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Scaling of quantum capacitances and valence electron detachment energies is studied for icosa-
hedral and nonicosahedral fullerenes. Scaling trends are considered from zero to infinite average
radius, where a fullerene’s local surface properties are similar to those of graphene. Detailed density
functional theory calculations are performed to determine the geometries and detachment energies of
icosahedral fullerenes, while values of these quantities are obtained for nonicosahedral species from
previously published experimental results. Strongly linear, quasiclassical scaling versus average radii
rn is seen for the quantum capacitances, but on two di↵erent scaling lines for icosahedral and non-
icosahedral species, respectively. By contrast, nonclassical, nonlinear scaling versus 1/rn is seen for
the electron detachment energies—i.e., the valence ionization potentials and electron a�nities. This
nonlinearity is not accounted for by classical theories that are used to explain trends in electronic
properties of fullerenes and usually give accurate quantitative estimates. Instead, simple quantum
equations are derived to account for nonlinearities in the metal-particle-like electron detachment
energy scaling and to show that these are responsible for nonclassical, nonzero intercepts in the ca-
pacitance scaling lines of the fullerenes. Last, it is found that points representing the carbon atom
and the graphene limit lie on scaling lines for icosahedral fullerenes, so their quantum capacitances
and their detachment energies scale smoothly from one C atom, to C60, to graphene.

I. INTRODUCTION

Fullerene molecules have fascinating and potentially
valuable properties [1]. Because they are large molecules,
though, containing many atoms and electrons, accurate
quantum theoretical treatments are di�cult and com-
putationally intensive. Measurements of the electronic
properties of the isolated molecules are similarly challeng-
ing [2, 3]. On the other hand, the regular, quasispherical
structures of these pure carbon systems [4], along with
results from quantum scaling investigations on other sys-
tems [5–8], suggest that the fullerenes’ quantum prop-
erties, especially their valence energetics, might vary or
“scale” with their dimensions in very regular ways. Un-
derstanding this quantum scaling, as well as how it dif-
fers from classically expected [9, 10] trends, might sim-
plify greatly predictions of similar properties, even for
very large fullerenes. Such insights also might provide an
archetype for understanding and predicting such trends
in the quantum electronic properties for homologous se-
ries of other large molecules or nanostructures. Still fur-
ther, the structures of fullerenes permit us to envisage
and to examine trends for a homologous series in which
the smallest members are nanoscopic and, in principle,
the largest could be truly macroscopic.

To those ends, here we explore the scaling of the
fullerenes’ quantum capacitances and valence electron de-
tachment energies. The exploration follows the scaling
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trends, starting with a single carbon atom C1 and con-
tinuing up to the limit of infinite average radius, where
the local surface structure and geometry of a fullerene
are very similar to that of graphene. These trends are
followed for fullerenes of both icosahedral and nonicosa-
hedral symmetries.

As seen in Fig. 1, two di↵erent, strongly linear, quasi-
classical scaling trends are found for the icosahedral and
nonicosahedral fullerenes, respectively, when their quan-
tum capacitances [11, 12],

Cn = 1/(In �An), (1)

are plotted versus their average radii rn. Above, In and
An are the first ionization potential and first electron
a�nity, respectively, for an N -electron, n-carbon neutral
fullerene Cn. These valence electron detachment ener-
gies are measured in eV, so values of quantum capaci-
tances Cn are calculated in the molecular-scale units [5, 6]
of fundamental positive charges per Volt (+e/V). Lin-
ear, symmetry-dependent scaling of Cn versus rn for the
fullerenes, as seen in Fig. 1, is similar to that observed
previously for atoms [5, 8] and small molecules [6, 7].

In Figs. 2 and 3 it is observed, however, that the linear
scaling behaviors of Cn versus rn for the fullerenes are
produced by values of In and An that each exhibit dis-
tinctly nonlinear scaling versus 1/rn. In addition, these
figures show that di↵erent types of nonlinearities are ex-
hibited by the detachment energies of both the icosa-
hedral and nonicosahedral species. Figure 2 further il-
lustrates that such nonlinear behaviors are contrary to
expectations (dotted lines) from purely classical theo-
ries [9, 10] that have been applied [3] to explain the scal-
ing of fullerene detachment energies and their limiting
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behavior as 1/rn approaches zero.
At the same time, other nonclassical behaviors are seen

in Fig. 1. These are the nonzero capacitance intercepts
associated with the quantum capacitance scaling lines
that otherwise are classical in form.

Moreover, it is discovered and proven algebraically in
this work that the nonclassical, nonzero curvatures in
the detachment energy trends for the fullerenes lead,
via Eq. (1), to the nonclassical, nonzero intercepts in
their otherwise classical capacitance scaling lines. These
capacitance intercepts have two di↵erent signs for the
icosahedral and nonicosahedral species, which correspond
to the two di↵erent sets of curvatures for their detach-
ment energy trends. This correspondence is summarized
schematically in Fig. 4.

For the icosahedral fullerenes, the aforementioned re-
sults are derived from detailed density functional the-
ory (DFT) calculations performed in this work to deter-
mine the valence electron detachment energies and aver-
age radii. We calculated In, An, and rn for nine such
molecules containing numbers of C atoms ranging from
n = 60 to 2160. Also, for ten nonicosahedral fullerenes
of C2 and D2 symmetries, we tabulated from the litera-
ture experimental values [2, 3] of In and An, as well as
theoretical values [13, 14] of rn. All these data, plus the
associated values of Cn, appear in Table I and are used
to plot the graphs in Figs. 1, 2, and 3.

II. METHOD AND RESULTS

To obtain the detachment energies for the nine icosahe-
dral fullerenes, we performed DFT calculations, using a
specially developed computer program [15]. The neutral-
state geometry of each structure Cn was optimized and
its average radius rn determined using a Gaussian 6-
311G** basis and a functional [16] that gives the experi-
mental geometry for C60. The DFT calculations involved
the reoptimization of previously determined [17] icosahe-
dral geometries, as well as the optimization of a new ge-
ometry for C320. Unlike the other icosahedral fullerenes,
which have closed-shell neutral ground states, C320 has
an open-shell, triplet electronic state, with two unpaired
electrons in the 33gu orbital. This ionizes to a doublet
cationic state, as do the other icosahedral fullerenes. Af-
ter electron attachment, though, it does not yield the
usual doublet, but forms a quartet anion with three elec-
trons in the 33gu orbital.

After determination of the neutral geometries, to eval-
uate the electron detachment energies, In=[En(N � 1)�
En(N)] and An =[En(N)�En(N + 1)] for each n, the
same program and basis, but a di↵erent functional that
gives very accurate atomic energies [15], were used to sep-
arately determine the total energies, En(N), En(N � 1),
and En(N + 1), for the lowest-energy neutral, cationic
and anionic states, respectively. Numerical results calcu-
lated in this way for the icosahedral fullerenes appear in
part A of Table I.

FIG. 1. Quantum capacitances Cn of n-carbon fullerenes plot-
ted versus their average radii rn. The solid, dashed, and
dotted regression lines, respectively, in the main portion of
the figure, fit to high degree of confidence (rn, Cn) points
for icosahedral (Ih) fullerenes (crosses), for nonicosahedral
fullerenes of C2 and D2 symmetries (dark squares), and for
a classical sphere model (open circles) of the icosahedral
fullerene capacitors. Regression equations and parameters for
scaling lines are displayed in the graph. The inset expands
the scale for the plot of the nonicosahedral fullerene points,
their scaling line, and the classical scaling line. See text.

Part B of Table I presents the corresponding data
for nonicosahedral fullerenes. These values were assem-
bled from the experimental literature, as described in
the previous section. Most of the experimental valence
electron detachment energies available in the literature
for nonicosahedral fullerenes were for species of C2 and
D2 symmetries. Limited data [2, 3, 14] were available
for species [1, 4] of other nonicosahedral symmetries,
and these produced radius-capacitance points that were
somewhat o↵ the regression lines shown in the inset of
Fig. 1 and in Fig. 3. However, the available data for
points corresponding to species of these other symme-
tries were too sparse to determine scaling lines for them.
Thus, we only display here the data and points for C2

and D2 nonicosahedral fullerenes.
The DFT I value and A value, 7.70 eV and 2.90 eV,
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FIG. 2. Icosahedral fullerene ionization potentials (solid cir-
cles) and electron a�nities (solid squares), as calculated in
this work using density functional theory, are plotted versus
reciprocals of the n-carbon neutral molecules’ average radii,
1/rn. Values are from part A of Table I. The solid, curved line
for ionization potential function I and dashed, curved line for
electron a�nity function A are determined via second-order
regression, for which equations and parameters appear in the
figure. Dotted straight lines present scaling of I and A ac-
cording to a purely classical electrostatic model. Points rep-
resenting the carbon atom would lie on the solid and dashed
lines for I and A, were the axes extended. See text.

respectively, that are calculated for C60 and presented in
part A of Table I each are in reasonably good agreement
with the respective experimental values [2, 3] of 7.57 eV
and 2.65 eV. The relative errors of 1.7 and 9.4 per cent
di↵er considerably, but the absolute errors of concern in
calculating the capacitance via Eq. (1) are small, of the
same sign, and of approximately the same magnitude.
Thus, they nearly cancel in calculating C60. For this
reason, we have seen that substituting a value of C60

determined from the experimental I and A values a↵ects
the capacitance scaling parameters very little, though it
makes the already high R2 value very slightly higher.

The source of the small absolute errors in the C60 de-
tachment energies is believed to arise primarily from the
self-interaction in the DFT local-density approximation.
This self-interaction might be removed, but only with
considerable computational cost. Using a di↵erent den-
sity functional, the e↵ect of the self-interaction was stud-
ied for atoms and small, well-behaved molecules [20]. It
was found that the self-interaction error in the detach-
ment energies decreased as the number of electrons in-
creased. If that is the case here, the e↵ect on the ca-
pacitance scaling of not correcting I and A for the self-
interaction should be negligible. However, even if self-
interaction errors like those seen in C60 were to persist in
I and A for the larger fullerenes, they would be expected

FIG. 3. Nonicosahedral fullerene ionization potentials (solid
circles) and electron a�nities (solid squares) are plotted ver-
sus reciprocals of the n-carbon neutral molecules’ average
radii, 1/rn. Values of In and An are from experimental re-
sults reported in the literature and presented in part B of
Table I. Values of 1/rn are from theory [13, 14]. As in Fig. 2,
the solid, curved line for ionization potential function I and
dashed, curved line for electron a�nity function A are deter-
mined via second-order regression, for which equations and
parameters appear in the figure. Unlike the nonlinear regres-
sion lines in Fig. 2, above, the lines’ intercepts at (1/rn) = 0
were fixed in advance at the value of the graphene work func-
tion, 4.7 eV. See text.

to cancel each other, for the most part, in calculating the
capacitances via Eq. (1). To be sure of the DFT-based
scaling trends, though, we replotted the capacitance scal-
ing line for the icosahedral fullerenes assuming the same
percentage errors in I and A for the larger molecules as
for C60. Then, we replotted again assuming the same
absolute errors in I and A as for C60. In both of these
sensitivity analyses the e↵ects on the capacitance scal-
ing were very small: the linear scaling trend remained
very strong, with no diminishment in the R2 values, and
the regression lines still passed through the point for the
carbon atom.

In Fig. 1, the solid line and the dashed line in the large
graph are fit by linear regression to the icosahedral and
nonicosahedral (rn, Cn) points from parts A and B, re-
spectively, of Table I. The inset within the figure provides
a more detailed view of the nonicosahedral capacitance
scaling line and the points that define it, all of which rep-
resent fullerenes of C2 or D2 symmetry types, as indicated
in the table. Each (rn, Cn) point on the nonicosahedral
scaling line represents values associated with the lowest
energy [18, 19] neutral geometry for that value of n.

In the inset of Fig. 1, it also is seen that the radius-
capacitance point for C76 (open square) falls significantly
below the scaling line. This is because the experimental
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FIG. 4. Sketches for three basic cases, (a)-(c), illustrating
the relationship between the scaling versus 1/rn of the elec-
tron detachment energies I and A (depicted at left) and the
scaling versus rn of the quantum capacitances Cn derived
from those detachment energies (depicted at right). Specif-
ically, the sketches show the manner in which the intrinsic
nonlinearities seen in the quantum electron detachment en-
ergy graphs at left in parts (a) and (c) of the figure, as well as
in Figs. 2 and 3, are associated with the nonclassical, nonzero
intercepts shown in the corresponding capacitance graphs at
right, as well as in Fig. 1. By contrast, as shown in part
(b) above, purely classical linear scaling of the detachment
energies leads the capacitance intercept to vanish. Classical
scaling is not realized for the fullerenes, but is a very good
approximation for molecular wires [6]. See text.

value determined by Boltalina et al. for A76 does not
conform to the trend of increasing value with fullerene
size that those investigators observed for other fullerene
electron a�nities [2]. The discrepancy in this A value is
significant enough that the experimentalists remark upon
it in their paper. For this reason, we did not use points
for the C76 molecule in any of the regressions in this
work. However, we include the C76 point in Fig. 1 for
completeness, along with points for the other fullerenes
of C2 or D2 symmetry for which detachment energies were
measured [2, 3] by Boltalina et al.

Additionally, because the values of In and rn for C76

that appear in Table I are thought to be accurate, we

TABLE I. Quantum capacitances Cn for n-carbon fullerenes
tabulated as a function of their average radii rn. Values of
Cn are calculated via Eq. (1) from each fullerene’s ionization
potential In and electron a�nity An. In part A of the table, In

and An are determined for icosahedral fullerenes via detailed
density functional theory calculations performed in this work,
while in part B they are from experiments on nonicosahedral
fullerenes by Boltalina et al. [2, 3]. Data are tabulated here
only for nonicosahedral fullerenes of C2 and D2 symmetries.
See text.

Number Quantum
of Ioniz- Capacit-

Carbon Average ation Electron ance from Sym-
Atoms, Radiusa, Potl., A�nity, Eq. (1) b, metryc

n rn In An Cn

(Å) (eV) (eV) (+e/V)

A. Icosahedral Fullerenes

60 3.548 7.6996 2.9005 0.2084 Ih

180 6.135 6.9189 3.4520 0.2884 Ih

240 7.073 6.5460 3.5379 0.3324 Ih

320d 8.038 5.7332 4.1975 0.6512 Ih

540 10.553 6.0483 3.9212 0.4701 Ih

720 12.166 5.9342 4.0278 0.5245 Ih

960 14.034 5.7617 4.1097 0.6053 Ih

1500 17.522 5.5736 4.2276 0.7430 Ih

2160 21.014 5.4419 4.3068 0.8810 Ih

B. Nonicosahedral Fullerenes

76e 3.991 7.34 2.89 0.238 D2

80 4.094 7.30 3.17 0.242 D2

82 4.142 7.25 3.14 0.243 C2

84 4.193 7.17 3.14 0.248 D2

86 4.241 7.16 3.23 0.254 C2

90 4.339 7.09 3.27 0.262 C2

94 4.432 6.96 3.21 0.267 C2

96 4.482 6.92 3.28 0.275 D2

98 4.53 6.95 3.26 0.271 C2

100 4.572 6.95 3.32 0.275 D2

a Average radius rn is the arithmetic mean of distances of all the
carbon atoms in a fullerene from a central point within the
molecule, as determined from icosahedral fullerene geometries
optimized in this work and from nonicosahedral geometries due
to Yoshida and Osawa [13, 14].

b Quantum capacitances Cn are reported in +e/V, fundamental
units of positive charge per Volt. Multiplication by
1.602188⇥ 10�19 Coulombs per fundamental unit of charge
converts these capacitances to the more familiar mks units of
Farads. Using these capacitance units, the permittivity of free
space is ✏0 = 5.526350⇥ 10�3 +e/V-Å.

c For nonicosahedral fullerenes, symmetry type is taken from
Shao et al. [18, 19] for the lowest energy fullerene with that
number of carbon atoms.

d C320 has an open-shell electronic structure, unlike that of the
other icosahedral fullerenes listed, which are closed shell.

e C76 point not used in regressions. A better estimate for the
species’ electron a�nity might be A76 = 3.08 eV. See text.

can apply the nonicosahedral fullerene capacitance scal-
ing parameters shown in Fig. 1 to provide an improved
estimate [7, 8] for the electron a�nity, A76 = 3.08 eV.
This estimate is improved in the sense that it would place
the radius-capacitance point for C76 on the scaling line
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with those of the other nonicosahedral fullerenes.
The linear fits that define the icosahedral and nonicosa-

hedral capacitance scaling lines both are very strong, as
seen from the large values of R2 for each displayed in
Fig. 1. Additionally, it is seen there that the icosahedral
and nonicosahedral scaling lines nearly intersect at the
C60 point. This might be explained by observing that
C60 is a kind of “progenitor” structure for both symme-
try types, because it is the only fullerene whose points
all rest on a single sphere. As more carbon atoms are
added to produce larger fullerenes, two growth paths are
possible: either the carbons are added in such a way
as to maintain the high-symmetry, truncated icosahedral
structure of C60, or they are added in such a way as to
reduce the symmetry of the molecule.

We observe further in Fig. 1 that the radius-
capacitance point for the C atom [5] lies right on the
scaling line defined by the (rn, Cn) points for the icosa-
hedral fullerenes, even though the C atom point is not
used in the regression that determines the line. If the
C atom point were to be included in the regression with
the points for the icosahedral fullerenes, though, the cor-
relation coe�cient would increase to R2 = 0.9994. For
this reason, the carbon atom may be thought of as a pro-
genitor capacitive structure for the icosahedral fullerene
capacitors; the icosahedral molecules share a certain sim-
ilarity to the atom in their valence energetics.

The regression lines in Fig. 1 have equations of the
form

C = 4⇡✏0r + C0, (2)

where ✏0 = 5.526350⇥ 10�3 +e/V� Å is the permittivity
of free space. The first term on the right of Eq. (2) is
Faraday’s and Maxwell’s law for spherical capacitors in
classical electrostatics [21, 22]. Thus, the dimensionless
parameter , which determines the slope of the scaling
line, is the analog of a classical dielectric constant, but
for individual fullerene molecules. Equation (2) implies
the values 0.562 and 1.043 for  in the icosahedral and
nonicosahedral cases, respectively. A strikingly nonclas-
sical [5] feature, though, is the additional constant term
C0 that is required to account for the empirically ob-
served nonzero values of the capacitance intercepts at
r = 0 .

In Fig. 2, the icosahedral fullerenes’ electron detach-
ment energies from part A of the table are plotted ver-
sus the reciprocal of the icosahedral fullerenes’ average
radii. Then, two second-order fits determine the regres-
sion curves through the (1/rn, In) and (1/rn, An) points,
respectively. The values of In and An are seen to progress
smoothly along these curves, from those for C60 at the far
right to very nearly equal intercepts I1⇡A1⇡ 4.7 eV at
1/rn =0 (the limit of very large, macroscopic fullerenes).
There, the energy gap (In�An) vanishes to the accuracy
of the calculations. Such an intercept sometimes is taken
to be an estimator for the work function of graphene [3],
which the carbon surface of a very large fullerene locally
resembles. This is because, in the limit of very large

n and rn, a fullerene’s surface is e↵ectively flat, locally,
and consists of almost purely hexagonal arrangements of
atoms, since it still contains only a small, fixed number of
pentagonal “impurities” (12 for any fullerene). The limit-
ing value of 4.7 eV determined here is in close agreement
with prior estimates of 4.6 eV for the work function of
graphene [23] and graphite [24], which are thought to be
approximately equal.

Figure 3 analogously plots data from part B of Table I
for the nonicosahedral fullerenes. A di↵erence in the fit-
ting procedure for Fig. 3, though, is that we fixed the
intercepts with the energy axis at the value of the work
function of graphene: I1=A1=4.7 eV. Then, we per-
formed the regression analyses to determine the curves.

The curves in Figs. 2 and 3 are fit with high confi-
dence to the points via second-order regression, defining
polynomial expansions:

In = I1 + �I(1/rn) +
1
2
⌧I(1/rn)2 (3a)

An = A1 + �A(1/rn) +
1
2
⌧A(1/rn)2. (3b)

Parameters �k and ⌧k represent the slopes and cur-
vatures, respectively, of the detachment energy scaling
curves. The fact that the progression of the detachment
energies from those of C60 to the limiting values, I1
and A1, occurs along second-order, curved functions of
1/r contrasts with the linear functions of 1/r anticipated
by simple, classical electrostatic models [9, 10], as noted
above.

Such linear functions are displayed in Fig. 2 as the dot-
ted lines that were constructed to connect the I60 point
and the A60 point to I1 and A1, respectively. It is seen
that these classical lines give reasonable approximations
for all the I and A values determined by DFT for the
icosahedral fullerenes. A similarly constructed classical
linear approximation would be even closer to the solid
and dashed scaling curves shown in Fig. 3 for the non-
icosahedral fullerene detachment energies. In fact, the
dotted lines are not drawn in for the classical approx-
imation because they would be too close to the curves
determined by the experimental values, and would ob-
scure them.

The classically expected lines in Fig. 2 have the equa-
tions I=10.642(1/r)+4.7 and A=�6.385(1/r)+4.7. Val-
ues of In and An from along these classically expected
detachment energy functions are used to determine the
classically expected capacitances for each r = rn, and
thereby plot the points (open circles) and their dotted
classical capacitance regression line in Fig. 1, which has
an intercept C0 that vanishes to the accuracy of the data.

By definition, the dotted classical capacitance regres-
sion line in Fig. 1 goes through the radius-capacitance
point for C60. Even so, it is seen that it does not give
good estimates for the capacitances of the other icosa-
hedral fullerenes (along the solid regression line). How-
ever, the dotted classical line provides good quantita-
tive estimates for the capacitances of the nonicosahe-
dral fullerenes (along the dashed regression line). This
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is made particularly clear by the close proximity of the
two scaling lines in the inset of the figure.

In order to preserve the detail presently seen in Fig. 2,
the points for a single carbon atom are not included on
the graph there. Nonetheless, just as the point rep-
resenting the carbon atom or C1 lies on the quantum
capacitance scaling line for the icosahedral fullerenes in
Fig. 1, the points representing C1 (with 1/r1 =1.087 Å�1,
I =11.26 eV, and A=1.26 eV) would be seen to lie on the
icosahedral fullerene quantum scaling curves for I and A
in Fig. 2, were the scales of the axes extended. Inclusion
of these C1 points in the regressions does induce a small
energy gap of approximately 0.3 eV between I and A in
the plot at 1/r = 0. However, fits versus 1/r of fullerene
detachment energies, including the C1 points, both are
very strong, with R2 =0.997 for both I and A. Further,
if the induced gap is eliminated from these fits, by con-
straining both intercepts at 1/r = 0 to assume the value
of the graphene work function, 4.7 eV, the fits continue to
be very strong, with R2 � 0.992 for both curves. Thus,
an additional important result of this work is that both
the quantum capacitances and the electron detachment
energies of icosahedral fullerenes scale smoothly from the
limit of a single carbon atom, through points for C60, to
the points representing a graphene-like structure, in the
limit of n=1 at 1/r = 0.

III. DISCUSSION AND ANALYSIS

Analysis of the foregoing results reveals that the
nonzero quantum capacitance intercepts C0 for the
fullerenes, as seen in Fig. 1, are a consequence of the non-
classical, nonlinear scaling of the electron detachment en-
ergy functions in Figs. 2 and 3, and vice versa. To demon-
strate this algebraically, we substitute Eqs. (3) in Eq. (1),
then expand the result in a geometric series through first
order in rn:

Cn =
⇣ 1

�I � �A

⌘
rn +

1
2

h ⌧A � ⌧I

(�I � �A)2
i
. (4)

To derive this result, we assume that I1 ⇡ A1, so
that their di↵erence vanishes, at least approximately, as
discussed above. Then, order-by-order comparison of
Eq. (4) to Eq. (2) enables us to evaluate in terms of
the slope and curvature of the detachment energy scal-
ing curves the molecular dielectric constant

 =
1

4⇡✏0

⇣ 1
�I � �A

⌘
(5)

and the capacitance intercept

C0 =
1
2

h ⌧A � ⌧I

(�I � �A)2
i

(6a)

= 8⇡2✏20
2(⌧A � ⌧I). (6b)

Equations (4) through (6) involve no classical approxi-
mations.

Now, applying Eq. (6b) to Fig. 2, for example, it is
seen that the curvatures, ⌧A and ⌧I , of the second-order
regression curves for In and An are of opposite sign, so
the two curvatures do not cancel in Eq. (6b) and C0 does
not vanish. Thus, from Eq. (6b), the positive nonzero ca-
pacitance intercept may be regarded as a consequence of
the nonzero curvatures of the detachment energy scaling
curves plotted in Fig. 2. This case also is summarized in
Fig. 4(a).

Evaluating Eq. (6b) for the case depicted in Fig. 3
once again yields a nonzero value of C0. Here, however,
the di↵erence between the curvatures is negative because
⌧I > 0 and ⌧A ⇡ 0. Thus, C0 < 0, as plotted in Fig. 1
and depicted schematically in Fig. 4(c).

Conversely, we also may regard the nonzero curva-
tures for the detachment energy graphs as a consequence
of a nonzero capacitance intercept. Considering only
the valence ionization potential and starting from the
purely classical electrostatic formulas of Smith [9] and of
Leach [10], we may write:

In = I1 + 1/2Cn (7a)

⇡ I1 +
⇣ 1

8⇡✏0

⌘ 1
rn
� 2C0

⇣ 1
8⇡✏0

⌘2⇣ 1
rn

⌘2
. (7b)

The second line in the previous equation follows from
substitution of quantum capacitance equation (2) into
Eq. (7a), then applying a first-order geometric series ex-
pansion to the result. Analogously, using Smith’s [9]
classical expression for the electron a�nity as a starting
point, we may write:

An = A1 � 1/2Cn (8a)

⇡ A1 �
⇣ 1

8⇡✏0

⌘ 1
rn

+ 2C0

⇣ 1
8⇡✏0

⌘2⇣ 1
rn

⌘2
. (8b)

In Eqs. (7) and in Eqs. (8), to obtain the third term
on the right that corresponds to a nonzero curvature like
that observed in the quantum results plotted in Fig. 2, it
is essential that the expansions above utilize both terms
of Eq. (2). This di↵ers from the purely classical expan-
sion procedure employed by Smith [9] and by Leach [10]
that utilizes only the first term on the right of Eq. (2),
e↵ectively setting C0 = 0 in Eqs. (7b) and (8b).

The expressions in Eq. (7b) and Eq. (8b) for the coef-
ficients of the powers of 1/rn can be verified to be rea-
sonably accurate, quantitatively. For example, we ob-
tain from the regression equations in Fig. 1 the values
4⇡✏0 = 4.69 +e/V-Å and C0 = 0.0582 +e/V, in the case
of the icosahedral fullerenes. Using these in Eq. (7b), the
values for the first and second-order coe�cients are 12.82
eV-Å and -19.13 eV-Å2, respectively. These compare fa-
vorably to the respective values 16.61 eV-Å and -20.95
eV-Å2 seen in the regression equation for the accurate
ionization potentials in Fig. 2.

Continuing the derivation, from a comparison of
Eqs. (7b) and (8b) with Eqs. (3a) and (3b), respectively,
one may obtain approximate relations for the slopes and



7

curvatures of I and A with respect to 1/r:

�I = ��A =
1

8⇡✏0
(9)

⌧I = �⌧A = �4C0�
2
I . (10)

Equations (7b) through (10) incorporate quantum e↵ects
in the nonzero curvatures, but can only be approximate
because of the use of the classical expressions in Eqs. (7a)
and (8a) as starting points in their derivations. Nonethe-
less, Eqs. (9) and (10), along with Eq. (3), do provide a
rationale for the near symmetry of I and A as a function
of 1/r that is manifest in both Fig. 2 and Fig. 3.

From the accurate quantum results embodied in the
regression equations within these figures one can verify,
as well, that ⌧I ⇡ �⌧A. In the values of the regression
parameters for the icosahedral fullerenes given in Fig. 2,
there is order of magnitude agreement of ⌧I and ⌧A with
Eq. (10). In Fig. 3, for the nonicosahedral fullerenes,
the approximate agreement with this curvature relation
is manifest if one recognizes there that ⌧A ⇡ 0.

Equation (10) also shows explicitly that a nonzero ca-
pacitance intercept results in a nonzero curvature for I
and for A as a function of 1/rn, as asserted above. Still
further, from that equation it is clear that the sign of the
capacitance intercept C0 and the signs of the curvatures
⌧ of the detachment energy scaling graphs are mutually
related. Thus, for example, just as a positive value of C0

for the icosahedral fullerenes is ensured by (and ensures)
a negative value of ⌧I , a negative value of C0 in the case
of the nonicosahedral fullerenes is associated with a pos-
itive value of ⌧I . This can be verified empirically from
the results in Figs. 1, 2, and 3.

More generally, in Fig. 4, we map out schematically
three major cases of this relationship between the quan-
tum capacitance intercepts and the curvatures in de-
tachment energy scaling graphs. These apply for the
fullerenes studied here and for molecular wires studied in
prior work [6]. Other cases may arise for still other quan-
tum systems. For the cases depicted in Figs. 2, 3, and 4,
the near symmetry in the scaling of I and A about the
work function in the fullerenes strongly resembles that
observed previously for clusters of metal atoms [12, 25]
and a�rms the fullerenes’ classification as semimetals.

Considering the results displayed in Fig. 1 from a more
qualitative viewpoint, the two di↵erent scaling lines for
the di↵erently shaped icosahedral and nonicosahedral
fullerenes, respectively, are consistent with the classical
notion that capacitances depend strongly on the shapes
of capacitors. In this connection, we observe further that
the nonicosahedral fullerene capacitances lie above the
scaling line for the icosahedral fullerenes. This is consis-
tent with the facts that (a) isoperimetric principles [26]
of classical electrostatics indicate that the capacitance of
a conductor of any shape is proportional to the square
root of its surface area, and (b) the more aspherical non-
icosahedral species should have larger surface areas for a
given average radius than do icosahedral fullerenes.

In addition, we see in Fig. 1 that the radius-capacitance
point for open-shell C320 (the ⇥) lies well above the scal-
ing line for the other icosahedral fullerenes, which have
closed-shell valence electron configurations. This outlier
point suggests that electronic structure (esp., the multi-
plicity), as well as the geometric structure of the nuclear
framework, plays an important role in determining the ef-
fective shape and dimensions of a fullerene capacitor. A
related explanation of the inordinately large capacitance
of C320 is that its open-shell electronic structure is more
di↵use. This produces a larger e↵ective radius and sur-
face area of its valence electron distribution for its value
of rn than would a closed-shell electron distribution.

IV. SUMMARY AND CONCLUSIONS

In summary, we have studied the scaling of fullerene
quantum capacitances as a function of their average radii
rn and the scaling of the molecules’ valence electron de-
tachment energies as a function of 1/rn. Detailed density
functional theory calculations of electron detachment en-
ergies for icosahedral fullerenes and results from earlier
experimental measurements of detachment energies for
nonicosahedral fullerenes were employed for this purpose.
Linear scaling was found for the capacitances of both
symmetry types; however, this scaling occurred along two
di↵erent scaling lines, one for icosahedral fullerenes and
one for nonicosahedral fullerenes of D2 and C2 symme-
tries. (See Fig. 1.)

Though linear scaling was found for the capacitances
as a function of rn, nonclassical, nonlinear scaling was
found for the fullerene detachment energies as a function
of 1/rn. These nonlinear trends were seen to resemble
those for clusters of metal atoms. Further, a proof in Sec-
tion III shows that the nonlinear behavior seen in Figs. 2
and 3 for the detachment energies leads to the nonclassi-
cal, nonzero intercepts seen in Fig. 1 for the capacitance
scaling lines. The converse also was proven to be true.

Thus, classical scaling is not realized in the fullerenes.
Classical models [9, 10] commonly employed to represent
their detachment energies and capacitances yield reason-
ably good quantitative estimates, but fail to reproduce
key features of the accurate quantum scaling trends. Es-
pecially, they miss the nonlinearity of the detachment
energies as a function of 1/rn and nonzero intercepts for
the capacitance as a function of rn. They also fail to
account for the di↵erences between the trends for the
icosahedral and nonicosahedral species. Instead, a sim-
ple set of algebraic equations is derived in Section III to
explain these quantum behaviors and the relationships
among them, as well as to contrast them with classically
expected behaviors.

Quantum capacitance scaling of the icosahedral and
nonicosahedral fullerenes also is contrasted with classi-
cally expected capacitance scaling in Fig. 1, while the
departures from classical detachment energy scaling are
shown in Figs. 2 and 3. The relationships discovered be-
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tween the nonclassical detachment energy scaling behav-
iors and the nonclassical features in quantum capacitance
scaling are depicted conceptually in Fig. 4.

Another key finding of this work is that points repre-
senting the carbon atom lie on scaling lines for icosahe-
dral fullerenes, as do points for C60, while the detachment
energy scaling curves also intersect points representing a
graphene-like structure in the limit of very large radius.
Thus, the icosahedral fullerene quantum capacitances
and electron detachment energies all scale smoothly from
a single carbon atom to the graphene limit.

Last, the algebraic formalism derived to show the
connection between nonclassical behaviors in detach-
ment energy scaling and quantum capacitance scaling
for fullerenes should be useful, as well, for interpret-
ing quantum scaling trends for other systems, such as
atoms [5] and diatomic molecules [7]. Similarly, the equa-

tions and conceptual insights developed here may be use-
ful in providing more accurate, simple estimators of elec-
tron detachment energies for other homologous series of
molecules and for still other types of nanostructures.
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