
© 2014 The MITRE Corporation. All rights reserved. Approved for public release 13-4180

Xeno Kovah
John Butterworth
Corey Kallenberg
Sam Cornwell

Copernicus 2: SENTER the Dragon!

| 2 |

Can a tick1, flea, or other BIOS malware hide
from Copernicus?

§ A common question
§  The answer: yes
§ We built Copernicus to be something “best effort” that could be

deployed quickly with minimal requirements, to try and catch
any firmware malware “with their pants down”
– Where there was darkness, we said “let there be light!” ;)
– When we live in a world where no one is checking their firmware,

any firmware malware need not necessarily fear detection and
thus can be vulnerable to a surprise detect

–  Just the act of existing costs attackers development time/money if
they hadn’t previously provided any self-protection

§ Now let’s see what we need to do to make Copernicus actually
trustworthy

© 2014 The MITRE Corporation. All rights reserved.

1 see our previous BIOS Chronomancy work http://bit.ly/1g0Btz6

| 3 |

Attack 0 – DoS Copernicus

§ Prevent Copernicus from running
§ Possibly easily detected, but what are you going to do about it?

© 2014 The MITRE Corporation. All rights reserved.

| 4 |

Attack 1 – Manipulate Copernicus output

§  From within the OS, targeted hooks into Copernicus code
§  From within the OS with “DDefy” [20] rootkit style hooks into file

writing routines
§  From within the HD controller firmware [21][22][23]
§  From within the OS with a network packet filter driver
§  From within the NIC firmware [24][25]
§ Etc. Lots more options

© 2014 The MITRE Corporation. All rights reserved.

| 5 |

Attack 2 – A new attack.
This has never been presented before.

§  It is possible for SMM to be notified when SPI reads or writes
occur

§ An attacker who controls the BIOS controls the setup of SMM
§  In this way a BIOS-infecting attacker can perform a SMM MitM

attack against those who would try to read the BIOS to integrity
check it

§ We call our SMM MitM “Smite’em, the Stealthy”

© 2014 The MITRE Corporation. All rights reserved.

| 6 |

Smite’em: Engineering a dragon

§ Smite’em is a PoC attack that can MitM reads to the SPI Flash
–  Thus it can conceal its presence even from applications that dump

the SPI flash
–  Like Copernicus, Flashrom, Intel ChipSec, McAfee DeepDefender,

Raytheon Pikeworks' firmware forensics, AFRL's stuff, etc
§ Multiple ways to design it

–  Interrupt-driven – FSMIE bit
–  Polling – SCIP/FDONE bit
–  VMX-based
–  Targeted at specific defensive software

© 2014 The MITRE Corporation. All rights reserved.

| 7 |

SPI (Serial Peripheral Interface) Flash

§  Intel provides a
programmable interface to
the SPI flash device
–  System BIOS lives here
– Other stuff does too

§ Copernicus programs this
interface to dump a binary
of the SPI flash

Intel IO Controller Hub 10 Datasheet, page 31

© 2014 The MITRE Corporation. All rights reserved.

| 8 |

Programming the SPI Flash

§  SPI Host Interface registers are memory-mapped at an offset in the
RCRB (Root Complex Register Block)

§  An app can choose either Hardware Sequencing or Software
Sequencing
–  For simplicity of discussion, we’ll be referring to only those operations/

details pertaining to Hardware Sequencing
§  Software Sequencing just offers a little more fine-grain control

–  All SPI registers in the following slides are from:
–  http://www.intel.com/content/www/us/en/io/io-controller-hub-10-family-

datasheet.html

© 2014 The MITRE Corporation. All rights reserved.

| 9 |

SPI Programming Flash Address Register

§ Specifies starting address of the SPI I/O cycle
–  Flash address, not a system RAM address
–  Valid range is 0 to <size of flash chip – 1>

© 2014 The MITRE Corporation. All rights reserved.

| 10 |

SPI Programming Data Registers

§ Contains the data read from the SPI flash (up to 64 bytes)
§ R/W (since it can be used to specify data to write to flash)
§ Smite’em overwrites this data from within SMM

…

© 2014 The MITRE Corporation. All rights reserved.

| 11 |

SPI Programming Control Register

§  Initiates the SPI I/O cycle
– Used by programming app (Copernicus)

§ Defines the number of bits to read (or write) in the I/O cycle

© 2014 The MITRE Corporation. All rights reserved.

| 12 |

SPI Programming Status Register

§  Indicates that an SPI I/O cycle is in progress
§ Set automatically by hardware

© 2014 The MITRE Corporation. All rights reserved.

| 13 |

§  Indicates the SPI I/O cycle has completed
§ Smite’em polls this bit to ensure the SPI I/O cycle has completed

before forging the data in the FDATA registers

SPI Programming Status Register 2

© 2014 The MITRE Corporation. All rights reserved.

| 14 |

§  This is what allows an attacker in SMM to know when someone
is trying to access the flash chip

§  The Flash Cycle Done bit is set to 1 after every read and write

Eye of the dragon - FSMIE - hw sequencing

© 2014 The MITRE Corporation. All rights reserved.

| 15 |

Eye of the dragon - FSMIE - sw sequencing

§ And here’s the bit that gives the same functionality if someone
is using software sequencing to access flash

© 2014 The MITRE Corporation. All rights reserved.

| 16 |

Reading the flash chip in the presence of
Smite'em

§ Copernicus sets up the location it wants to read (as part of
reading the entire chip) and how many bytes to read

FADDR=00000…
FDATA0=00000…

FDONE=0

SCIP=0
FCYCLE=0

FGO=0
FSMIE=1

SMM

Smite'em

FADDR = 0x1000, FCYCLE=00(read)

FDBC = 111111b (64 byte read) Ring 0

Smite'em

© 2014 The MITRE Corporation. All rights reserved.

| 17 |

Reading the flash chip in the presence of
Smite'em

§ Copernicus says to start the read

FADDR=0x1000
FDATA0=00000…

FDONE=0

SCIP=0
FCYCLE=0

FGO=0
FSMIE=1

SMM

Smite'em

FGO=1 Ring 0

Smite'em

© 2014 The MITRE Corporation. All rights reserved.

| 18 |

Reading the flash chip in the presence of
Smite'em

§ Cycle in progress

FADDR=0x1000
FDATA0=00000…

FDONE=0

SCIP=1
FCYCLE=0

FGO=1
FSMIE=1

SMM

Smite'em

Ring 0

Smite'em

© 2014 The MITRE Corporation. All rights reserved.

| 19 |

Reading the flash chip in the presence of
Smite'em

§ Once the cycle is done, and the data is available for reading, if
the FSMIE = 1, an SMI is triggered, giving Smite'em the first look

FADDR=0x1000
FDATA0=0x1badd00d

FDONE=1

SCIP=0
FCYCLE=0

FGO=0
FSMIE=1

SMM

Smite'em

SMI

Ring 0

Smite'em

© 2014 The MITRE Corporation. All rights reserved.

| 20 |

Reading the flash chip in the presence of
Smite'em

§ Smite'em can change any data that would reveal its presence to
the original benign data

FADDR=0x1000
FDATA0=0x1badd00d

FDONE=1

SCIP=0
FCYCLE=0

FGO=0
FSMIE=1

© 2014 The MITRE Corporation. All rights reserved.

SMM

Smite'em
FDATA0=0xf005ba11

Ring 0

Smite'em

| 21 |

Reading the flash chip in the presence of
Smite'em

§ Copernicus 1 (or any other flash reading software) will be
mislead

FADDR=0x1000
FDATA0=0xf005ba11

FDONE=1

SCIP=0
FCYCLE=0

FGO=0
FSMIE=1

© 2014 The MITRE Corporation. All rights reserved.

SMM

Smite'em

Read FDATA0

0xf005ba11
Ring 0

Smite'em

| 22 |

What you don't know can bite you

§  If you don't account for hw/sw sequencing's FSMIE bit (as no
previous software did), you will just lose and provide false
assurances of a lack of BIOS compromise

§  The basic solution would seem to be just for querying tools to
set FSMIE = 0 before trying to read

§ Multiple ways for an adversary to counter
–  Kernel agent continuously setting FSMIE = 1
§  So you just clear it and check if it's getting re-set, and if so…?

–  VMX interception of MMIO to SPI space, falsifying that you
successfully cleared FSMIE
§  But then if they're using VMX too, they can also just directly forge

FDATA
–  Target your security software specifically
§  If your tool is good enough to detect attacker, he's incentivized to go

after you specifically
© 2014 The MITRE Corporation. All rights reserved.

| 23 |

Terror at 35,000 feet (aka high level overview)

§  Let's assume that Smite'em wants to pick the most generic,
lowest-effort way to avoid detection (i.e. doesn't want to use
VMX until absolutely necessary)

§ Smite'em recruits an Avatar
– Could be kernel-based code or a DMA device and independent of

CPU
§ Avatar polls SPI cycle registers to detect if an SPI cycle is in

progress
§ Upon detecting an SPI cycle in progress, the Avatar triggers an

SMI
§ Smite’em in SMRAM replaces data read from flash before

Copernicus can read it

© 2014 The MITRE Corporation. All rights reserved.

| 24 |

Smite’em Operation 1

§ Agent polls the SPI Cycle in Progress bit in the HSFC register
–  Prefereably independent of the CPU (located on external device

(PCI or otherwise)
§ When it detects an SPI cycle in progress (H/W automatically sets

this bit), it triggers an SMI
§ System transitions to SMM; Copernicus and all other processes

are temporarily suspended
– MitM occurs in SMM to remove a race-condition where Copernicus

reads the data before Smite'em can forge it

© 2014 The MITRE Corporation. All rights reserved.

| 25 |

Smite’em Operation 2

§ Waits for the SPI cycle to complete (SPI will complete
independent of CPU)

§ Compares the SPI range in FADDR register with the ranges in
SPI it needs to forge
–  FADDR address + # specified bits in HSFC equates to a range
– Could just assume 64 bytes for simplicity

§  If the ranges overlap, it writes the forged bytes to the FDATA
registers
–  Either pick and choose which FDATA registers or assume 64 byte

SPI cycles and overwrite them all

© 2014 The MITRE Corporation. All rights reserved.

| 26 |

Reading the flash chip in the presence of
Smite'em

§ Copernicus sets up the location it wants to read (as part of
reading the entire chip) and how many bytes to read

FADDR=00000…
FDATA0=00000…

FDONE=0

SCIP=0
FCYCLE=0

FGO=0
FSMIE=0

© 2014 The MITRE Corporation. All rights reserved.

SMM

Smite'em

FADDR = 0x1000, FCYCLE=00(read)

FDBC = 111111b (64 byte read) Ring 0

Smite'em

Av
at

ar

| 27 |

Reading the flash chip in the presence of
Smite'em

§  Then says go

FADDR=0x1000
FDATA0=00000…

FDONE=0

SCIP=0
FCYCLE=0

FGO=0
FSMIE=0

SMM

Smite'em

FGO=1 Ring 0

Smite'em

Av
at

ar

© 2014 The MITRE Corporation. All rights reserved.

| 28 |

Reading the flash chip in the presence of
Smite'em

§ Copernicus sets up the location it wants to read (as part of
reading the entire chip) and how many

FADDR=0x1000
FDATA0=00000…

FDONE=0

SCIP=1
FCYCLE=0

FGO=1
FSMIE=0

© 2014 The MITRE Corporation. All rights reserved.

SMM

Smite'em

Poll for SCIP=1 and once found

poll faster for FDONE=1 Ring 0

Smite'em

Av
at

ar

| 29 |

Reading the flash chip in the presence of
Smite'em

§ Once it sees the data, it tries not to race with Copernicus, but
instead stops itself and Copernicus by signaling Smite'em with
an SMI

FADDR=0x1000
FDATA0=0x1badd00d

FDONE=1

SCIP=0
FCYCLE=0

FGO=0
FSMIE=0

SMM

Smite'em

SMI

Ring 0

Smite'em

Av
at

ar

© 2014 The MITRE Corporation. All rights reserved.

| 30 |

Reading the flash chip in the presence of
Smite'em

§ Smite'em then cleans up as usual

FADDR=0x1000
FDATA0=0x1badd00d

FDONE=1

SCIP=0
FCYCLE=0

FGO=0
FSMIE=0

SMM

Smite'em

SMI

FDATA0=0xf005ba11

Ring 0

Smite'em

Av
at

ar

Av
at

ar

© 2014 The MITRE Corporation. All rights reserved.

| 31 |

How can we defeat Smite’em?

§ We could utilize our Checkmate[19] timing-based attestation
system[cite] within our Copernicus kernel driver, and incorporate
SMI disabling or FSMIE disabling into the self-check as a new
“untampered execution environment” check

§  But we saw an opportunity to take a more direct path, and
simultaneously get smart on some other trusted computing tech

§  Smite'em lives in SMM, let's disable SMIs
§  But its not sufficient to just disable them from an OS driver,

because an attacker could just nop out our code to do so

§  A side effect of Intel TXT is that it disables SMIs
§  So lets learn about Intel Trusted Execution Technology (TXT)

–  Called “Safer Mode Extensions” (SMX) in the Intel manuals

© 2014 The MITRE Corporation. All rights reserved.

| 32 |

Intel Trusted Execution Technology (TXT)

§ Dynamic Root of Trust for Measurement
§ A means to provide "late launch" trust

–  You had a presumed-compromised system, you start TXT, and
you're left in a state you setup and that you can trust

© 2014 The MITRE Corporation. All rights reserved.

| 33 |

© 2013 The MITRE Corporation. All rights reserved.

From http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-%20slides.pdf

© 2014 The MITRE Corporation. All rights reserved.

| 34 |

How does it work?

§ New Intel instruction “GETSEC”
§  It’s sort of like CPUID in that it’s a single instruction that does

different things based on what the value is in the EAX register at
the time that it’s called

§ EAX = 0; GETSEC[CAPABILITIES] = report the capabilities
§ EAX = 1; GETSEC[ENTERACCS] = run authenticated code (AC)
§ EAX = 2; GETSEC[EXITAC] = stop running AC
§ EAX = 3; GETSEC[SENTER] = Start a Measured Launch

Environment (MLE) – this is the main one we care about, and the
source of the title of this talk

§ EAX = 4; GETSEC[SEXIT] = exit MLE
§ EAX = 5; GETSEC[PARAMETERS] = reports supported AC info
§ EAX = 6; GETSEC[SMCTRL] = turn on SMIs
§ EAX = 7; GETSEC[WAKEUP] = wake up sleeping processors
© 2014 The MITRE Corporation. All rights reserved.

| 35 |

We’re only interested in a subset

§ We have to use GETSEC[CAPABILITIES] and
GETSEC[PARAMETERS] just for sanity checking purposes

§ We mainly care about SENTER and SEXIT to start and stop our
MLE

§ We’re *NOT* going to use SMCTRL or WAKEUP
–  The whole point here is to freeze SMM code in place

© 2014 The MITRE Corporation. All rights reserved.

| 36 |

But…what about ITL’s attacks on TXT?!?!

§  “I thought they broke TXT six ways from Sunday?!?!”
§  “Doesn’t this mean no one can ever trust TXT for anything ever

again?!”
§ No
§  It just means you need to utilize TXT with awareness of the

attacks
§  Lets review their TXT-relevant attacks

© 2014 The MITRE Corporation. All rights reserved.

| 37 |

Feb. 2009 - Attacking Intel Trusted Execution
Technology – Wojtczuk & Rutkowska [5]

§ Had an at-the-time-undisclosed vulnerability to get into SMM
§  Found that SMRAM is not measured as part of the MLE launch
§ Once defender gets into their MLE, they’re encouraged to issue

GETSEC[SMCTRL] to enable SMIs as soon as possible
– Recall that SMM will often handle performance-critical things like

motherboard fan control, so ideally you don’t want to go leaving it
off for a long time

§  Therefore once SMIs are enabled, and the first one is fired, the
attacker regains control, within the context of the MLE
–  They can then potentially subvert a hypervisor/OS that’s being

launched with tboot

© 2014 The MITRE Corporation. All rights reserved.

| 38 |

Does [5] directly affect us?

§ No
§ We’re already using TXT under the assumption that we’re

dealing with compromised SMM
§  Therefore our MLE doesn’t reenable SMIs until we’re done with

everything security-critical
–  This is only an option for us since we're just popping up into TXT

land and then back out as soon as we check a few things

© 2014 The MITRE Corporation. All rights reserved.

| 39 | Dec. 2009 - Another Way to Circumvent Intel®
Trusted Execution Technology – Wojtczuk,
Rutkowska, Tereshkin [6]
§ One of the jobs of the SINIT modules is to sanity check that the

MLE's memory is protected from DMA attacks
§ However there was a bug where it read a 64 bit field as 32 bits
§  The 64 bit address was what was actually protected, and the

attacker just had to make sure the bottom 32 bits were the same
as the MLE 32 bits, and the sanity check would pass

© 2014 The MITRE Corporation. All rights reserved.

| 40 |

Does [6] directly affect us?

§ No
§  Intel released patched SINIT modules for all their chipsets [cite/

link]
§ We use the latest patched one
§ But also because we don't use the VT-d protection, we use the

TXT special "DMA Protected Region", which as Intel says is
–  This is only an option for us because we're loading a small amount

of code. If we were trying to launch/protect a hypervisor, we would
have to use VT-d

© 2014 The MITRE Corporation. All rights reserved.

| 41 | Dec. 2011 - Exploring new lands on Intel
CPUs (SINIT code execution hijacking) -
Wojtczuk & Rutkowska [7]
§ A critical component of TXT is the use of the ACMs.
§  The ACM which is used during an SENTER is the “SINIT” ACM

binary blob that you have to map into memory and give the base
address to SENTER in register EBX

§ SINIT sanity checks that the environment is correctly setup and
conducive to

§ But at the end of the day it’s still just signed x86 code!
§  x86 code that does parsing!
§  x86 code that does parsing that ITL found a buffer overflow in!
§  :O

© 2014 The MITRE Corporation. All rights reserved.

| 42 | Dec. 2011 - Exploring new lands on Intel
CPUs (SINIT code execution hijacking) -
Wojtczuk & Rutkowska [7]
§  The last, and arguably the best, of all of ITL’s attacks ever
§  The buffer overflow occurs when SINIT is parsing the DMA

Remapping (DMAR) ACPI (Advanced Configuration and Power
Interface) table, which is set up by BIOS
–  In this way there is an unfortunate dependancy of the DRTM on

the SRTM
– We’ve shown the flawed nature of current SRTMs in our BIOS

Chronomancy work [18]

© 2014 The MITRE Corporation. All rights reserved.

| 43 |

Does [7] affect us?

§ No
§  Intel released patched SINIT modules for all their chipsets [cite/

link]
§ We use the latest patched one
§ BUT…

© 2014 The MITRE Corporation. All rights reserved.

| 44 |

Purging the sin in SINIT

§ All we can do is pray there are no more bugs in the SINIT code
– Or evaluate it ourselves… but Intel says that's not allowed in the

EULA…"yay trusted computing" :-/
–  An SINIT module is maybe around 5k instructions based on its

size. Hopefully there won’t be *that* many more errors ;)
§  Compare this to our timing-based[18][19] code's root of trust, which is

about 60 instructions per block, 8 variant blocks, and open source

§ Obviously just hoping that there are no more bugs and the
attacker can’t get in is anathema to our stated goal with our
timing-based attestation work, that we want to assume the
attacker is at the same privilege level as us

§ But we’ll go with it for now as a risk we have no choice but to
accept in order to play with this technology

© 2014 The MITRE Corporation. All rights reserved.

| 45 |

Lets build this thing!

© 2013 The MITRE Corporation. All rights reserved.

| 46 |

Copernicus 1 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

SPI Flash Chip

UEFI BIOS Firmware

Copernicus.sys

PCH

© 2014 The MITRE Corporation. All rights reserved.

| 47 |

Copernicus 1 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

SPI Flash Chip

UEFI BIOS Firmware

Copernicus.sys

PCH

© 2014 The MITRE Corporation. All rights reserved.

| 48 |

Copernicus 1 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

SPI Flash Chip

UEFI BIOS Firmware

Copernicus.sys

PCH

© 2014 The MITRE Corporation. All rights reserved.

| 49 |

Smite’em Attacks!

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

SPI Flash Chip

UEFI BIOS Firmware

Copernicus.sys

PCH

Smite'em

© 2014 The MITRE Corporation. All rights reserved.

| 50 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

SPI Flash Chip

UEFI BIOS Firmware

Copernicus2.sys

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

© 2014 The MITRE Corporation. All rights reserved.

| 51 |

Overall behavior

§  Initial actions:
–  Provision TPM key for later signature verification
–  Load Flicker driver, pass MLE code to Flicker, tell it to start

§ MLE actions:
–  Read config info, place text in buffer, extend buffer into PCR 18
–  Read BIOS 0x10000 at a time, place into buffer, extend buffer into

PCR 18
–  SEXIT

§  Actions upon resume:
–  Perform equivalent config and BIOS reads from copernicus2.sys, write

to disk. Also dump TXT heap for reconstructing PCRs
–  Get TPM Quote of PCR 17, 18, 19, verify signature, write to disk

© 2014 The MITRE Corporation. All rights reserved.

| 52 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

Copernicus2.sys

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x0000
PCR18 = 0x0000

SPI LPC

SINIT ACM copied from disk

© 2014 The MITRE Corporation. All rights reserved.

| 53 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

Copernicus2.sys

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x0000
PCR18 = 0x0000

SPI LPC
Construct MLE & paging structs

SINIT ACM copied from disk

FlickerDrv.sys

© 2014 The MITRE Corporation. All rights reserved.

| 54 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x0000
PCR18 = 0x0000

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

Setup TXT heap structs

Copernicus2.sys

FlickerDrv.sys

© 2014 The MITRE Corporation. All rights reserved.

| 55 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x0000
PCR18 = 0x0000

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs SENTER!

Copernicus2.sys

FlickerDrv.sys

© 2014 The MITRE Corporation. All rights reserved.

| 56 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x0000
PCR18 = 0x0000

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

Copernicus2.sys

FlickerDrv.sys

© 2014 The MITRE Corporation. All rights reserved.

| 57 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x0000
PCR18 = 0x0000

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

FlickerDrv.sys

© 2014 The MITRE Corporation. All rights reserved.

| 58 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x0000
PCR18 = 0x0000

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

S
t
o
r
e

Copernicus2.sys

FlickerDrv.sys

© 2014 The MITRE Corporation. All rights reserved.

| 59 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0x0000

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

S
t
o
r
e

Copernicus2.sys

FlickerDrv.sys

© 2014 The MITRE Corporation. All rights reserved.

| 60 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0x0000

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

S
t
o
r
e Copernicus2.sys

FlickerDrv.sys

© 2014 The MITRE Corporation. All rights reserved.

| 61 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xac02

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

FlickerDrv.sys

© 2014 The MITRE Corporation. All rights reserved.

| 62 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xac02

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

FlickerDrv.sys

© 2014 The MITRE Corporation. All rights reserved.

| 63 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xac02

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

FlickerDrv.sys

© 2014 The MITRE Corporation. All rights reserved.

| 64 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xf005

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

FlickerDrv.sys

© 2014 The MITRE Corporation. All rights reserved.

| 65 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xf005

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

FlickerDrv.sys

© 2014 The MITRE Corporation. All rights reserved.

| 66 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xf005

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

FlickerDrv.sys

© 2014 The MITRE Corporation. All rights reserved.

| 67 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xba11

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

FlickerDrv.sys

© 2014 The MITRE Corporation. All rights reserved.

| 68 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xba11

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

SEXIT

Copernicus2.sys

FlickerDrv.sys

© 2014 The MITRE Corporation. All rights reserved.

| 69 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xba11

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

FlickerDrv.sys

Start

© 2014 The MITRE Corporation. All rights reserved.

| 70 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xba11

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

© 2014 The MITRE Corporation. All rights reserved.

| 71 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xba11

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

© 2014 The MITRE Corporation. All rights reserved.

| 72 |

Done!

§ We don't need to actually write the data to disk from within the
MLE. We just need to collect it and hash it into the TPM PCRs
–  This is good for cross-OS support, and for performance, that we're

not sitting in the MLE with SMIs disabled for extra time

§ As for the extra steps and effort included by making Copernicus
2 "Trusted"…This is the whole reason we chose to release
Copernicus 1 as a "best effort" system to start with.

§  Trusted Computing is HARD yo!
–  Put another way, anyone who's not going to this level of effort is

probably feeding you bogus results
§  "Other evaluators of TXT have made the same comment, 'Oh,

this is complex.' The first question back to them has been, 'what
should we remove?' The answer has always been 'I do not see
anything you can remove.'"
– David Grawrock, Intel, "Dynamics of a Trusted Computing System:

A Building Blocks Approach", Chapter 11
© 2014 The MITRE Corporation. All rights reserved.

| 73 |

Verifying measurements

§ Validate signature on TPM PCR 17 & 18 Quote
§ Confirm PCR18 =
§ SHA1(SHA1(SHA1(SHA1(SHA1(020 | MleHash) | config) | BIOS)

– Can slightly differ depending on the TXT version, e.g. it could
actually be using SHA256 in the MleHash

§ Confirm PCR17 is derived from the fields and values given in the
“PCR 17” section (1.9.1.1 in the June 2013 TXT sw dev guide)

§  (Note: verification should generally be done on some other
presumed-trusted platform, such as a server that has no
purpose other than verification. “If you try to evaluate the trust
on the potentially compromised system you’re going to have a
bad time”)

© 2014 The MITRE Corporation. All rights reserved.

| 74 |

If everything matches

§ Congrats, you have a genuine measurement…
§ Now you just need to figure out whether it actually contains

malice or not ;)
§  John has started offering a BIOS analysis class to help people

understand what a reported difference in a BIOS actually means
–  Too bad you already missed it at CSW
–  In the meantime you’ve probably got a lot of studying to do before

you could take it (e.g. paging, port IO, static RE, IDA, etc)
–  Better head over to http://OpenSecurityTraining.info

© 2014 The MITRE Corporation. All rights reserved.

| 75 |

Conclusions

§  There exists the potential for an attacker who controls SMM to
perform a Man in the Middle attack on SPI reads and writes

§ We have implemented such an attack
–  Smite’em the Stealthy

§  The Great Hero Copernicus subsequently went into the belly of
the beast and slew it with the power of TXT.

§ Anyone giving you a BIOS measurement and *not* using TXT is
untrustworthy
–  “Copernicus 2 tech” – ask for it by name :)
– We’re licensing it to companies doing firmware integrity checks
– We're releasing a binary-only version if you want to try it out:
–  http://www.mitre.org/capabilities/cybersecurity/overview/

cybersecurity-blog/playing-hide-and-seek-with-bios-implants
§  If you don’t have TXT support, or if your vendor messed up your

TXT support, you’re out of luck and you stay vulnerable!
–  Smite’em’s children live on in low end (non-TXT) machines

© 2014 The MITRE Corporation. All rights reserved.

| 76 |

Demonstrations
Time-permitting

© 2014 The MITRE Corporation. All rights reserved.

| 77 |

FAQ, Questions?

§ How do I get access to Cop 1 or 2 src code
– Cop 1 is available free, but we will want to receive the BIOS data

you collect with it as an aid to our future research
– Cop 2 is available for licensing
– Contact Xeno – copernicus@mitre.org

§  If I don’t have TXT or can’t turn it on everywhere is there still any
value in Copernicus 1?
–  Yes, attackers probably weren’t expecting Cop1, and thus it may

catch ones who don’t implement Smite’em functionality

§ What about Vendor X? Can I trust their measurements/
–  Probably not. We’re talking with some vendors about incorporation,

but none of them have done it yet.
© 2014 The MITRE Corporation. All rights reserved.

| 78 |

References
§  [1] Attacking Intel BIOS – Alexander Tereshkin & Rafal Wojtczuk – Jul. 2009

http://invisiblethingslab.com/resources/bh09usa/Attacking%20Intel%20BIOS.pdf
§  [2] TPM PC Client Specification - Feb. 2013

http://www.trustedcomputinggroup.org/developers/pc_client/specifications/
§  [3] Evil Maid Just Got Angrier: Why Full-Disk Encryption With TPM is Insecure

on Many Systems – Yuriy Bulygin – Mar. 2013
http://cansecwest.com/slides/2013/Evil%20Maid%20Just%20Got%20Angrier.pdf

§  [4] A Tale of One Software Bypass of Windows 8 Secure Boot – Yuriy Bulygin –
Jul. 2013 http://blackhat.com/us-13/briefings.html#Bulygin

§  [5] Attacking Intel Trusted Execution Technology - Rafal Wojtczuk and Joanna
Rutkowska – Feb. 2009
http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-
%20paper.pdf

§  [6] Another Way to Circumvent Intel® Trusted Execution Technology - Rafal
Wojtczuk, Joanna Rutkowska, and Alexander Tereshkin – Dec. 2009
http://invisiblethingslab.com/resources/misc09/Another%20TXT%20Attack.pdf

§  [7] Exploring new lands on Intel CPUs (SINIT code execution hijacking) - Rafal
Wojtczuk and Joanna Rutkowska – Dec. 2011
http://www.invisiblethingslab.com/resources/2011/
Attacking_Intel_TXT_via_SINIT_hijacking.pdf

§  [7] Meet 'Rakshasa,' The Malware Infection Designed To Be Undetectable And
Incurable - http://www.forbes.com/sites/andygreenberg/2012/07/26/meet-
rakshasa-the-malware-infection-designed-to-be-undetectable-and-incurable/

© 2014 The MITRE Corporation. All rights reserved.

| 79 |

References 2
§  [8] Implementing and Detecting an ACPI BIOS Rootkit – Heasman, Feb.

2006
http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-
Heasman.pdf

§  [9] Implementing and Detecting a PCI Rookit – Heasman, Feb. 2007
http://www.blackhat.com/presentations/bh-dc-07/Heasman/Paper/bh-dc-07-
Heasman-WP.pdf

§  [10] Using CPU System Management Mode to Circumvent Operating
System Security Functions - Duflot et al., Mar. 2006
http://www.ssi.gouv.fr/archive/fr/sciences/fichiers/lti/cansecwest2006-
duflot-paper.pdf

§  [11] Getting into the SMRAM:SMM Reloaded – Duflot et. Al, Mar. 2009
http://cansecwest.com/csw09/csw09-duflot.pdf

§  [12] Attacking SMM Memory via Intel® CPU Cache Poisoning – Wojtczuk &
Rutkowska, Mar. 2009
http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf

§  [13] Defeating Signed BIOS Enforcement – Kallenberg et al., Sept. 2013 –
URL not yet available, email us for slides

§  [14] Mebromi: The first BIOS rootkit in the wild – Giuliani, Sept. 2011
http://www.webroot.com/blog/2011/09/13/mebromi-the-first-bios-rootkit-in-
the-wild/

© 2014 The MITRE Corporation. All rights reserved.

| 80 |

References 3

§  [15] Persistent BIOS Infection – Sacco & Ortega, Mar. 2009
http://cansecwest.com/csw09/csw09-sacco-ortega.pdf

§  [16] Deactivate the Rootkit – Ortega & Sacco, Jul. 2009
http://www.blackhat.com/presentations/bh-usa-09/ORTEGA/BHUSA09-
Ortega-DeactivateRootkit-PAPER.pdf

§  [17] Sticky Fingers & KBC Custom Shop – Gazet, Jun. 2011
http://esec-lab.sogeti.com/dotclear/public/publications/11-recon-
stickyfingers_slides.pdf

§  [18] BIOS Chronomancy: Fixing the Core Root of Trust for Measurement –
Butterworth et al., May 2013
http://www.nosuchcon.org/talks/
D2_01_Butterworth_BIOS_Chronomancy.pdf

§  [19] New Results for Timing-based Attestation – Kovah et al., May 2012
http://www.ieee-security.org/TC/SP2012/papers/4681a239.pdf
http://www.blackhat.com/presentations/bh-jp-06/BH-JP-06-Bilby-up.pdf

© 2014 The MITRE Corporation. All rights reserved.

| 81 |

References 4

§  [20] Low Down and Dirty: Anti-forensic Rootkits - Darren Bilby, Oct.2006
http://www.blackhat.com/presentations/bh-jp-06/BH-JP-06-Bilby-up.pdf

§  [21] Implementation and Implications of a Stealth Hard-Drive Backdoor –
Zaddach et al., Dec. 2013
https://www.ibr.cs.tu-bs.de/users/kurmus/papers/acsac13.pdf

§  [22] Hard Disk Hacking – Sprite, Jul. 2013
http://spritesmods.com/?art=hddhack

§  [23] Embedded Devices Security and Firmware Reverse Engineering -
Zaddach & Costin, Jul. 2013
https://media.blackhat.com/us-13/US-13-Zaddach-Workshop-on-
Embedded-Devices-Security-and-Firmware-Reverse-Engineering-WP.pdf

§  [24] Can You Still Trust Your Network Card – Duflot et al., Mar. 2010
http://www.ssi.gouv.fr/IMG/pdf/csw-trustnetworkcard.pdf

§  [25] Project Maux Mk.II, Arrigo Triulzi, Mar. 2008
http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-PACSEC08-
Project-Maux-II.pdf

© 2014 The MITRE Corporation. All rights reserved.

| 82 |

Backup

§  I likes the nitty gritty, but decided this is too much of a side-
track from the main point of the talk

§ Also I wrote this up in the ideal way it's implemented, but Flicker
differs slightly so I need to re-work to show how flicker does it

© 2014 The MITRE Corporation. All rights reserved.

| 83 |

TXT Configuration Registers

§ At fixed physical address 0xFED3000 + offset
§ Specified in Appendix B of the TXT developers guide

§  TXT.SINIT.BASE = offset 0x270 = physical memory address the
BIOS has set aside for the SINIT module to be copied into

§  TXT.SINIT.SIZE = offset 0x278 = maximum available memory
§  TXT.HEAP.BASE = offset 0x300 = physical memory reserved for

use by the MLE, but also used when bootstrapping the MLE
§  TXT.HEAP.SIZE = offset 0x308 = maximum available memory
§  TXT.DPR = offset 0x330 = definition for the DMA Protected

Region. This is actually a separate sort of DMA protection that
doesn’t have anything to do with Intel VT-d (IOMMU)

§ Also has some error status and other important registers which
we won’t cover right now

© 2014 The MITRE Corporation. All rights reserved.

| 84 | Example reading TXT config regs with
“Read Write Everything” – link
From a HP Elitebook 2540p

TXT.SINIT.BASE

TXT.SINIT.SIZE

TXT.HEAP.BASE

TXT.HEAP.SIZE

TXT.DPR

TXT.DPR.Top = 0xBB800000

DPR
Interpretation
(from Intel TXT
sw dev guide)

© 2014 The MITRE Corporation. All rights reserved.

| 85 |

Copernicus 2 Architecture: Enhance!

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

TXT Heap

SINIT Area

D
P

R
 E

xt
ra

TXT.DPR.Top
also TSEG base

DPR base =
TXT.DPR.Top –
(TXT.DPR.Size*0x100
000)

MLE Area (for our implementation)

D
P

R
 R

eq
ui

re
d

DMA
Protected
Region
(DPR)

Copernicus2.sys

0xBB800000

0xBB720000

0xBB700000

0xBB400000

© 2014 The MITRE Corporation. All rights reserved.

| 86 |

Copernicus 2 Architecture: Enhance!

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Copernicus2.sys

TX
T

H

ea
p

S
IN

IT

 A
re

a
D

P
R

TXT.SINIT.BASE

TXT.SINIT.SIZE
Actual SINIT copy

© 2014 The MITRE Corporation. All rights reserved.

| 87 |

Copernicus 2 Architecture: Enhance!

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

TXT.HEAP.BASE

TXT.HEAP.SIZE
BIOS data, OS to MLE, OS to SINIT, SINIT to MLE structs
(see TXT dev guide Appendix C for struct defs)

Copernicus2.sys

© 2014 The MITRE Corporation. All rights reserved.

TX
T

H

ea
p

S
IN

IT

 A
re

a
D

P
R

| 88 |

Copernicus 2 Architecture: Enhance!

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

DPR base

MLE PAE Paging Structs
MLE Helper Struct

MLE Code

Copernicus2.sys

TXT.DPR.Top

© 2014 The MITRE Corporation. All rights reserved.

TX
T

H

ea
p

S
IN

IT

 A
re

a
D

P
R

| 89 |

Copernicus 2 Architecture: Enhance!

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

TXT.SINIT.BASE
TXT.SINIT.SIZE
TXT.HEAP.BASE
TXT.HEAP.SIZE

TXT.DPR.Top
aka TSEG base

DPR base =
TXT.DPR.Top –
(TXT.DPR.Size*0x100000)

MLE Page Tables
MLE Helper Struct Info

MLE Code
Actual SINIT copy

OS to SINIT and SINIT to MLE structs

Copernicus2.sys

© 2014 The MITRE Corporation. All rights reserved.

TX
T

H

ea
p

S
IN

IT

 A
re

a
D

P
R

| 90 |

Copernicus 2 Architecture

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

Copernicus2.sys

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x0000
PCR18 = 0x0000

SPI LPC

© 2014 The MITRE Corporation. All rights reserved.

| 91 |

Paging?

§ Yes, that’s right, you have to roll your own PAE (Physical
Address Extensions) paging structures in order to use TXT!
– Not canonical 32 bit paging that you learn in school, not 64 bit

paging, but PAE 36 bit paging
§ Kind of a tall order for most folks

–  Part of why TXT has limited uptake
§ But on the plus side you can go out and learn about x86 paging

right now by taking Xeno’s free “Intermediate x86 class”
–  http://OpenSecurityTraining.info/Intermediatex86.html

© 2014 The MITRE Corporation. All rights reserved.

