA Center for Assured Software
(CAS). Additional sponsorship is expected soon from DHS. A dedicated website for SAFES is
scheduled to go live in late 2011 and will be integrated into the overall set of Making Security
Measurable sites.

5 http://measurablesecurity.mitre.org/

2-19

2.2.6 Reporting-Related Standards

2.2.6.1 Enterprise Reporting

Sponsor Developer URL

NSA MITRE/NSA --

Enterprise Asset Reporting is implemented through several closely related standards: Asset
Reporting Format (ARF), Asset Identification (AI), and Assessment Summary Reporting (ASR).
In addition, there is also an emerging Report Tasking Language which will enable the definition
of task requests. Tasking, which does not yet have a formal name, is still early in community
development. More details, including the scope and purpose, will be available as the
specification becomes more clearly defined. The Policy Language for Assessment Results
Reporting (PLARR) is a legacy control language whose functionality will be replaced by these
other standards.

These standards and related specifications are described below.

2.2.6.1.1 ARF

Sponsor Developer URL

NSA MITRE/NSA http://scap.nist.gov/specifications/arf/

Asset Reporting Format is a data model for expressing the transport format of information about
assets and the relationships between assets and reports. Previously known as the Assessment
Results Format, this standardized data model and language facilitates the reporting, correlating,
and fusing of asset information throughout and between organizations.

ARF is vendor- and technology-neutral, flexible, and is suited for a wide variety of reporting
applications. The intent of ARF is to provide a uniform foundation for the expression of
reporting results, fostering more widespread application of sound IT management practices. ARF
can be used for any type of asset (e.g., buildings, sites, and resources), not just IT assets.

2.2.6.1.2 AI

Sponsor Developer URL

NSA MITRE/NSA http://scap.nist.gov/specifications/ai/

Asset Identification defines the constructs and methods for representing asset identification
information and thus can be leveraged by any other specification where identifying assets is
required or beneficial. The scope of Asset Identification is limited to a description of how asset
management tools can represent asset identification information when communicating it to other
tools. It is out of scope of Asset Identification to recommend which identifiers to use or to
require that identification information be collected in a certain way or from a certain place.
Higher-level specifications, tools, and organizations that implement Asset Identification,
however, are encouraged to make these recommendations or specify these requirements in order
to support the particular needs of their use cases.

2-20

2.2.6.1.3 ASR

Sponsor Developer URL

NSA MITRE/NSA --

Asset Summary Reporting is intended to define how to represent summary data. ASR is used to
represent aggregate information. It may be used by entities who wish to reduce the volume of
reporting data by providing a layer of abstraction. The work is in a preliminary stage of
community development. More details will be available as the specification becomes better
defined.

2.2.6.1.4 Legacy Reporting Specifications

This section describes three standards efforts closely related to the other Enterprise Reporting
efforts. None of these three efforts are under active development today, but because they are
sometimes referenced in discussion, and because their names have a potentially confusing
overlap with efforts listed above, they are covered here.

ARF 0.41

The Assessment Results Format (ARF) is a language to provide a generalized standard format
for assessment results, such as might be created by running a benchmark or a vulnerability scan.
While XCCDF and OVAL both have their own result reporting formats, ARF improves and
generalizes these formats. ARF also supports the creation of summary results, combining
component results from multiple assessments. ARF follows from and replaces MITRE's
Common Results Format (CRF) effort. The initial specification of ARF was published in 2009
and is in active use within the Department of Defense (DoD).

(Ref: http://measurablesecurity.mitre.org/incubator/arf/)

ASR 0.41

Assessment Summary Results (ASR) is an open specification that provides a structured language
for exchanging summarized assessment results data between assessment tools, asset databases,
and other products that manage asset information. It is intended to be used by tools that collect
detailed configuration data about IT assets and is in active use within the DoD.

(Ref: http://measurablesecurity.mitre.org/incubator/asr/)

PLARR

The Policy Language for Assessment Results Reporting (PLARR, pronounced "pillar") is a
control language for ARF 0.41. It is used to query scanning tools, supply parameters for scans,
and to dictate the format of responses. PLARR is explicitly tied to the DoD’s Assessment
Reporting format and is a legacy language. Although it is presently in use by the DoD, it is not
being actively developed further in the SCAP context.

(Ref: http://measurablesecurity.mitre.org/incubator/plarr/)

2-21

2.2.6.2 CVRF

Sponsor Developer URL

--- ICASI http://www.icasi.org/cvrf

The Common Vulnerability Reporting Framework (CVRF) 1.0 is an XML based language
designed to provide a documentation standard for security related information.

Recently there has been significant progress in information system vulnerability categorization
and severity ranking. However there is a gap in that documentation of these vulnerabilities
occurs in an ad-hoc, vender specific and non-standard format.

Existing security documentation contains similar information (e.g., date fields, overview-type
fields, impact, and remediation fields) but there is no common format or nomenclature consistent
across the various reports. The proposed solution, the Common Vulnerability Reporting
Framework (CVRF) is an XML-based framework that predefines a large number of fields
designed with extensibility and robustness in mind. The CVRF project has been initiated by the
Industry Consortium for the Advancement of Security on the Internet (ICASI), a vendor neutral
industry-wide think tank.

The ICASI CVRF working group has assembled experts to establish a core team that could
expand existing security documentation formats and subsequently integrate a best-of-breed
solution into a common XML-based framework. An initial white paper was published in May,
2011.

2.2.7 Related International Standards

2.2.7.1 IODEF

Sponsor Developer URL

IETF IETF http://xml.coverpages.org/iodef.html

http://www.ietf.org/rfc/rfc5070.txt

The Incident Object Description Exchange Format (IODEF) is a proposed Internet Engineering
Task Force (IETF) standard. It defines a defines a data representation that provides a framework
for sharing information commonly exchanged by Computer Security Incident Response Teams
(CSIRTs) or Computer Emergency Readiness Teams (CERTs) about computer security
incidents. IODEF is focused on human-to-human communication involving incident response.
IODEF has the ability to reference other standards (CEE, for example), to provide information
related to an incident.

IODEF is currently used by many CERTs for sharing incident information, including the DHS
NCSD (National Cyber Security Division) US-CERT. IODEF efforts have now given way to a
new IETF effort called Managed Incident Lightweight Exchange (MILE –
https://www.ietf.org/mailman/listinfo/mile), which is being followed by members of the MITRE
standards team.

3-22

2.2.7.2 CYBEX

Sponsor Developer URL

ITU-T ITU-T http://ccr.sigcomm.org/online/files/p59-
3v40n5i-takahashi3A.pdf

http://www.itu.int/itu-
t/workprog/wp_item.aspx?isn=7305

The Cybersecurity Information Exchange (CYBEX) is a pre-published International
Telecommunications Union (ITU-T) standard (X.1500). It was a proposed standard (an ITU-T
recommendation) that was accepted in April 2011, and the final specification is currently being
published. CYBEX is intended to describe ways in which cybersecurity entities can exchange
assured cybersecurity information. The parties exchanging such information will often be CERTs
and private companies developing software or network-based systems.

CYBEX references and advocates the use of many of the standards mentioned in this paper,
including CVE, CPE, CCE, CAPEC, CWE, MAEC, CEE, OVAL, ARF, CWSS, CVSS,
XCCDF, and IODEF. These standards are only references from CYBEX; modification of each is
still through the core standard itself. DHS is involved in writing the CYBEX specification. Due
to CYBEX’s referencing each of the SCAP standards, USGCB (United States Government
Configuration Baseline) compliance becomes a use case for CYBEX.

IODEF and CYBEX could be used to move cybersecurity information around as necessary to
support incident management amongst the organizations involved in its various aspects and
stages.

3 Validation and Adoption Programs
In the early 2000s as CVE and OVAL were gaining community acceptance, some government
agencies began putting language in acquisition documents that required the support of these
standards. This necessitated the development of formal method of measuring compliance with
these standards. To meet this need, MITRE began compatibility programs for both CVE and
OVAL. MITRE was able to support this activity at a relatively low level of funding for several
years, and discovered that it promoted the adoption of the standards. MITRE’s Compatibility
Program provided users and vendors with certainty that a product that successfully passed
compatibility testing would be interoperable with other products that had passed interoperability
testing.

When NIST developed SCAP, they discussed standards functional testing with MITRE and the
two organizations agreed that MITRE’s Compatibility Program would be discontinued for
OVAL and NIST would begin a Validation Program to replace it, although MITRE would
continue to oversee compatibility with CVE. In the NIST SCAP Validation Program, the testing
is conducted by independent labs which have been accredited by the NIST National Voluntary
Laboratory Accreditation Program (NVLAP). NIST has documented the test requirements in
NIST IR 7511, Security Content Automation Protocol (SCAP) Version 1.0 Validation Program
Test Requirements. This document is undergoing its second revision, which was made available
for public comment in January 2011 and lays out the testing requirements for each of the SCAP

4-23

standards. Furthermore, requirements for independent laboratories to conduct SCAP Validation
are defined in NIST Handbook 150, and NIST Handbook 150-17.

Complete details on The SCAP Validation Program can be found on the NIST SCAP site:
http://scap.nist.gov/validation/.

4 Conclusions
This document has provided a brief overview of the security automation space. In particular we
have included an overview of each of the components that make up this space, both in terms of
individual standards as well as the forces that guide the standards.

In over 10 years security automation has grown from a single standard with a handful of
participants, to a large community and that is growing every year. The more mature of the
standards have been incorporated into hundreds of tools and CVE has become virtually
ubiquitous in its subject area. Given the ever-increasing community of adopters, implementers,
and contributors, it is clear that the overall security automation effort has been highly successful
thus far, and its capabilities and interest in those capabilities continue to grow.

A-1

Appendix A Acronym Glossary

AI Artificial Intelligence

ARF Asset Reporting Format OR Assessment Results Format

ASR Asset Summary Reporting OR Assessment Summary Results

CAPEC Common Attack Pattern Enumeration and Classification

CCE Common Configuration Enumeration

CCI Common Configuration Identifier

CCSS Common Configuration Scoring System

CEE

CDET

CELR

Common Event Expression

Common Dictionary and Event Expression Taxonomy

Common Log Recommendations

CERE Common Event Rule Enumeration

CERT Computer Emergency Readiness Team

CESS Common Event Scoring System

CIA

CIRT

CLS

CLT

Confidentiality, Integrity, and Availability

Computer Incident Response Team

Common Log Syntax

Common Log Transport

CME Common Malware Enumeration

CMSS Common Misuse Scoring System

CPE Common Platform Enumeration

CRE

CRE-DEF

CSIRT

Common Remediation Enumeration

CRE Data Exchange Format

Computer Security Incident Response Team

CVE Common Vulnerabilities and Exposures

CVRF Common Vulnerability Reporting Framework

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

CWRAF Common Weakness Risk Analysis Framework

CWSS Common Weakness Scoring System

CybOX Cyber Observable eXpression

A-2

CYBEX Cybersecurity Information Exchange

DHS Department of Homeland Security

DISA Defense Information Systems Agency

DoD Department of Defense

EMAP

ERI

ERI-DEF

Event Management Automation Protocol

Extended Remediation Language

ERI Data Exchange Format

FIRST

GPO

Forum of Incident Response and Security Teams

Group Policy Object

ICASI Industry Consortium for the Advancement of Security on the Internet

ICAT ICAT (not an acronym)

IODEF Incident Object Description Exchange Format

ISS Internet Security Systems

MAEC Malware Attribute Enumeration and Classification

NIAC National Infrastructure Advisory Council

NIST National Institute of Standards and Technology

NIST IR NIST Interagency Report

NIST NVLAP NIST National Voluntary Laboratory Accreditation Program

NSA National Security Agency

NSA CAS NSA Center for Assured Software

NVD National Vulnerability Database

OCIL Open Checklist Interactive Language

OEEL Open Event Expression Language

OMG Object Management Group

OVAL Open Vulnerability and Assessment Language

OVALDI OVAL Definition Interpreter

PLARR Policy Language for Assessment Results Reporting

RPM RPM Package Manager6

RPS Remediation Policy Specification

RTL Remediation Tasking Language

SAFES Software Assurance Findings Expression Schema

6 RPM is a recursive acronym. It once stood for “Red Hat Package Manager”.

A-3

SANS SysAdmin, Audit, Networking, and Security

SCAP

SIG

Security Content Automation Protocol

Special Interest Group

SQL

SWID

Structured Query Language

Software Identification

URI Uniform Resource Identifier

URL Uniform Resource Locator

US-CERT United States Computer Emergency Readiness Team

USGCB United States Government Configuration Baseline

XCCDF eXtensible Configuration Checklist Description Format

XML eXtensible Markup Language

	Introduction
	Scope

	The Security Automation Standards
	The SCAP Standard
	CVE
	OVAL
	The OVAL Repository

	XCCDF
	CCE
	CPE
	CVSS
	OCIL

	Emerging and Related Standards
	EMAP
	CEE

	NVD
	Remediation
	Configuration-Related Standards
	CCI
	CCSS
	CMSS

	Software Assurance-Related Standards
	CAPEC
	CWE
	CWRAF
	CWSS
	MAEC
	CybOX
	SAFES

	Reporting-Related Standards
	Enterprise Reporting
	ARF
	AI
	ASR
	Legacy Reporting Specifications

	CVRF

	Related International Standards
	IODEF
	CYBEX

	Validation and Adoption Programs
	Conclusions
	Acronym Glossary

