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ABSTRACT  
 
The Flight Procedure Standards Branch (AFS-420) of the 
Federal Aviation Administration (FAA) is responsible for 
developing the criteria to apply to procedures designed 
and implemented in the National Airspace System (NAS). 
With the introduction of the Required Navigation 
Performance (RNP) capability of modern aircraft, 
development of criteria for the containment widths, or 
minimum amount of protected airspace needed, requires 
the accurate statistical analysis of the magnitude of 

position error for these RNP systems. The position error is 
represented by the Total System Error (TSE) which is a 
combination of the Flight Technical Error (FTE) and the 
Navigation System Error (NSE). The NSE is the error in 
position due to navigation such as Global Positioning 
System (GPS), Distance Measuring Equipment 
(DME)/DME, or Very High Frequency (VHF) 
Omnidirectional Range (VOR)/DME. FTE is the 
difference between the position estimated by the Flight 
Management System (FMS) and the desired aircraft 
position.   
 
The magnitude of these errors depend upon whether the 
aircraft is turning, changing speed, flying straight and 
level, the autopilot mode (e.g., engaged) and navigation 
mode (e.g., lateral and/or vertical). This paper focuses 
only on the statistical analysis of FTE for aircraft flying 
straight, final approach segments.  
 
One of the challenges to the statistical analysis of FTE is 
limited availability of empirical data that characterizes 
flights under appropriate conditions. The sample size can 
be increased by using data from along-track locations on a 
flight if the errors between locations are statistically 
independent. Consecutive observations of FTE are, 
however, highly correlated because the position error data 
are used by the FMS to control and reduce future position 
errors. Each flight in the data set can be sampled at 
intervals at which the errors are statistically independent, 
to form a plot of lateral versus vertical errors (a 
billboard). Statistical models are developed based on the 
billboard data with probability density functions (pdfs). 
The normal, three-parameter gamma, and Johnson curve 
pdfs were fitted to the lateral and vertical error data from 
the final approach segment of the approach. 
 
The decision to fit pdfs to marginal data depends on the 
demonstration of independence between the lateral and 
vertical errors. If the non-marginal data can be used, there 
will be more information available for fitting the pdfs. An 
important question is how to accurately determine 
whether the lateral and vertical errors are cross-correlated, 



given that there may be some autocorrelation in the lateral 
and vertical errors.   
 
The autocorrelation in the FTE reduces the number of 
independent degrees of freedom used in testing the 
strength of cross-correlation between the lateral and 
vertical error components of FTE. Failure to consider 
non-zero autocorrelation in the lateral and vertical errors 
causes a higher-than-expected Type I error when testing 
for independence between the lateral and vertical errors. It 
will be more likely to conclude that there is a relation 
between the lateral and vertical errors when in fact there 
is no correlation. Another consequence is that the test on 
the cross-correlation will have more statistical power than 
warranted in the detection of a false null hypothesis. 
 
Monte Carlo simulation was used to investigate the 
effects of non-zero autocorrelation in the lateral and 
vertical errors on the Pearson’s r test statistic for cross-
correlation. Sets of random variables of lateral error, y, 
and vertical error, z, were created which contain specified 
amounts of autocorrelation (lag-1). Critical values as a 
function of Type I error, sample size, and ρy and ρz (i.e., 
the population lag-1 autocorrelation in the lateral and 
vertical errors, respectively) were generated that have the 
correct Type I error. Accurate polynomial estimating 
equations for the critical values were developed.   
 
Multivariate, lag-1 Markov equations for the generation 
of random variables containing cross-correlation and  
lag-1 autocorrelation were derived such that the random 
variation is correctly partitioned between cross-
correlation and autocorrelation. These equations were 
used to assess the power of the Pearson’s r test for cross-
correlation between autocorrelated lateral and vertical 
errors. The multivariate equations are applied to lateral 
and vertical error and can be used to simulate FTE on 
complicated routes (e.g., curved, descending). For 
example, an airplane might be “high” and “right of 
course” on a descending, curved section of a route. 
Finally, the accuracy of the algorithm for selecting the 
Johnson curves for pdf-fitting was evaluated. Johnson 
curves are four-parameter pdfs that are often used to 
characterize skewed, tail-heavy data such as FTE. 
 
INTRODUCTION  
 
The AFS-420 of the FAA is developing containment 
volume criteria for approaches based on RNP equipped 
aircraft for appropriately trained aircrews. For the current 
design of these approaches, known as Special Aircrew 
and Aircraft Approach Requirements (SAAARs), the 
RNP value changes along the approach, reaching a 
minimum of 0.3 RNP.   
 
AFS-420 is developing a model of the containment 
volume with variable physical dimensions to support the 

process of criteria development. The model will be used 
to evaluate the likelihood that an aircraft remains within a 
containment volume (RTCA, 2002) based on lateral, 
vertical, and along-track position error data. 
 
An important aspect of the containment modeling is the 
nature of the random variation in TSE, NSE, and FTE. 
The frequency and magnitude of these errors, measured as 
the aircraft moves along its route, influences the 
likelihood estimate that the aircraft remains in the 
containment volume for a prescribed confidence interval. 
The errors are measured in three-dimensional space such 
that there is an along-track error, a horizontal position 
error taken perpendicular to the track heading (i.e., the 
lateral error), and a vertical error taken perpendicular to 
the altitude profile at a position on the route. The FTE for 
a set of B747 simulations were analyzed, where the FTE 
is the difference between the indicated position and 
desired route (RTCA, 2002). The NSE is the difference 
between the actual and defined routes and the TSE is a 
combination of the FTE and NSE. 
 
The statistical analysis of the FTE provides important 
information for the containment surface modeling because 
FTE is typically larger than NSE. Therefore, it is 
necessary to accurately characterize the probability 
density function and the parameter estimates for the FTE. 
Inappropriate analysis can lead to the overestimation of 
the required containment surface dimensions, which is 
inefficient. The underestimation of containment surface 
dimensions given a stipulated probability causes unsafe 
conditions. 
 
The statistical analysis is more accurate with an adequate 
sample size, the correct use of analysis techniques, and 
suitable probability density functions (pdfs), such as 
Johnson curves. The Johnson curves can be used to model 
FTE data, which typically are skewed and which have 
more mass under the distribution tails than a normal 
distribution. The selection of the Johnson curve is guided 
by an algorithm (Hill et al., 1976) based on the sample 
estimates from the data set. These estimates become more 
accurate given larger sample sizes. The sample size for 
analysis can be increased if the lateral and vertical data 
are uncorrelated (i.e., cross-correlation) and the use of 
marginal data can be avoided.   
 
The goal of this research is to improve the accuracy of the 
statistical analysis of FTE data by: 1) applying different 
pdf models; and, 2) assessing the impact on cross-
correlation tests due to autocorrelation in the lateral and 
vertical FTE. The objectives to meet these goals are: 1) 
creation of a set of critical values to test the significance 
of cross-correlation between the lateral and vertical FTE 
given the presence of autocorrelation in the FTE such that 
the Type I error is correct; 2) development of polynomial 
estimating equations for the newly-developed non-zero 



autocorrelation critical values; 3) an assessment of the 
accuracy of the algorithms by which the Johnson curves 
are selected; and, 4) the derivation and implementation of 
multivariate, first-order Markov equations for statistical 
power simulation of the test on cross-correlation. 
 
ANALYSIS METHODOLOGY 
 
The goal of the data analysis of the lateral and vertical 
flight error data is the ability to infer the probability that 
an aircraft remains within the lateral and vertical 
dimensions of the containment volume. The focus of this 
work is on accuracy, rather than on navigation integrity, 
which stipulates an hourly failure probability rate. The 
probability of exceeding a lateral or vertical distance from 
the route centerline is obtained from a pdf fitted to the 
error data. Similarly, the containment probability (e.g.,  
p = 10-5) can be stipulated, such that the lateral and 
vertical distances are obtained from the respective error 
pdfs. Figure 1 shows the overall analysis approach 
adopted in this work. 
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Figure 1.  Error Analysis Flowchart 
 

The analysis begins by interpolating the lateral and 
vertical error data to a constant distance interval on the 
along-track position data for computation and analysis of 
the autocorrelation in the lateral and vertical error data. 
For the error analysis on a constant-heading, steady-
descent section of flight, sequences of lateral and vertical 
error data were selected based on the absence of trends in 
the data.   
 
Recursive use of lateral and vertical data by the FMS 
causes autocorrelation in the error data. The sample 
autocorrelation function (Haan, 1977) was estimated from 
Equation 1: 

  (1) 

 
The implication of the presence of autocorrelation in the 
lateral and vertical error data is that statistical tests on the 
correlation between lateral and vertical error which 
assume data independence will be inaccurately applied. 
The rectification of this issue is subsequently examined. 
 
The significance of the autocorrelation at the kth lag from 
Equation 1 is tested to determine the distance at which 
lateral and vertical error data can be sampled to construct 
a composite plot of lateral and vertical error data. The null 
hypothesis that the kth lag autocorrelation value, ρk, is not 
statistically different from zero is given in Equation 2:  
 
 0:0 =kH ρ  (2) 

 
The null hypothesis in Equation 2 is evaluated with the 
critical values (i.e., one-tailed test) for some Type I error 
level, α, (Hipel and McLeod, 1994) for the kth lag with 
Equation 3: 
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where k = 1..int(n/4) number of lag values and N-1(α,0,1) 
is the standard normal variate from the inverse cumulative 
normal distribution at α. The null hypothesis at the kth lag 
is rejected if rk > rα,k. Testing the autocorrelation in the 
lateral and vertical errors is performed and the larger 
distance to statistical independence is the interval, dL, 
with which the lateral and vertical data are sampled to 
create the data billboard (Figure 2). 
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Figure 2.  Billboard of Composited Lateral and 
Vertical Error Data (n = 275) 
 
Given that the lateral and vertical error data from a set of 
flights have been sampled to create the data billboard of 
Figure 2, pdfs are fitted to the data and are evaluated. 
Referring to Figure 1, an important step in the analysis is 
the assessment of the cross-correlation between the lateral 
and vertical error data. If the data are found to have a 
significant cross-correlation, then data sets must be 
created within discrete ranges of the lateral and vertical 
error. These restricted datasets are smaller, but control for 
the presence of statistically significant cross-correlation 
between the lateral and vertical error, thereby allowing 
the fitting of marginal pdfs to the data. The implications 
are poorer pdf fits because of the smaller data sets and the 
arbitrary construction of discrete data ranges. If the cross-
correlation is statistically insignificant, then all the error 
data may be used in the respective pdf analyses. 
 
The assessment of the cross-correlation strength between 
the lateral and vertical error data assumes that the data are 
independent within the lateral and vertical error 
sequences. Even though the data are sampled at a distance 
to achieve a statistically independent sequence, 
correlation between observations for a given flight still 
exists and may impact the assessment of the cross-
correlation by reducing the number of degrees of freedom 
used in selecting the cross-correlation critical value. 

 
The effect of correlation within the lateral and vertical 
error data (i.e., autocorrelation) on the cross-correlation 
inference was studied. Examination of the autocorrelation 
functions for the sequential lateral and vertical error data 
suggested that a lag-1 autocorrelated sequence could be 
used to model the data (see Equation 4): 
 

( ) 2
1 1 yyiyyiyi uyy ρσµµρ −++−= −  (4) 

 

where yi is a random variable at its ith observation, ρy is 
the lag-1 autocorrelation between yi and yi-1, µy and σy are 
the mean and standard deviation of y, respectively, and ui 
is a standard normal random variate (Haan, 1977). 
 
Given the assessment of the significance of the cross-
correlation between the lateral and vertical error data and 
the data set selection, pdfs were fitted to the data.  In this 
work, the normal distribution, Pearson Type III and 
Johnson curves were fitted to the data. The choice of 
Johnson curve, and the accuracy of the algorithm by 
which the choice is made, is addressed in the subsequent 
section of this paper. 
 
EVALUATION OF CROSS-CORRELATION IN 
AUTOCORRELATED LATERAL AND VERTICAL 
ERROR DATA 
 
Testing of the significance of cross-correlation between 
the lateral and vertical error is used to evaluate the 
suitability of the marginal error data for the pdf analyses. 
If a statistically significant cross-correlation is inferred 
between the lateral and vertical errors, the pdf analysis is 
based on the marginal data of the lateral and vertical 
errors. Absence of a statistically significant cross-
correlation allows the analysis of the non-marginal error 
data set, which has a larger number of observations. Use 
of the larger non-marginal error data produces a more 
accurate identification of the pdf and its parameter values. 
The subjective selection of the marginal data within a 
range is another source of inaccuracy. 
 
Pearson’s r is used to evaluate the strength of cross-
correlation between the lateral and vertical errors. The test 
statistic is given by Equation 5: 
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where ryz is the correlation coefficient between the lateral 
error, yi, and the vertical error, zi, and n is the number of 
observations in a sample. The null hypothesis  
(Equation 6) of the statistical test is no statistically 
significant cross-correlation between yi and zi: 
 
 0:0 =yzH ρ  (6) 
 
The alternative hypothesis (Equation 7) is significant 
cross-correlation between yi and zi: 
 
 0: ≠yzaH ρ  (7) 
 

ρyz = -0.0225 



The null hypothesis is rejected in favor of the alternative 
hypothesis if the magnitude of the test statistic, |ryz|, is 
larger than the magnitude of the critical value, |rα/2|. 
 
Accurate inference of cross-correlation between the 
lateral and vertical depends on the appropriate use of a 
statistical test. Failure to adhere to or to acknowledge the 
assumptions upon which the statistical test is based may 
cause inaccurate decisions to be made regarding the 
nature of the cross-correlation. Significantly large 
autocorrelation in the FTE reduces the number of 
independent degrees of freedom available for testing the 
strength of the cross-correlation between the FTE 
components. Consequently, the decision to reject the null 
hypothesis of no cross-correlation will be more likely 
incorrect. 
 
In a hypothetical example, the sample test statistic, r, for 
Pearson’s correlation is calculated as 0.3 for a sample size 
of 50. Given a Type I error rate of ten percent and the 
critical value of |rα| =0.235, the decision is to reject the 
null hypothesis (Equation 6) of no significant cross-
correlation in favor of the alternative hypothesis 
(Equation 7). 
 
The decision to reject the null hypothesis of independence 
between the lateral and vertical errors is based on the 
assumption of independence within the error 
observations. Absence of independence within the lateral 
and vertical errors is expected because the control laws in 
the FMS algorithms use past error data in position 
calculations. The use of past data correlates the successive 
error measurements (i.e., autocorrelation) and reduces the 
amount of independent information contained in the data 
(i.e., smaller effective sample size). The critical value for 
testing the cross-correlation must be selected on the basis 
of the smaller effective sample size so that the actual 
Type I error rate accurately reflects the stipulated Type I 
error rate for which the critical value is chosen. 
 
Returning to the example developed above, the error data 
from the FMS may contain autocorrelation between 
successive observations (i.e., lag-1 autocorrelation). If the 
autocorrelation is 0.6 for the lateral and vertical errors, 
then the appropriate cross-correlation critical value is 
0.327 for a ten percent Type I rate and a sample size of 
50. The critical value was developed by simulation for the 
presence of non-zero autocorrelation in the error data such 
that the Type I error rate was preserved. In this instance, 
the decision would be to fail to reject the null hypothesis 
of significant cross-correlation (i.e., |ryz| = 0.3 ≤  
|rα/2| = 0.327). Use of the cross-correlation value of  
|rα/2| = 0.235 produced a two percent Type I error rate, 
instead of the ten percent Type I error rate expected under 
the condition of non-zero autocorrelation. The implication 
of using the critical value given non-zero autocorrelation 

is that the larger set of non-marginal data can be used for 
the pdf identification and analysis.   
 
DEVELOPMENT OF CROSS-CORRELATION 
CRITICAL VALUES GIVEN NON-ZERO 
AUTOCORRELATION 
 
The preceding section identified the need for cross-
correlation critical values that preserve the stipulated 
Type I error rate under the conditions of non-zero 
autocorrelation, (Objective 1 in the final paragraph of the 
Introduction). Non-zero autocorrelation in the lateral and 
vertical error data reduces the independent degrees of 
freedom for testing the significance of the strength of the 
cross-correlation between the lateral and vertical error 
data. This problem can be either resolved by the 
identification of the effective number of independent 
degrees of freedom or by simulation of the critical values 
given non-zero autocorrelation and sample size such that 
the correct Type I decision error is preserved. 
 
Monte Carlo simulation was used to create a set of new 
critical values, rα, that meet these requirements. Standard 
normal random variates were created with the polar 
method (Press et al., 1992). In the Monte Carlo 
simulation, the test statistic, ryz, was repeatedly calculated 
from the random variates zi and yi drawn from standard 
normal distributions (i.e., mean = 0, standard  
deviation = 1). The sample size, n, and lag-1 population 
autocorrelation in the vertical error (ρz) and in the lateral 
error (ρy) were specified. A cumulative frequency 
histogram of the test statistic was created given 3 x 106 
Monte Carlo repetitions for each set of simulation 
conditions (i.e., sample size, Type I error rate, 
autocorrelation values). The critical values were taken 
from the cumulative frequency histogram at specified 
Type I error rate values. 
 
Critical values were estimated for sample size values of 
25 to 105, step 5 and from 150 to 500, step 50. The Type I 
error rate values for which the critical values were taken 
were 0.9, 0.95, 0.975, 0.99, and 0.995. The 
autocorrelation values were 0, 0.2, 0.4, 0.6, 0.8, and 0.9. 
As a validation check, simulated critical values for zero 
autocorrelation in zi and in yi were compared to the 
published critical values as a function of sample size and 
Type I error rate and were found to be accurate to ≤ 10-3. 
 
The permutation of the simulation parameter values 
created a large number of critical values. A fourth-order 
polynomial equation was fitted to the new set of critical 
values to facilitate usage and to remove or reduce reliance 
on the extensive set of tabulated critical values  
(Objective 2 in the final paragraph of the Introduction). 
The polynomial equation accurately estimates the critical 
values, rα, as a function of sample size, n, and the lag-1 
autocorrelation in the yi and zi random variables (i.e., ρy 



and ρz) for a given Type I error (i.e., α) value. The 
polynomial estimating equation is given in Equation 8: 
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where rα0 is the critical value at ρy = ρz = 0 given some 
Type I error level, α, and sample size, n. Equations for 
estimating rα0 and the remaining polynomial coefficients 
were determined graphically as functions of sample size. 
The rα0 term was estimated by Equation 9: 
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The coefficients b1, b2, and b3 were estimated by 
Equations 10, 11, and 12: 
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Table 1 gives the estimates of the polynomial coefficients 
for Type I error rates of 0.9, 0.95, 0.975, 0.99, and 0.995.  

Table 1 also gives the goodness-of-fit statistics for each 
polynomial approximation of the critical values at each 
Type I error rate. The polynomial coefficient values were 
found by minimization of the squared sum of errors 
between the observed and predicted critical values, for 
901 critical values. 
 
Referring to Table 1, the standard error of the estimate, 
Se, is less than 0.005. The relative error (Se/Sy) measures 
are less than 3.5 percent, further indicating that the 
polynomial estimating equations are very accurate. The 
maximum error between the simulated critical values and 
the corresponding values estimated from the polynomial 
equations was 0.015.  
 
An example calculation with the polynomial estimating 
equations is given. Following the example given in the 
preceding section, the critical value is estimated for a 
sample size of 50, a ten percent Type I error rate, and 
lateral and vertical autocorrelation values of 0.6. From 
Table 1 at 1-α = 0.95 (upper tail), the coefficients  
a0 = 1.7410 and a1 = -0.5090 are used in Equation 9 to 
estimate rα0 = 0.2373, which is very close to the tabulated 
value of 0.237. With the remaining coefficient values in 
the same column of Table 1, Equation 10 through 
Equation 12 were used to estimate b1 = 0.34861,  
b2 = 0.03786, and b3 = 0.30302, respectively. Given the 
values of b1, b2, b3, and rα0, the polynomial estimate of rα 
is 0.321 from Equation 6 which is close to the simulated 
value of 0.327. 
 

 

Table 1.  Polynomial Coefficient Values for Critical Value Estimation, with Goodness-of-Fit Statistics 

Type I Error Level α 0.9 0.95 0.975 0.99 0.995 

Standard error of estimate Se 0.0032 0.0036 0.0039 0.0042 0.0043 
Critical value standard deviation Sy 0.0910 0.1130 0.1280 0.1440 0.1533 
Relative error Se/Sy 0.0346 0.0314 0.0301 0.0288 0.0277 

a0 
a1 

1.3890 
-0.5140 

1.7410 
-0.5090 

2.0280 
-0.5050 

2.3330 
-0.5000 

2.5220 
-0.4960 

c1 
c2 
c3 

0.3050 
-4.4700 
-4.9780 

0.3440 
-3.7390 
-3.0380 

0.3760 
-10.4320 

1.1380 

0.4140 
-9.1810 
5.4880 

0.4380 
-11.3310 

7.3570 
d1 
d2 
d3 
d4 

8.8740 
0.5710 

109.4640 
-0.5780 

11.9320 
0.6400 

109.3790 
-0.6410 

17.0700 
0.6120 

139.4670 
-0.7040 

22.4270 
0.6440 

148.0110 
-0.7780 

26.0940 
0.6700 

151.0340 
-0.8220 

Polynomial 
Coefficient 
Values 

e1 
e2 
e3 
e4 

-20.2870 
-12.4560 
-0.4350 
0.6280 

-35.1210 
-11.6080 
-1.2860 
0.6990 

-46.3930 
-16.3490 
-1.2980 
0.7480 

-67.8740 
-16.0540 
-2.1610 
0.8170 

-100.4550 
-30.2750 
-2.0220 
0.8530 

 



FITTING OF JOHNSON CURVES TO LATERAL 
AND VERTICAL ERROR DATA 
 
The objective of the analysis is the characterization of the 
statistical distributions of the lateral and vertical error 
data. The identification of the pdf and the estimates of its 
parameters is performed on the lateral and vertical error 
data after the assessment of the strength of the cross-
correlation and the data set selection (see Figure 1). 
 
The Johnson curves (Johnson, 1965; FAA, 2003) are 
often applied to FTE and TSE data. The preference for the 
Johnson curves over the normal pdf is based on the ability 
to characterize data that are skewed and that have more 
mass in the extremes (i.e., thick tailed) relative to the 
normal pdf. The Johnson curves are based on transformed 
normal distributions and have three major types: the SL, 
SB, and SU curves.   
 
A random variable from the Johnson SL (i.e., log-normal) 
distribution, xSL, is related to a standard normal variate, 
xSNV, by Equation 13: 
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where γ, η, ε, and λ are the parameters of the Johnson SL 
curve to be estimated (Hahn and Shapiro, 1994). The γ, η, 
δ, and λ parameters are estimated by an algorithm 
developed by (Hill et al., 1976). The parameter ranges for 
the Johnson SL curve are xSL ≥ δ, η > 0, -∞ < γ < ∞,  
λ > 0, and -∞ < xSL < ∞ (Hahn and Shapiro, 1994). 
The Johnson SB curve is given by Equation 14: 
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for the range of δ ≤ xSB ≤ δ + λ for a Johnson SB 
distributed random variable, xSB. 
 
Finally, the Johnson SU curve is given by Equation 15: 
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for the range of -∞ < xSU < ∞ for a Johnson SU distributed 
random variable, xSU. 
 
The results of fitting the normal, three-parameter gamma, 
and Johnson curve distributions to the billboard of lateral 
error data (see Figure 2) are shown in Figure 3.  Referring 
to Figure 3, it can be seen that the normal distribution was 
fitted to the lateral error data with µ ≈ -0.028 nmi and  
σ ≈ 0.03 nmi for 275 data points. The three-parameter 

gamma pdf (i.e., Pearson Type III) was also fitted to the 
lateral error data with standardized skew, γs, ≈ -0.516. 
Finally, the Johnson SU curve was selected and fitted to 
the data with β1 ≈ 0.243 and β2 ≈ 5.107, where β1 and β2 
are the relative skew and relative kurtosis estimates, 
respectively, that are used to select the Johnson curve type 
are given in Equation 16 and 17: 
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where sx is the sample standard deviation of a random 
variable xi of size n.   
 
Johnson curves allow the characterization of skewed data 
with “thick tails”. Referring to Figure 3, it can be seen 
that the normal distribution (dotted curve) underpredicts 
the frequencies in the tails of the data histogram. By 
contrast, the Johnson SU curve is a better match (solid 
line) to the data histogram. 
 

 
Figure 3.  Lateral Error Data and PDF Fits 
 
The implication of relying on the normal pdf to 
characterize the error data, instead of using the Johnson 
curves, is an underprediction of the probability of 
transgressing from the containment surface. For example, 
in the data of Figure 3, the distances estimated from the 



normal pdf at a 10-5 probability are -0.161 and 0.105 nmi. 
These distances correspond to a 10-3 exceedence 
probability according to the Johnson SU pdf. In this 
example, the reliance on the distances derived from the 
normal pdf at a 10-5 probability would underestimate the 
true risk of transgressing the containment surface by a 
hundredfold factor. 
 
EVALUATION OF THE ACCURACY OF THE 
JOHNSON CURVE SELECTION ALGORITHM 
 
The selection of one of the Johnson curves (i.e., SL, SB, 
or SU) is based on the sample estimates of the relative 
skew, β1, and the relative kurtosis, β2, with the β1-β2 
surface of Figure 4. Figure 4 is redrawn and adapted from 
Hahn and Shapiro (1994) and the algorithms in Hill  
et al. (1976). The procedure for the graphical curve 
selection entails finding the region in Figure 4 where the 
sample estimates of β1 and β2 plot. For example, if β1 ≈ 1 
and β2 ≈ 6, the Johnson SU curve is indicated. The SB 
curve is selected if β1 ≈ 2 and β2 ≈ 4. The line separating 
the SU region from the SB region describes data 
characterized by the SL (i.e., log-normal) distribution. 
 

 
Figure 4.  The β1- β2 Surface for Johnson Curve 
Selection 
 
A logical question with regard to the use of Figure 4 is: 
“How far from the SL line can a sample distribution be, 
given the sample estimates of β1 and β2, and still be 
considered characterized by the SL distribution instead of 
another curve?” The answer to this question begins with 
the evaluation of the accuracy of the Johnson curve 
selection procedure given by Hill et al. (1976)  
(Objective 3 in the final paragraph of the Introduction). 
This algorithm provides for the selection and parameter 
estimation of the Johnson curves from data based on 
sample estimates of β1 and β2.  Figure 5 shows the curve 
selection logic from Hill et al. (1976).  
 

Johnson curve selection occurs at the decision node in 
Figure 5 (Hill et al., 1976): 
 
 εβ <− 2U  (18) 
 
where U is defined by: 
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If Equation 18 is true, the SL distribution is selected. If  
U – B2 > ε, then the SB distribution is selected; otherwise, 
the SU distribution is chosen. An important decision 
parameter in the selection procedure of Figure 5 is the 
scalar quantity ε, which is a tolerance set at 10-2 in the 
algorithm. 
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Figure 5.  Procedure for Choosing Johnson Curves 



A simulation study assessed the ability of the Hill et al. 
(1976) algorithm to correctly identify a data set as 
Johnson SL distributed, given that the data created from a 
SL distribution. Monte Carlo simulation was used to 
count the number of correct and incorrect identifications 
of data sets of size 500, 103, and 104 drawn from the SL 
distribution. For each simulation experiment, 3x104 
realizations were used. The tolerance, ε, was varied to 
inspect its effect on the accuracy  
(i.e., ε = {0.01, 0.05, 0.1, 0.5}). 
 
Johnson SL distributed random variates, xSL, were 
generated by Equation 22: 
 
 ( )LSNVLSL xx µσ += exp  (22) 
 
where xSNV is a random variate drawn from N(0,1) and µL 
and σL are the population mean and standard deviation, 
respectively, for the log-normal (or SL) parent 
distribution. Equation 13 degenerates to Equation 22 for  
γ = 0, η = 1/σL, µL = 0, δ = 0, λ = 1. In this simulation 
study, µL = 0 and σL was varied (i.e., σL = {0.01, 0.1, 0.2, 
0.3, 0.4, 0.5}) to inspect the effect of increased variability 
on the accuracy of the algorithm. For an infinite sample 
size, increasing σL from zero moves the β1,β2 coordinate 
out along the Johnson SL line in Figure 5 and away from 
β1 = 0, β2 = 3. The Johnson SL line is described by 
Equation 19 through Equation 21. 
 

Referring to Table 2, the simulation results are presented 
as the percent correct and incorrect identifications of the 
SL-distributed data sets for n = 500, for four of the curve 
types in Figure 5 (i.e., SL, SU, SB, and normal). The 
results for each curve type are organized by tolerance 
(i.e., rows) and by the SL population standard deviation 
(i.e., column). It is clear for σL > 0.1 (i.e., beyond  
β1 ≈ 0, β2 ≈ 3 in Figure 4), that the algorithm misidentifies 
the SL distribution with a high frequency. 
 
This occurs because the sample data have estimates of β1 

and β2 that are near the parent values for the normal 
distribution (i.e., β1 = 0, β2 = 3). The ability of the 
algorithm to correctly identify the SL curve improves as 
σL increases and then diminishes as explored in the 
following paragraph. 
 
Table 3 gives the sample estimates of the mean and 
standard deviation of β1 and β2 as a function of σL for  
n = 500.  As the value of σL increases from 0.01 to 0.5, 
the simulated average estimates of β1 and β2 create a 
trajectory that parallels the SL line on Figure 4, as 
described by the solid dotted symbols for sample size  
of 500. 
 

Table 2.  Johnson SL Curve Identification Percentages by the Hill et al. (1976) Algorithm, Sample Size of 500 

 Log-Normal Standard Deviation 
Curve Type Tolerance 0.01 0.1 0.2 0.3 0.4 0.5 

0.01 91.04% 97.53% 57.12% 3.29% 0.09% 0% 
0.05 61.11% 94.48% 56.04% 2.48% 0.04% 0.03% 
0.1 32.24% 88.93% 56.49% 2.93% 0.22% 0.17% 

Johnson SL 

0.5 0.00% 0.02% 6.03% 4.31% 1.18% 0.65% 
Tolerance 0.01 0.1 0.2 0.3 0.4 0.5 

0.01 0.00% 0.00% 0.34% 1.05% 1.08% 0.58% 
0.05 0.00% 0.00% 0.09% 1.15% 0.92% 0.41% 
0.1 0.00% 0.00% 0.01% 1.38% 1.06% 0.38% 

Johnson SU 

0.5 0.00% 0.00% 0.21% 0.51% 1.08% 0.24% 
Tolerance 0.01 0.1 0.2 0.3 0.4 0.5 

0.01 0.10% 2.00% 41.46% 94.53% 98.08% 98.85% 
0.05 0.03% 2.50% 40.06% 89.58% 94.31% 96.69% 
0.1 0.04% 1.15% 35.42% 80.80% 88.93% 93.96% 

Johnson SB 

0.5 0.05% 0.32% 12.58% 44.14% 58.61% 72.95% 
Tolerance 0.01 0.1 0.2 0.3 0.4 0.5 

0.01 8.84% 0.41% 0.00% 0.00% 0.00% 0.00% 
0.05 38.86% 2.68% 0.00% 0.00% 0.00% 0.00% 
0.1 67.70% 9.44% 0.00% 0.00% 0.00% 0.00% 

Normal 

0.5 99.81% 97.98% 48.86% 1.34% 0.00% 0.00% 
Note: Balance in ST curve comprises 100 percent for each entry. 



Table 3.  Estimates of β1 and β2 for Johnson SL Distributed Data, Sample Size = 500 

 Sample Relative Skew Sample Relative Kurtosis 
Standard Deviation, σL Average Standard Deviation Average Standard Deviation 

0.01 (point “A”) 0.0128 0.0185 3.0031 0.2174 
0.1 (point “B”) 0.1025 0.0753 3.1576 0.3068 
0.2 (point “C”) 0.3894 0.1939 3.6459 0.6155 
0.3 (point “D”) 0.9098 0.4243 4.5482 1.2296 
0.4 (point “E”) 1.7606 0.8849 6.0078 2.2252 
0.5 (point “F”) 3.0426 1.9298 8.1877 4.3424 

 
 

Shown also on Figure 4 are the simulated sample 
averages of β1 and β2 for n = 103 (asterisks) and n = 104 
(open circles).  As the sample size increases, the sample 
averages of β1 and β2 approach the population β1-β2 line 
for the SL distribution as defined by Equation 19 through 
Equation 21.  The implication of this shift with increasing 
sample size is that the decision rule of Equation 18 from 
Hill et al. (1976) will be inaccurate for samples sizes less 
than 103, as indicated by the results in Table 2 for  
n = 500. 
 
The estimates of the standard deviation of β1 and β2 

increase with σL (see Table 3). The increase in variability 
of β1 and β2 with σL reduces the accuracy of the Johnson 
SL curve selection algorithm. The loss of accuracy as the 
data depart from β1 = 0, β2 = 3 along the SL line is caused 
by the constant tolerance, ε, used in selecting either the 
SL, SB, or SU curve. A more rational curve selection 
algorithm should be developed which does not rely on the 
use of a constant tolerance. An improved algorithm 
should use a tolerance that depends on sample size and 
position along the SL line for curve selection. 
 
POWER SIMULATION WITH 
AUTOCORRELATED AND CROSS-CORRELATED 
ERROR DATA 
 
Statistical inference and decision-making based on finite-
size data sets is error-prone. The more common error type 
is the chance of rejecting a true null hypothesis (i.e., the 
Type I error). The Type I error level is controlled by the 
selection of the critical value at some α level. For 
example, if the test statistic exceeds the critical at  
α = 0.05, there is a five percent chance of rejecting the 
true null hypothesis. That is, there is a small chance that 
the test statistic is very large (or very small) due only to 
random variation and finite-size data and not due to an 
attributable influence. 
 
Harder to evaluate is the likelihood of failing to reject the 
false null hypothesis (i.e., the Type II error). In this case, 
the risk is that the test statistic is statistically different 
from the criterion value under the null hypothesis, but the 
decision is to incorrectly accept the null hypothesis. The 

Type II error risk increases as the Type I error level 
decreases. The Type II error risk is also large if there are 
an insufficient number of observations or the data have a 
large variability. A quantity related to the Type II error is 
the statistical power which is defined as 1 – Type II error. 
 
Simulation of statistical power defines the data 
requirements for a statistical test, validates the critical 
values, and defines the reliability of a statistical test to 
discriminate between the true and false null hypothesis 
(Objective 4 in the final paragraph of the Introduction). 
Power simulation is accomplished with the Monte Carlo 
technique. Data sets of sample size n are constructed such 
that the null hypothesis is deliberately falsified. The test 
statistic is computed and evaluated against the critical 
value specified by the Type I error rate and the sample 
size. A Type II error occurs if the decision is to 
incorrectly fail to reject the false null hypothesis. This 
process is repeated for nSim realizations to tally the 
number of Type II errors. The statistical power is found as 
Power = 1 - # Type II errors/nSim. Typically, the value of 
nSim is large (e.g., 106) in order to obtain an accurate 
power estimate.   
 
The null hypothesis is falsified by generating random data 
by choosing non-zero values of the population test 
statistic. For example, a power simulation of Pearson’s r 
applied to independent (i.e., zero autocorrelation) data 
would generate n random values for the independent 
variable, xi. The dependent variable vector, yi, is then 
calculated as yi = ρxy xi, where ρxy ≠ 0. As |ρxy| 
approaches 1, the statistical power approaches 100 
percent. As |ρxy| approaches zero, the statistical power 
approaches α. Therefore, a validation of the critical values 
is the satisfaction of the condition that Power = 100α 
percent given |ρxy| = 0. 
 
Under the case that ρxy = 0, the power simulations were 
accomplished with Equation 4. As demonstrated in the 
section on critical value development, however, the 
presence of non-zero autocorrelation and non-zero cross-
correlation can be expected to partition variability 
between the independent and dependent variables. This 
identifies a need for a set of equations that may be used to 



synthesize simultaneous sets of random variables yi and zi 
that contain lag-1 autocorrelation and have a non-zero 
cross-correlation between yi and zi. Levy (1999) derived 
Equation 23, which is used in the power simulations. 
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Referring to Equation 23, xi,j is a generic random variable. 
The subscript j refers to the xj jth generic random variable; 
the subscript k refers to the xk kth random variable with 
which the random variable xj covaries. For example, if  
j = 1 represents the lateral errors, yi, then k = 2 represents 
the vertical errors, zi. The subscript i represents the ith 
sequential observation of yi or zi. The mean and standard 
deviation of the jth variable are µj and σj, respectively. The 
autocorrelation coefficients for the jth and kth variables are 
ρxj and ρxk, respectively, and ρx(j),x(k) is the cross-
correlation between xj and xk. Finally, the ui,j represents 
the random variation from the standard normal 
distribution with xj and the ui,3 is the variation to be 
partitioned between xj and xk. 
 
Figure 6 shows the contour lines of equal statistical power 
from the simulation of Equation 4 and 23 from the newly-
developed critical values (solid lines) for a five percent 
Type I error level. The contours of equal power for the 
zero-autocorrelation critical values are shown as dashed 
lines for the five percent Type I error level. It can be seen 
that at ρxy = 0, the statistical power is five percent for all 
sample size values for the newly-developed critical 
values. This satisfies the previously stated validation 
condition on the critical values for any level of 
autocorrelation. By contrast, the power is 15 percent for 
the condition of ρxy = 0 for the zero-autocorrelation 
critical values, which is incorrect. Figure 6 also shows 
that the power increases to 1 as the ρxy increases to 1.  
 
Finally, the power simulations show that the statistical 
power from using the newly developed critical values is 
less (e.g., about ten percent) than expected when using the 
zero-autocorrelation critical values. This is rational given 
the expected increase of the Type I error level to its 
correct, stipulated value when using the newly-developed 
critical values in the presence of non-zero autocorrelation. 
 
CONCLUSIONS 
 
The development of containment surface criteria depends, 
in part, on the accurate analysis of the statistics of flight 
technical error. Failure to properly apply the appropriate 
statistical analysis techniques may result in unreliable 
lateral and vertical distance estimates for containment 
modeling. Another possible unsatisfactory outcome may 
be the over-estimation of containment distances, resulting 

in the inefficient use of airspace or unnecessarily 
restrictive conditions on the route use and deployment. 
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Figure 6.  Contours of Statistical Power for Non-Zero 
Autocorrelation and Zero-Autocorrelation Critical 
Values (α = 0.05, ρx = ρy = 0.6) 

 
Part of accurate modeling of flight technical error 
involves the assessment of the strength of cross-
correlation between the lateral and vertical errors. This 
assessment may be made inaccurate by the presence of 
autocorrelation in the errors, leading to an increased 
likelihood of rejecting the true null (i.e., no cross-
correlation) hypothesis. The result of such a decision is to 
reduce the data set size, which leads to a more inaccurate 
identification and estimation of pdf parameters. This 
inaccuracy is accompanied by a higher than warranted 
level of statistical power. Furthermore, the accuracy of the 
algorithm for Johnson curve selection is not known, 
despite the attractiveness of the Johnson curves for  
pdf-fitting to the error data. 
 
This work has addressed the deficiencies addressed above 
by use of Monte Carlo simulation. A set of critical values 
for testing cross-correlation with Pearson’s r were 
developed that depend on sample size, Type I error rate, 
and lag-1 autocorrelation in the lateral and vertical errors. 
The critical values may be accurately estimated by a 
fourth-order polynomial equation for ease of use. The 
work herein also assesses the power of the Pearson’s r test 
given the newly-developed critical values for non-zero 
autocorrelation and multivariate, lag-1 Markov equations. 
The multivariate Markov used in the power simulation 
may be useful for modeling of flight technical error 
because of the capability to partition variability between 
cross-correlation and autocorrelation. Finally, a 
preliminary study of the Johnson curve identification 
algorithm indicates that it is inaccurate for sample sizes 
less than 103. Improvement in the accuracy of 
identifiability could be made to the algorithm by allowing 



for different sample sizes and changes in variability with 
population pdf parameters. 
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