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A simulation-based analysis is conducted of the ionic switching times for nanometer-scale binary-

oxide “memristor” devices. This analysis is based upon a device model that incorporates nonlinear

field-driven ionic transport within the bulk of the memristor. In contrast, prior models of charge

transport in such devices have relied upon linear simplifications, or else they have included

nonlinear effects only at the electrode interfaces. As shown here via simulation, the nonlinear

model provides much closer quantitative agreement with experimentally observed device

switching times. Also, this model predicts a distinct asymmetry between the “set” and “reset”

switching behaviors of memristors that is not present in linear models. Thus, the model and the

quantitative results derived using it suggest an experimental route by which the underlying device

physics might be elucidated further. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4726421]

In this letter, we analyze the ionic switching behavior of

metal-oxide thin-film junction nanodevices using a nonlinear

device model. Much attention has been focused upon recent

demonstrations of hysteretic switching behavior in such

devices.1,2 In particular, Strukov et al.3 recognized and Yang

et al.4 subsequently demonstrated that the current-voltage

behavior of some of these devices matches that of a theoreti-

cal circuit element called a “memristor.” Device technolo-

gies and materials systems that manifest this behavior are

valued for their potential to improve the density, speed, and

energy efficiency of memory systems,1,5 as well as other

electronic systems.6–8 Still, it has not yet been shown conclu-

sively that memristor-based systems can be developed that

will improve upon the write speeds of commercially avail-

able Flash memories, which are the most immediate target

for industrial replacement using next-generation

nanodevices.9

To a great extent this is because, until now, there has

been no model that reproduces with quantitative accuracy

the memristor-like behavior that has been observed in junc-

tion nanodevices. The prevalent linear models have provided

only qualitative agreement with experiment.10–13 For exam-

ple, they reproduce the essential hysteresis and conductan-

ces, but their predicted switching times are on the order of

seconds instead of being in the observed range of nanosec-

onds. Additionally, these linear models predict that the time

to switch from a high-resistance state to a low-resistance

state (i.e., the “set” time) should be equal to the time to

switch in the reverse direction (i.e., the “reset” time). How-

ever, these times are observed14 to be orders of magnitude

different.

Here, we achieve the desired quantitative agreement

with experiment by adopting a suggestion due to Strukov

et al.15 They suggested a mechanism for charge transport in

binary oxides such as TiO2 in which oxygen vacancies

respond in a nonlinear manner to the strength of the local

electric field. Incorporating this suggestion into a linear

model enables the simulated system to exhibit much shorter

“set” and “reset” times. Plus, it enables the model to repro-

duce the observed asymmetry in these switching times.

To explain these results in detail, we begin by assuming

anionic drift to be the physical mechanism underlying

switching. This is believed1 to be the case in binary oxides

such as VO2, Ta2O5, TiO2, and other “bipolar” oxides (i.e.,

those that use voltages of opposite polarity for “set” and

“reset” operations). In linear models of this mechanism,

modulation of the device resistance is attributed to the move-

ment via drift and diffusion of positively charged oxygen

vacancies in a substoichiometric binary oxide. Specifically,

the vacancy current density JVðxÞ at a position x along the

device is given by16

JVðxÞ ¼ 2qlENVðxÞ � 2lkBT
@NV

@x
; (1)

where l is the vacancy mobility, E is the applied electric

field, and NV is the 1-D distribution of vacancies.

The key deficiency of such models is that, to match ex-

perimental data, they must assume a vacancy mobility as

much as nine orders of magnitude larger than consistent with

known values.11 As a potential means for fixing this prob-

lem, Strukov et al. suggested15 that vacancy drift velocity

increases nonlinearly under the strong electric fields that

exist in nanoscale devices. Specifically, in contrast to the

usual relation v ¼ lE, here the vacancy velocity v is calcu-

lated as follows:

v ¼ f a exp � Ua

kBT

� �
sinh

qEVa

2kBT

� �
: (2)

In Eq. (2), the vacancy velocity is a function of the frequency

f of escape attempts from the local nuclear potential wells in

the device’s crystal lattice. Ua is the activation energy and a
is the hopping parameter. The quantity EV is the local elec-

tric field for an oxygen vacancy, which is related to the

applied electric field by EV ¼ ð1þ XFÞE, where X is the

bulk static permittivity and F is the Lorentz factor.
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The diffusion coefficient, DV , may be calculated simi-

larly to yield17

DV ¼
1

2
f a2 exp � Ua

kBT

� �
cosh

qEVa

2kBT

� �
: (3)

By combining Eqs. (2) and (3) in the same drift-diffusion

treatment16 used to obtain Eq. (1), we obtain a modified

equation for the vacancy current density

JVðxÞ ¼ 2q fa exp � Ua

kBT

� �
sinh

qEVa

2kBT

� �
NVðxÞ

� q f a2 exp � Ua

kBT

� �
cosh

qEVa

2kBT

� �
@NV

@x
: (4)

Coupled with the continuity equation,16 this modified expres-

sion determines the time evolution of the mobile vacancy

distribution NVðxÞ under an applied bias.

Equation (4) was employed in a finite-difference formu-

lation to calculate quasi-steady-state electron and hole distri-

butions and potentials for the memristor geometry given in

Fig. 1. Conduction in one dimension was assumed, consist-

ent with the formation of nanoscale-diameter conductive fila-

ments between microscale parallel-plate contacts. These

contacts at x¼ 0 and x¼ L were assumed to be to be Ohmic,

with electron and hole concentrations at these boundaries

determined by thermal equilibrium and space-charge neutral-

ity. Given these initial boundary conditions, the “set” and

“reset” switching characteristics of the device were investi-

gated by applying bias potentials within the simulation and

observing the elapsed simulated time.

The simulated device was started in the low-resistance

state (LRS), an initial thermal-equilibrium distribution of ox-

ygen vacancies. Positive bias was applied to the electrode at

x¼ L, resulting in the depletion of vacancies from that side

of the device. This produced a large potential barrier for

electrons in the depleted region, switching the device into a

high-resistance state (HRS). To set the device back into the

LRS, negative bias was applied to the electrode at x¼L,

causing the vacancy profile to shift back toward its equilib-

rium distribution.

Fig. 2 provides example vacancy profiles for a 50-nm-

thick device being driven from the HRS into the LRS by a

�2 V applied bias. The figure shows the initial HRS profile

as a solid line. Transitional profiles partway between the

HRS and LRS also are shown as obtained from the nonlinear

model described above (dashed red) and a linear reference

model (dotted blue). These profiles were chosen such that

the device conductances were the same. This was done in

order to contrast the predictions of the two models for the

time required to reach these profiles from the HRS, as well

as to illustrate the differences between the vacancy profiles

predicted by the two models.

As is seen in the figure, the qualitative behavior of the

vacancy profiles is consistent between the models. However,

in the nonlinear model, a greater fraction of the vacancy

movement occurs in the region around x¼ 20 to x¼ 25 nm,

where the HRS profile changes abruptly. Specifically, in this

region, the transitional profile from the nonlinear model is

seen to contain fewer vacancies than the profile for the linear

model. Gradients also are seen to be sharper in the profile

from the nonlinear model.

In addition, a key distinction between the two models is

that the vacancy propagation occurs much more quickly in

the nonlinear simulation (5 ns total switching time vs. 2.7 s

using the linear model at equal bias). These switching times

are calculated from the vacancy velocities using the relationÐ
dt ¼

Ð
v�1dx and summing over the finite spatial differen-

ces transited by the vacancies.

For the device modeled in Fig. 2, Fig. 3 shows switching

times obtained via simulations using both the nonlinear and

linear models. These were determined by analyzing the

change in current as the simulated device transitioned

between states. For the linear model, “set” times vary from

26 s down to 5 s under simulated device biases of 0.2 V up to

2.0 V. Using the nonlinear model, switching times decrease

exponentially with increasing device voltage. In comparison

to the predictions of the linear model, “set” switching times

are much longer at low biases (below 1 V), yet dramatically

shorter for biases exceeding 1 V. In particular, the nonlinear

model predicts a “set” switching time of 44 ns at 2 V bias,

consistent with the reported experimental switching time of

50 ns for a 50 nm device at a high applied bias.4

In both models, simulated “reset” switching times exhib-

ited a much weaker dependence on the bias voltage and

remained long (>1 s) even as the voltage was set beyond

2 V. Thus, a much stronger asymmetry is seen between “set”

and “reset” switching when accounting for nonlinear trans-

port in the bulk of the device.
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FIG. 1. Conceptual geometry for a binary oxide memristor that switches via

anion migration.
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FIG. 2. Simulated profile of oxygen vacancies in a 50-nm-thick binary

oxide memristor in response to an applied bias of �2 V. This memristor is

configured initially in the HRS. The nonlinear model predicts a more

enhanced response in regions where the vacancy concentration changes

rapidly.
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The prediction of slow switching speeds in the linear

bulk model is a necessary consequence of extrapolating mo-

bility from the low-electric-field behavior of oxygen vacan-

cies in TiO2 and similar materials. Furthermore, the linear

model predicts that the “reset” switching time is nearly equal

to the “set” time (the slight difference in times arises because

the “set” operation works in conjunction with the natural

tendency of diffusion to smooth out the vacancy concentra-

tion, whereas the “reset” operation must work against diffu-

sion). Because ionic transport in the bulk is the dominant

phenomenon underlying the switching behavior, linear bulk

models necessarily must predict both slow speeds and sym-

metric switching times that are not observed in actual experi-

ments on nanometer-scale TiO2 switches. More

fundamentally, devices that rely upon linear electrostatic

switching behavior are known to be limited by a time-

voltage tradeoff,17,18 in which either the switching speed or

the device state retention must be insufficient for memory

applications.

In contrast, the nonlinear bulk model predicts a strong

asymmetry between the “set” and “reset” times. This can be

explained by the strength of the internal electric field within

the device during the transition between states. When the de-

vice is in the HRS, the vacancy distribution contains an ab-

rupt, effectively vertical front that shifts toward x¼L as the

device switches to the LRS during a “set” operation. The

resulting high electric field in the vicinity of the front pro-

motes fast ion transport, since the ion mobility increases

exponentially at high field strength. In the opposite case,

when the device transitions from the LRS to the HRS during

a “reset” operation, vacancies typically experience lower

fields, leading to substantially lower transport velocities and

asymmetric switching behavior.

Experimental data for nanosecond-scale “set” switching

times4 and initial measurements of “set”-“reset” asymme-

try14 lend credence to the nonlinear model over linear or

electrode-based approaches. However, direct quantitative

comparison with experiment is hampered by a lack of ex-

haustive data characterizing the voltage dependence of the

switching time. Also, other phenomena, such as phase transi-

tions19 or local heating,20 have been proposed that could

explain the initial experimental data. Nonetheless, while the

1-D electrostatic model examined here does not incorporate

these phenomena or other multi-dimensional effects, it is suf-

ficient by itself to explain the initial experimental evidence

for fast switching.

Furthermore, the simulation results presented here pro-

vide a direction for more exhaustive experiments that would

elucidate the physical basis of the switching asymmetry and

either validate or refute the nonlinear model examined here.

If validated by experiment, this model should be suitable for

use in designing and optimizing resistive memory systems

based upon binary-oxide memristors.
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FIG. 3. Comparison between the predictions of linear and nonlinear models

of memristive switching. The linear bulk model predicts a switching behav-

ior that is largely symmetric between the “set” and “reset” switching opera-

tions. In contrast, the nonlinear bulk model predicts that the “set” operation

is much faster.
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