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ABSTRACT
In this paper we look at the implementation of the Core
Root of Trust for Measurement (CRTM) from a Dell Lat-
itude E6400 laptop. We describe how the implementation
of the CRTM on this system doesn’t meet the requirements
set forth by either the Trusted Platform Module (TPM) PC
client specification[12] or NIST 800-155[20] guidance. We
show how novel tick malware, a 51 byte patch to the CRTM,
can replay a forged measurement to the TPM, falsely indi-
cating that the BIOS is pristine. This attack is broadly
applicable, because all CRTMs we have seen to date are
rooted in mutable firmware. We also show how flea mal-
ware can survive attempts to reflash infected firmware with
a clean image. To fix the un-trustworthy CRTM we ported
an open source “TPM-timing-based attestation” implemen-
tation[17] from running in the Windows kernel, to running in
an OEM’s BIOS and SMRAM. This created a new, stronger
CRTM that detects tick, flea, and other malware embedded
in the BIOS. We call our system “BIOS Chronomancy”, and
we will show that it works in a real vendor BIOS, with all the
associated complexity, rather than in a simplified research
environment.

Categories and Subject Descriptors
D.4.6 [Software]: Operating Systems-Security and Protec-
tion

General Terms
Security, Verification
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The Trusted Computing Platform Alliance began work on
the Trusted Platform Module (TPM) specification in 2000.
In 2003 the Trusted Computing Group (TCG) was founded,
and adopted the initial TPM 1.1 specification, before an-
nouncing the 1.2 specification in 2004[12]. Today, most
enterprise-grade laptops and desktops contain a version 1.2
TPM, and the TPM 2.0 specification is under active devel-
opment, with Windows 8 supporting draft compliant com-
mands.

The TPM is a passive chip that relies on code running on
the main CPU to send it commands for what to do. In this
paper we do not focus on the roots of trust for storage and
reporting that reside physically within the TPM. Instead we
examine the Static Root of Trust for Measurement (SRTM)
that is rooted within the BIOS.1 The SRTM is not used for
on-demand runtime measurements, but rather to achieve a
trusted boot. Per the TPM PC client spec, when the system
boots the SRTM will measure itself as well as other parts
of the BIOS, the master boot record, etc. and store the
measurements in the TPM. The component that specifically
performs self-measurement is considered the Core Root of
Trust for Measurement (CRTM). If the CRTM can be modi-
fied without the self-measurement detecting the change, the
chain of trust is fundamentally broken, and all subsequent
elements in the chain can be corrupted without detection. In
order to be reported in a trustworthy way, the SRTM stores
measurements into the TPM Platform Configuration Regis-
ters (PCRs). Measurement appraisers that want to evaluate
the boot measurements can ask the TPM for a copy of the
PCRs signed by a key only the TPM has access to.

As with many specifications, the flexibility with which
the TPM PC client spec is written at times leads to am-
biguity. This has lead to implementations inadvertently not
measuring components that require change detection to be
adequately secure. In some respect, the NIST 800-155[20]
special publication (which is entirely advisory, and not as-
sociated with the official TCG specs) can be seen as an at-
tempt to decrease ambiguity of the TCG specs by providing
specific areas that should be measured to ensure a secure
boot. However, in the case of the particular SRTM code we
analyzed in this paper, we found it does not even adhere
to some of the clear recommendations found in every revi-

1The SRTM is in contrast to the Dynamic RTM (DRTM),
a mechanism that can instantiate a trusted environment at
some later time, even if the system booted in an untrusted
state. An example implementation of a DRTM is Intel’s
Trusted Execution Technology[8].
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sion of the TPM PC client spec. Therefore we hope this
paper will serve as a cautionary tale of why today’s SRTM
implementations need to not just be blindly trusted, and
why future implementations should closely follow the more
detailed NIST guidance.

While the NIST 800-155 guidance is an excellent start-
ing point, in our opinion it is insufficient because it relies
too heavily on access control to keep the attacker out of
the BIOS. We believe attackers will always find a way to
achieve the same privileges as the defender. The history of
exploits is the history of access control being bypassed, even
to the point of subverting requirements for signed BIOS up-
dates[31]. We too have also found vulnerabilities that allow
for the reflashing of BIOSes in ways that bypass signed up-
date requirements[14][15].

We therefore believe it is necessary to apply techniques
explicitly designed to combat attackers at the same privi-
lege level[17, 18, 24, 25, 26, 27]. We call our implemen-
tation BIOS Chronomancy because our additional trust is
divined from timing. The application of this technique to
the BIOS provides many advantages over higher level im-
plementations, because the environment in which both the
attacker and defender are working is more constrained. This
dramatically improves the likelihood of the CRTM detect-
ing an unauthorized modification of itself. In this paper we
will show a proof-of-concept custom BIOS that detects our
CRTM-targetting malware, as well as other stronger attacks.
We have run this custom BIOS on 17 Dell Latitude E6400
laptops for months without issue.

This paper makes the following contributions:

1. We analyze the implementation of the existing Lati-
tude E6400 SRTM, how it measures itself, and how it
deviates from the TPM PC client spec.

2. We describe the implementation of a tick, a CRTM-
subverting BIOS parasite.

3. We describe the implementation of a flea, a CRTM-
subverting, reflash-hopping, BIOS parasite that shows
why enforcing signed updates is insufficient to protect
currently deployed systems.

4. We discuss our design for the application of TPM timing-
based attestation at the BIOS level. We also evalu-
ate this implementation’s performance against a worst
case attacker, who is adding only the minimal tim-
ing overhead necessary to hide from detection, but not
achieve any other goal.

5. We found and fixed a problem with the existing TPM
timing-based timing attestation systems[24][17] that
would allow an attacker to always forge his runtime
to be within acceptable limits.

This paper is organized as follows. In the next section
we discuss related work in the area of BIOS security and
trusted computing. In Section 3 we describe how we have ex-
tracted information about the SRTM implementation, and
in Section 4 we analyze how the Latitude E6400’s SRTM
implementation was found lacking. In Section 5 we discuss
implementation details of our timing-based attestation sys-
tem, and in Section 6 we evaluate it against various attacks.
We detail our conclusions in Section 7.

2. RELATED WORK

There have been a number of papers and proof of concept
attacks that took advantage of the lack of access control on
the BIOS reflashing procedure to introduce malicious code
into the BIOS. One of the first attacks claiming to be a
“BIOS Rootkit” was described by Heasman[13]. This attack
did not target the BIOS code itself, but rather modified
the ACPI tables set up by the BIOS. Subsequent ACPI ta-
ble interpretation caused beneficial effects for the attacker,
like arbitrary kernel memory writes. Later attacks by both
Core Security[22], and Brossard[5] relied on the open source
CoreBoot[1] project. This project was meant to serve as an
open source BIOS alternative, although at the time of writ-
ing the newest Intel chipset (ICH7) supported by CoreBoot
is approximately 6 years old. For in-the-wild attacks, there
is the famous example of the CIH or Chernobyl virus[32]
that would render a machine unbootable by writing zeros
to the BIOS flash chip. In a much more recent attack, the
Mebromi malware[11] rewrote the BIOS of a machine with
code that would then write a typical Master Boot Record
infection routine to the first sector of the disk. This allowed
the malware to persist even if the hard drive was replaced
or reformatted. Both of these attacks were limited in their
spread because they supported only one chipset configura-
tion.

All of the preceding attacks on the BIOS relied on the
BIOS being unprotected and easily writeable, and only hav-
ing security through the obscurity of the knowledge needed
to reflash a BIOS. The most noteworthy exception to this
assumption of an unprotected BIOS is the attack by Invisi-
ble Things Lab (ITL) which reflashed an Intel BIOS despite
a configuration requiring all updates be signed[31]. They
achieved this by exploiting a buffer overflow in the process-
ing of the BIOS splash screen image. Given the prevalence of
legacy, presumably un-audited, code in BIOSes, we expect
there are many other similar vulnerabilities lurking. This
is a key reason why we advocate for designing under the
assumption that access control mechanisms protecting the
SRTM will fail.

In 2007 Kauer[16] reported that there were no mechanisms
preventing the direct reflashing of the BIOS of a HP nx6325,
and he specifically targeted manipulation of the SRTM. He
decided to simply replace the SRTM with an AMD-V-based
DRTM to “remove the BIOS, OptionROMs and Bootloaders
from the trust chain.”2 While the intent of a DRTM is to
not depend on the SRTM, as was acknowledged by Kauer,
the DRTM can in fact depend on the SRTM for its security.
ITL has shown this through multiple attacks. In [29] ITL
described an attack where manipulation of the ACPI tables
generated by the BIOS and parsed by the DRTM could lead
to arbitrary code execution within the context of the DRTM;
the SRTM was part of the root of trust for the DRTM. In
[30] ITL showed how an attacker with SMM access could
execute in the context of a TXT DRTM thanks to the lack
of a System Management Mode (SMM) Transfer Monitor
(STM). Given the BIOS’s control over the code in SMM, and
the longstanding lack of a published Intel STM specification,
it is expected that most systems attempting to use TXT will

2We believe that the security community should either at-
tempt to create a truly secure SRTM, as we are trying to do
in this paper, or should push for its removal everywhere so
that no one falsely believes it to be providing trust it cannot
actually provide.



be vulnerable to attacks originating from SMM for quite
some time.

Because the BIOS sets the SMM code, it is worth point-
ing out that the lack of a trustworthy SRTM undermines
security systems relying solely on SMM’s access control to
achieve their security, such as HyperGuard[21], HyperCheck
[28], HyperSentry[4],and SICE[3]. If such systems were us-
ing timing-based attestation to detect changes to their SMM
code, they would be much harder to subvert even by a ma-
licious BIOS flash. Similarly, a subverted SRTM undercuts
load-time attestation systems such as IMA[23] and Dyn-
IMA[9]. It also subverts systems like BitLocker[2] that rely
on sealing a key against PCRs that are expected to change
in the presence of an attacker, but that don’t if the imple-
mentation is incorrect[6].

While the timing-based attestation presented in this pa-
per is adapted from the open source reference implemen-
tation provided by Checkmate[17], which is derived from
Pioneer[26], in spirit this work is much more closely tied to
earlier application of software-based attestation to embed-
ded systems such as SWATT[27] or SBAP[18]. This is be-
cause the environment in which a BIOS executes is more con-
strained, allowing for better coverage. While PioneerNG[25]
also ran in SMM, it did not work in conjunction with a real
world BIOS, but instead was implemented within CoreBoot.
Further, it derived timing-based trust from attestation to a
USB device. As our work uses the TPM for trusted timing,
it serves as a more stand-alone trusted computing system,
allowing for easier adoption.

Our system is therefore the first which has been shown to
work within a real environment; which takes into account
which portions of the SRTM should remain with Original
Equipment Manufacturer (OEM) code; and which shows
how existing SRTM code’s self-protection is lacking and in
need of timing-based attestation. Our system does currently
lack a countermeasure for malicious code running on periph-
eral processors parallel to the BIOS execution. We believe
that the use of a system like VIPER[19] to verify peripherals’
firmware would mesh very nicely with ours in the future.

3. JOURNEY TO THE CORE ROOT OF
TRUST FOR MEASUREMENT

To analyze a system SRTM, a BIOS firmware image from
that system must be obtained to identify both where and
how the SRTM is instantiated. There are three primary
ways to obtain a BIOS image for analysis. One is to desol-
der the flash chip from the mainboard and dump the image
to a binary file using an EEPROM flash device. The EEP-
ROM device is invaluable when having to recover a“bricked”
system resulting from an experiment to modify a BIOS gone
awry. The second way to get the BIOS is to use a custom
kernel driver that reads the firmware image from the flash
chip and writes it to a binary file. The third is to extract and
decode the information from vendor-provided BIOS update
files. In all cases, the binary in the obtained file can be stat-
ically analyzed using software such as IDA Pro. However in
situations where you want to investigate “live” BIOS/SMM
code, e.g. a routine that reads an unknown value from an
unknown peripheral, a hardware debugger such as the Ar-
ium ECM-XDP3 is very useful.

NIST 800-155 uses the term “golden measurement”, to
refer to a PCR value provided by a trusted source (such

as the OEM) indicating the value that should exist on an
un-tampered system. However, currently no SRTM golden
measurements are provided by OEMs. This leads to a situa-
tion where organizations must simply measure a presumed-
clean system, and treat the values as golden measurements.
The intention is that an organization should investigate any
PCR change that does not result in an expected golden mea-
surement value. Table 1 displays the “presumed-good” PCR
hashes for our E6400.

We discovered that the SRTM measurement in PCR0 in
Table 1 is derived from a hash provided to the TPM from a
function which is executed during the early BIOS POST pro-
cess. The function is called from within a table of function
pointers. Each pointer is part of a structure which includes
a 4-byte ASCII name. The name of the function that ini-
tially serves to instantiate PCR0 is “TCGm”, presumably
for “Trusted Computing Group measure”.

This function uses a software SHA1 computation (as op-
posed to the TPM’s built in SHA1 function) to hash slices
of the BIOS and then presents that hash to the TPM for
extension to PCR0. A hash is constructed from the first 64
bytes of each compressed module contained within the BIOS
ROM (there are 42 of these modules in total); two small
slices of memory; and the final byte of the BIOS firmware
image. Within the first 64 bytes is a data structure contain-
ing the size, and therefore the SRTM developers most likely
are assuming that measurement of the first 64 bytes will
be sufficient to detect any changes within the compressed
module. After all of these locations have been hashed and
combined, the final hash is extended into PCR0 of the TPM.
But we also found that a second extend is done on PCR0
with the single last byte of the BIOS, similar to what was
done with the other PCRs as described in section 4.2.

4. SRTM IMPLEMENTATION
WEAKNESSES

While the weaknesses described below are in terms of the
Dell Latitude E6400, it is believed that due to known BIOS
code reuse[14], that the same problems occur in 22 Dell mod-
els. The E6400 was released prior to NIST 800-147 and
800-155 publication, and was only designed with the TPM
PC client specification as a a guide. We picked the E6400
for analysis in 2010 only because it was readily available
and it fit our Arium debugging hardware. This system is
still supported as the latest BIOS update was released in
April 2013. We acknowledge that there have been subse-
quent changes in BIOS implementation by vendors, most
notably adoption of the Unified Extensible Firmware Inter-
face (UEFI). However, we have analyzed newer machines in
less depth, and universally the SRTM and CRTM are still
implemented in mutable firmware. The problems of open
BIOSes and inadequate SRTM coverage we discuss in this
paper are not automatically solved in newer UEFI systems,
as has also been shown by Bulygin[6].

4.1 Overwritability
As pointed out by [16], being able to freely modify the

SRTM completely undercuts its function as the root of trust
for measurement. Indeed, the TPM PC client spec [12] says:
“The Core Root of Trust for Measurement (CRTM) MUST
be an immutable portion of the Host Platform’s initializa-
tion code that executes upon a Host Platform Reset.” (Em-



Table 1: Dell Latitude E6400 presumed-good PCR’s (BIOS revision A29)
hexadecimal value index TCG-provided description
5e078afa88ab65d0194d429c43e0761d93ad2f97 0 S-CRTM, BIOS, Host Platform Extensions,

and Embedded Option ROMs
a89fb8f88caa9590e6129b633b144a68514490d5 1 Host Platform Configuration
a89fb8f88caa9590e6129b633b144a68514490d5 2 Option ROM Code
a89fb8f88caa9590e6129b633b144a68514490d5 3 Option ROM Configuration and Data
5df3d741116ba76217926bfabebbd4eb6de9fecb 4 IPL Code (usually the MBR) and Boot Attempts
2ad94cd3935698d6572ba4715e946d6dfecb2d55 5 IPL Code Configuration and Data

phasis ours.) Unfortunately this immutability is not per
the dictionary definition. Instead, “In this specification, im-
mutable means that to maintain trust in the Host Platform,
the replacement or modification of code or data MUST be
performed by a Host Platform manufacturer-approved agent
and method.” There are therefore a number of reasons why
the CRTM may in practice be quite mutable.

Unlike NIST 800-155, NIST 800-147[7] lays out guidelines
on how the BIOS of systems should be configured by end
users to minimize the exposure to malicious changes. The
most important changes are setting a BIOS password, and
turning on the capability to require all BIOS updates be
signed. This signed update process would thereby provide
the immutability specified by the TPM PC client spec. Like
many other legacy systems, ours shipped without signed up-
dates being required, leaving the SRTM vulnerable. But
beyond this, we found that the revision A29 BIOS original
on our system was not only unsigned, it did not even have
an option to turn on signed updates! Only beginning in
revision A30 was the BIOS signed, and a configuration op-
tion requiring signed updates available. But signed updates
are not a panacea. Methods to bypass signed updates have
been shown by [31], [6], and our work awaiting vendor fixes.
Although [6] did not give specifics of all the misconfigura-
tions checked for, we can infer that the following example is
something that would be in scope.

On systems with Intel IO Controller Hub 9, like the E6400,
the BIOS flash chip can be directly overwritten by a kernel
module unless provisions are implemented by the BIOS man-
ufacturer to prevent this from occurring. The mechanism to
prevent direct overwrite has two components: proper con-
figuration of the BIOS CNTL register’s BIOSWE and BLE
bits, and a routine in SMM to properly field the System
Management Interrupts (SMI) that subsequently occur.

When properly configured, the BIOS CNTL register causes
an SMI to be triggered whenever an application attempts to
enable write-permission to the BIOS flash. This provides
SMM the opportunity to determine whether this is a sanc-
tioned write to the flash chip or not and, in the latter case,
reconfigure the BIOS CNTL register to permit read-only ac-
cess to the BIOS flash. All this occurs prior to the appli-
cation having any opportunity to perform any writes to the
flash chip. This security mechanism was missing from the
E6400 in revision A29, but fixed in A30. Misconfigurations
like this that can generically undercut signed BIOS updates
could be common across all vendors, but no one has the
data on this yet. We are currently working to collect this
data across large deployed populations is the subject of our
current work.

4.2 Inaccuracy

PCR0 is the primary PCR value that we are concerned
with as it captures the measurement of the CRTM. How-
ever, it is worth noting the obvious duplication of values
among PCRs 1, 2, 3 in Table 1. Projects attempting to im-
plement TPM-supported trusted boot capabilities are often
puzzled by what is actually being measured by the SRTM
to set those values. We determined the origin of such PCRs
as we had previously noted similar duplicate PCR values
among many of our enterprise systems. After observing the
BIOS’s interaction with the TPM it was determined that
the oft seen duplicate value in our PCR values was sim-
ply an extend of the single last byte of the BIOS! Specifi-
cally, PCR1,2,3 ← SHA1(0x0020||SHA1(0x00)); a fact that
is trivially independently verifiable. This complete failure to
measure the important parts of the system associated with
these PCR values contravenes the TPM PC client spec.

As shown in Figure 1, the OEM SRTM excludes the over-
whelming majority of the BIOS memory from measurement.
To generate PCR0, it only measures the dark gray portion of
the BIOS, which amounts to only 0xA90 out of 0x1A 0000
bytes (.2
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Figure 1: Some components found in the BIOS
range (not to scale). Dark grey is memory measured
by the SRTM, white is unmeasured.

The intent of the SRTM is to provide trust that no critical
BIOS contents have been modified. In short, this implemen-
tation can not achieve that goal. This is an important dis-
covery, and we are not aware of any related work validating
the functioning of an SRTM, rather than blindly trusting it.
We have conducted cursory examinations of other SRTMs
and observed similar problems with incomplete coverage.
This suggests the need for more validation going forward
to ensure SRTMs are properly implementing NIST 800-155
guidance going forward.

4.3 Proof of Concept Attacks



4.3.1 Naive
We describe a naive attack as one that reflashes the BIOS

but which can be trivially detected by PCR0 changing. We
would call this naive even in the presence of an SRTM which
had more complete coverage. In this paper we are primar-
ily concerned with advanced attackers who are seeking to
bypass existing trusted computing technologies that are as-
sumed to be provisioned correctly for use in their respective
organization.

4.3.2 The Tick
We define a tick to be a piece of parasitic stealth malware

that attaches itself to the BIOS to persist, while hiding its
presence by forging the PCR0 hash. A tick has to exist
in the same space as the SRTM. Regardless of whether the
entirety of the BIOS is hashed to generate PCR0, a tick
can perform the same process on a clean copy of data, or
simply replay expected SHA1 hash values to the TPM for
PCR0 extension. On the E6400 this later strategy is easily
performed at the end of the “TCGm” function just before
the hash is passed to the TPM. For example, to forge the
known-good PCR0 hash shown in Table 1 for BIOS revision
A29 running on a Dell E6400, a hardcoded hash value of
“F1 A6 22 BB 99 BC 13 C2 35 DF FA 5A 15 72 04 30 BE
58 39 21” is passed to the TPM’s PCRExtend function.3 So
even though the BIOS has been tampered with in a way that
would normally change PCR0, the change goes undetected
since the dynamic calculation of the hash to extend PCR0
with has been substituted with a hardcoded constant of the
known-good hash. It is worth pointing out that the BIOS
modifications made by Kauer in [16] did not constitute a
tick, because there was no forgery of PCR0, only disabling
TPM commands (which leads to trivially detection). Our
tick implementation is only a 51 byte patch to the BIOS.
After a tick is attached to the BIOS, it can make other
changes go undetected by traditional trusted boot systems.

4.3.3 The Flea
We define a flea as parasitic stealth malware that, like a

tick, forges PCR0 but is additionally capable of transferring
itself (“hopping”) into a new BIOS image when an update
is being performed. A flea is able to persist where a tick
would be wiped out, by controlling the BIOS update pro-
cess. On the E6400 it does this with a hook in the SMRAM
runtime executable. A BIOS update is written to memory,
a soft reboot occurs, and then SMRAM code writes the im-
age to the EEPROM. The flea detects when an update is
about to take place and scans the installation candidate to
identify which revision of BIOS is being installed. Once the
flea has identified the revision, it patches the installation
candidate in memory to maintain and hide its presence, and
then permits the update to continue. At a minimum the
flea must modify the update candidate with the following
patches: a patch to enable the new image to forge PCR0;
the compressed module that defines SMRAM containing the
flea SMM runtime portion that controls the update process;
and the necessary hooks required to force control flow to the
flea’s execution.

Our flea residing on an E6400 with BIOS Revision A29,
forges the known-good PCR0 value as described in the pre-
vious section. A BIOS update is about to occur which the

3For independent verification purposes, Table 1’s PCR0 ←
SHA1(SHA1(0x0020||SHA1(0xF1A6...21))||SHA1(0x00))

flea has determined will be to BIOS revision A30. The flea
retrieves and applies the A30 patches, among which will be
one that provides the necessary constant so that PCR0 will
provide the known-good value for BIOS revision A30.

One challenge for the flea is that it must find storage for
its patches. We ultimately chose to use unused portions of
the flash chip. In our current implementation these patches
can consume upwards of 153KB per revision and there can
be many BIOS revisions to support across the lifetime of
a system. However our current implementation inefficiently
stores the data uncompressed, because we did not have time
to utilize a compression method that could use the BIOS’s
built in decompression routine. Our flea code implementa-
tion absent the patches is only 514 bytes. An open question
is what a flea should do if it is not able to identify the incom-
ing BIOS revision. We preface this discussion by asserting
that in practice we believe this will be an uncommon situa-
tion. Any attacker that cares to persist in a system’s BIOS
will likely have the resources to analyze BIOS updates and
deploy updates for the flea’s patch database well before a
compromised organization can deploy BIOS updates. How-
ever, as a stalling strategy, our flea will begin to act as if
it is updating the BIOS, but then display an error and not
make any changes if it cannot identify the pending update.

The key takeaway about our creation of a flea is that
it mean to underscore the point that simply following the
NIST 800-147 guidance to lock down a system and enable
signed updates on existing deployed systems is not enough
to protect them. Once a system is compromised, the pres-
ence of a flea means it will stay compromised. This is why
we advocate for confronting the problem head-on with BIOS
Chronomancy.

5. BUILDING A BETTER CRTM WITH
BIOS CHRONOMANCY

We want to make it clear that we are not completely re-
placing or re-implementing all the functionality of existing
SRTM code. Given our proof of concept attacks’ ability to
subvert CRTM self-measurement, we outline a mechanism
that can be added to commercial CRTMs to provide trust-
worthy evidence that the CRTM specifically has not been
tampered with.

5.1 Timing-based Attestation
As described in Section 2, there has been much work in

the area of timing-based attestation. In [17] the phrase
“timing-based attestation” was coined to be a superset of
software-based attestation, including techniques that require
dedicated hardware such as the TPM to perform trustwor-
thy timing measurement. In all such systems, the general
principle is to use a specialized software construction that
has an explicit timing side-channel built into it. The side-
channel is meant to allow the software to have a consistent
runtime in the absence of an attacker, and an increased run-
time in the presence of an attacker who is manipulating its
operation. The crux of such software construction is to cre-
ate a looping system that checks itself, and any other secu-
rity/measurement code the defender wishes to protect. If
the attacker would like to manipulate the behavior of the
security code, he must do so in a way that still generates
a correct self-checksum. Doing this requires modifying the
looping code that generates the checksum. Each additional



instruction of logic added to the loop code to help the at-
tacker subvert security code will increase the runtime of a
single loop. This time increase is multiplied by the num-
ber of loops, leading to a detectable timing change when
compared to the expected baseline runtime. As described in
previous work, baseline runtimes will be specific to a CPU
and its frequency.

We have adapted the open source TPM tickstamp-based
attestation code from [17] to run within a customized E6400
BIOS and serve as an improved CRTM. Unlike other CRTMs,
ours is actually capable of detecting an attacker at the same
privilege level who is explicitly attempting to subvert our
measurement. Our timing is specifically derived from the
timing delta between two TPM“tickstamp”requests. A tick-
stamp can be thought of as just a signed value of the TPM
microprocessor’s clock tick count. The TPM 1.2 specifica-
tion provides a TPM TickStampBlob command which takes
a nonce, data blob, and a TPM signing key as arguments.
The TPM then returns a structure containing a signature,
the current TPM ticks value, and the current Tick Ses-
sion Nonce (TSN), denoted as (signature, ticks, TSN) ←
T ickStampkey(data, nonce). The signature is given by
Signkey(data, nonce, ticks, TSN). On TPM reset (typically
a reboot), a new 20 byte TSN is generated by the TPM hard-
ware random number generator and the TPM tick counter
is reset to zero, beginning a new timing session. The TPM
2.0 specification has moved the tickstamp functionality to
the new
TPM2 GetTime command and we anticipate our attestation
model will work with 2.0 compliant TPMs.

Our self-check protocol was inspired by the Schellekens et
al. protocol and begins in the first stage of system boot.
BIOS Chronomancy operates as follows:

1. The current TSN is read using the TPM GetTicks op-
eration. TSNcurr ← GetT icks()

2. The tickstamp 1 (TS1) structure is generated by re-
questing a tickstamp with the TSNcurr from above
used as both the data and the nonce. The AIK key is
discussed in the next section.
TS1← T ickStampAIK(TSNcurr, TSNcurr)

3. Data from the signature of TS1 is used as a nonce to
generate the self-check function checksum (CS).
CS ← SelfCheck(TS1.signature)
The self-check function is broken down into the follow-
ing stages:

(a) The self-check function measures the self-check
code proper by performing a pseudorandom traver-
sal over its own memory.

(b) The self-check function performs linear sweeps over
static portions of SMRAM, the BIOS, and Inter-
rupt Vector Table.

4. The result of the checksum is then tickstamped.
TS2← T ickStampAIK(CS,CS)

5. TS1, TS2, and checksum are then stored to SMRAM
to report back to an external appraiser upon request.

One key difference between the BIOS Chronomancy proto-
col and the Schellekens protocol is that our nonce has to
be derived internally, as opposed to being received from an
outside appraiser. Because of this requirement, our proto-
col differs slightly in both the attestation and the appraisal

process. We chose to perform BIOS Chronomancy as early
as possible in the boot process so that the system state has
changed as little as possible, and therefore is more easily
verified. Our appraisal process is detailed in Section 5.3.

5.1.1 Tickstamp Forgery Attack
While implementing our BIOS attestation code we dis-

covered and implemented an attack on the Schellekens et
al. protocol implemented by Kovah et al. Both groups de-
scribe using a TPM signing key in the tickstamp operations
in their protocols. However, the use of a TPM signing key
in this way allows the TPM to behave as a signing oracle
on behalf of an attacker. An attacker can abuse this sign-
ing oracle to request that the TPM sign artificially crafted
tickstamp structures with a TPM Sign operation. This al-
lows the attacker to forge a tickstamp with an arbitrary tick
value. Thus an attacker can beat the existing systems by
forging tickstamp structures with either ticks added to TS1
or subtracted from TS2. The delta between the two tick-
stamps will then always fall within the acceptable timing
limits. We have implemented this attack and verified that it
works. We utilize the following improvement to the proto-
col in order to fix this vulnerability. According to the TPM
specification it is possible to use an Attestation Identity Key
(AIK) as opposed to a signing key to perform the TPM
Tickstamp operation. AIKs are restricted by the TPM to be
used only with specific operations like TPM TickStampBlob
or TPM Quote. They can not be used to sign arbitrary data
with the TPM Sign operation, and thus can not be abused to
forge tickstamps. We have implemented this improved ver-
sion of the protocol in BIOS Chronomancy and confirmed it
to be safe against the tickstamp forging attack.

5.2 What to Measure?
To build a proper self-check, we must provide evidence

that neither our code, operating as the CRTM, nor the OEM
SRTM that will be handed off to has been subverted. The
high-level measurement process is as follows. As shown in
Figure 2 (a), BIOS code (1) instantiates SMRAM (2), which
contains the BIOS Chronomancy code (3)-(6). Immediately
after instantiating SMRAM, the BIOS sends a signal to the
SMI handler requesting that a measurement take place. The
SMI handler fields this request and begins executing the
BIOS Chronomancy (BC) code. First, the BC code re-
quests a TPM tickstamp. Then the BC self-measurement
code measures the entire BC range (Section 5.2.1). Next it
measures the entire SMRAM ((4) - Section 5.2.2) and the
BIOS ((5) - Section 5.2.3).

5.2.1 Self Measurement
The self-measurement portion of the attestation code is

logically divided into 8 blocks. The self-measurement tra-
verses pseudorandomly through these blocks as it measures
its own code. Each block incorporates the following compo-
nents into the checksum:

1. EIP DST - This is the address of the block being trans-
ferred to. This provides evidence of the self-check’s lo-
cation in memory, so that if the code executes from an
unexpected address, it cause a different checksum.

2. DP - The data pointer for the self-check’s own memory
being read. This provides additional evidence of the
code’s location in memory so that if it is read from
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Figure 2: BIOS Chronomancy (BC) memory layout
by default (a), and when an attacker is present (b)

an unexpected address (such as an attacker copy), it
causes a different checksum result. A 32 bit pointer.

3. *DP - This is the 4 bytes of data read from memory
by dereferencing DP. This causes the final checksum to
change if there are any code integrity attacks on the
self-check.

4. PRN - A pseudorandom number that is seeded from
the TPM tick session nonce, and updated after ev-
ery use per the below pseudocode. It determines such
choices as what the next DP and EIP DST should be.

The following presents the general construction of one of the
blocks composing our self-measurement code.

blockOne:
PRN += (PRN*PRN | 5);
accumulator ^= PRN;
accumulator += DP;
accumulator ^= *DP;
DP = codeStart + (PRN % codeSize);
DiffuseIntoChecksum(accumulator);
iterations--;
if (iterations == 0)

goto linearSweeps;
//start of inter-block-transfer
EIP_DST = blockAddressTable[PRN & 7];
accumulator ^= EIP_DST;
goto EIP_DST;

In the above C-style pseudocode, codeStart is the address
of the start of the self-checksum code and codeSize defines
the total size of the BIOS Chronomancy code. Each of the

8 self-checksum blocks follows the general layout presented
above, but differ in both the order and logical operators used
to incorporate the self-checksum components into the accu-
mulator value. This is so that an attacker must follow the
exact same series of pseudorandomly chosen blocks in order
to compute the same checksum. The accumulator value is
then diffused into the bits of the checksum at the end of each
block with an add and rotate in order to counter the attack
described in [26]. Our implementation of the self-checksum
blocks were programmed by hand in x86 assembly to ensure
maximum optimization. The lack of a proof of optimality
of a given assembly sequence is a well known caveat of work
in this field. At the end of each block, the PRN is used to
determine which block should be executed next. This area
is referred to as the inter-block transfer. A description of
how an attacker can attempt to produce the correct self-
checksum by modifying the block construction to forge the
checksum components is given in Section 5.4.

5.2.2 SMRAM Measurement
After the BC code checks itself, in order to cede minimal

space in which an attacker can hide, the entirety of SMRAM
must be measured. This provides a measurement of the
OEM SMM code which could have been modified by attacks
such as [10]. It also provides another measurement of the
self-check code, which resides in SMRAM. We use a simple
linear sweep snippet of code to incorporate 4 bytes at a time
from the SMRAM into the self-checksum. We also note that
it is important to find and measure the SMBASE register, as
this tells the processor what the base address for SMRAM
should be the next time SMM is entered.

Because there is a single SMM entry point, it is required
that an attacker (like a flea) residing in SMRAM will have
to modify existing code or data. The entry point to SMM
always has a series of conditional checks to determine the
reason SMM was invoked. To gain control flow, the attacker
would have to insert inline code hooks, or find a function
pointer in data that could be pointed at his own code.

Immediately upon being decompressed from the BIOS
firmware image, the E6400’s SMRAM has a lot of “place-
holder” values that get overwritten. For example, the base
address of SMRAM is calculated dynamically for the given
system, and this base value is then added to locations within
the decompressed SMRAM executable. This is analogous to
“relocations” in normal executables. A large portion of the
SMRAM memory range is uninitialized and unused. Initial-
izing this space with a pseudorandom sequence is necessary
to effectively measuring SMRAM. If a static value were used,
an attacker could hardcode that value into his code while re-
siding in and forging the contents of this region. That would
lead to an attacker speed up.

At the time our attestation code is invoked, SMRAM has
its EBP pointing to address 0x20E and its ESP pointing
to 0xDFF0 421E. Our code is compiled to expect the stack
frame to point to 0xDFFF FF00, so we have to relocate
EBP for the duration of our measurements. Our local vari-
ables are large enough that, if we didn’t, we would end up
underflowing EBP and writing data to read-only high mem-
ory. To help optimize cache accesses, the stack pointer was
modified so that our data was located on a 64-byte aligned
boundary, 0xDFF0 3A80.

5.2.3 BIOS Measurement



The BIOS range is measured after the SMRAM. Because
the BIOS sets up SMRAM, measuring the BIOS range will
cover the compressed version of the SMRAM module. This
further raises the bar for the attacker to provide consistent
lies. The BIOS is mapped to high memory at 0xFFFF FFFF
minus the size of the BIOS, in bytes. So for a BIOS image of
size 0x1A 0000 bytes, its measurable range in RAM would
be 0xFFE6 0000 to 0xFFFF FFFF. We use a simple linear
sweep snippet of code to incorporate 4 bytes at a time from
the BIOS into the self-checksum.

It has been observed on the Latitude E6400 that the entire
flash chip remains static for a given BIOS revision. There-
fore, the entire contents of the chip could also be incor-
porated into the self-check. This would include the man-
agement engine, platform data, gigabit ethernet, and flash
descriptor regions in addition to the BIOS region which is
mapped to memory. Some of these regions could be used
by malware for the storage of malicious data and/or code.
Strictly speaking, any security relevant portions should al-
ready be measured by the OEM SRTM, therefore we would
be duplicating functionality, while unnecessarily increasing
runtime. However, we intend to experiment with inclusion
of the entire flash chip data in the future, to understand the
full performance implications.

5.3 Attestation Appraisal
Appraisal of the BIOS timing based attestation proceeds

similarly to the original Schellekens et al. paper. An ap-
praiser is for instance code running on a separate server that
verifies the provided attestation, and a reporting agent can
be an OS application or kernel driver.

1. The appraiser sends an attestation request that in-
cludes a nonce to the reporting agent.

2. The reporting agent requests attestation results by in-
voking an SMI with an appropriate input and the ap-
praiser’s nonce.

3. The reporting agent generates the current tick stamp
(CTS) by performing
CTS ← T ickStampAIK(nonce, nonce).

4. The reporting agent presents to the external appraiser:
CTS, TS1, TS2 and the checksum (CS).

5. The appraiser verifies the signature on TS1, TS2, and
CTS to confirm that they were produced by an au-
thentic TPM.

6. The appraiser verifies TS1.TSN = TS2.TSN to con-
firm that the TPM tick counter was not reset during
the attestation.

7. The appraiser verifies that TS1.TSN = TS2.TSN =
CTS.TSN to ensure that the current attestation re-
flects the most recent reboot of the system and a replay
attack is not taking place.

8. The appraiser confirms that the nonce used to gen-
erate the checksum is a function of the signature on
TS1.TSN. This enforces the requirement that TS1.TSN
was calculated before the checksum calculation started.

9. The appraiser confirms that the data signed by TS1
is equal to the current tick session nonce. This pre-
cludes precalculation attacks because the attacker can
not know what a future TSN will be.

10. The appraiser confirms that the data signed by TS2
is equal to the checksum returned by the agent. This
enforces the requirement that TS2 was calculated after
the checksum calculation was complete.

11. The appraiser extracts ∆ = TS2.ticks − TS1.ticks,
(the time needed to perform the attestation) and con-
firms it is within acceptable limits.

12. The appraiser confirms that the checksum received from
the agent is equal to the checksum it has calculated
based on the same nonce.

If all of the above steps are completed successfully the
appraisal is considered successful. To facilitate the above
appraisal, a method to retrieve the measurement data is re-
quired. In our proof-of-concept implementation, the timing-
based attestation code copies the measurement data from its
storage address at physical address 0xA 0000 to 0x9 0000.
This destination address was chosen for the proof-of-concept
because it is accessible by the Windows kernel.

5.4 Attestation Forgery Attack
In this section we discuss our reference attacker under the

best-case scenario for the attacker, and worst-case scenario
for the defender. The attacker has full knowledge of the
BIOS Chronomancy technique, and coexists in SMM along-
side the measurement code. The attacker is assumed to
have the minimum timing overhead because he is not trying
to achieve any objective beyond forging the self-checksum
to hide the fact that he is resident in the BIOS. Also, we
assume the attacker knows what ranges we are measuring
and has stored his copies of original binaries in locations we
are not measuring, eliminating the added step of conceal-
ing them. Additionally, we ensure that the attackers code,
like the original measurement code, is cache-optimized to
minimize the frequency of cache collisions. The goal was to
grant the attacker every advantage possible to minimize the
overhead incurred from performing the forgery attack.

To hide his modifications to the self-check code, the at-
tacker must forge the *DP values measured in each block.
This can be performed by additional arithmetic instructions
that apply an offset to DP before dereferencing it, to point
it at a clean copy of the self-check code. These additional
arithmetic instructions cause the block addresses of the at-
tackers code to become misaligned with the block addresses
of the original measurement code. Since these block ad-
dresses influence the EIP DST values and are incorporated
into the checksum, these too must also be forged by the
attacker, adding additional timing overhead.

The original measurement code incorporates the EIP DST
component during the inter-block transfer process, requiring
just a single table containing each of the measurement-block
base addresses. Forging EIP DST, however, requires the at-
tacker to use two tables. One table stores the locations of
the attacker’s blocks, while an additional table is required
to keep track of what the original block locations were in the
un-modified code. The use of two tables instead of one intro-
duces extra instructions and therefore extra timing overhead
for the attacker. Alternatively, the attacker could use the
block sizes in the unmodified code in combination with the
location of the first block in the unmodified code to calcu-
late the original EIP DST during each inter-block transfer.
However, we determined that table lookup was more effi-



cient than on the fly calculation. The general construction
of an attacker self-checksum block is presented here:

forgeryBlockOne:
PRN += (PRN*PRN | 5);
accumulator ^= PRN;
//apply an offset "offToClean" to DP
//to ensure it reads clean data
accumulator += DP
accumulator ^= *(DP-offToClean);
DP = codeStart + (PRN % codeSize);
iterations--;
if (iterations == 0)
goto forgeryLinearSweeps;

tmp = PRN & 7;
//attacker forges EIP_DST incorporation
//but incurs an additional table lookup
accumulator ^= originalAddressTable[tmp];
EIP_DST = forgeryAddressTable[tmp];
DiffuseIntoChecksum(accumulator);
goto EIP_DST;

In total, our original self checksum blocks were comprised
of 43 x86 assembly instructions, 11 of which were memory
accesses. Our most optimized attacker self checksum blocks
were comprised of 47 instructions, 12 of which were memory
accesses. This yields an attacker overhead of 4 instructions
and 1 memory access. This overhead is incurred when the
attacker attempts to maintain the correct checksum dur-
ing the self-checksum’s measurement of itself. However, our
attestation code is designed to measure other parts of the
BIOS as well during the linear sweeps that occur during Sec-
tion 5.3’s phase 3.b of the self-checksum algorithm. The at-
tacker incurs additional overhead while attempting to forge
the checksum during these linear sweep phases. Since this
malware has achieved persistence by modifying the BIOS
firmware, the attacker must hide the changes in the BIOS
range from detection. Also, the attacker must hide its ac-
tive runtime presence in SMRAM. To hide modifications to
these regions, the attacker must provide an alternate ver-
sion of the linear sweeps measurement code. The attacker’s
linear sweep code substitutes original good values wherever
the attacker has modified code or data. We implemented
a simple if/then statement to check whether the DP falls
within a range where the malicious code is stored. If DP
does fall within this range, then it is modified to point to
the equivalent known-good *DP stored in the clean copy.

When we went to optimize for our 3rd revision of the
attack, we found from performance testing that the forgery
of linear sweeps accounted for a negligible amount of the
total attacker overhead, as described in the next section. So
we did not make a variant attacker that has code to sweep
the original measurement area for known good ranges, and
then switches to alternate code reading from a different DP
when reading known bad ranges. But we do expect such
an attacker would have very slightly lower overhead and we
expect to test that in a future revision.

6. EVALUATION
For our first experiment, we wanted to see if it was possible

to have a single baseline for the expected number of TPM
ticks that a good measurement should take. It was observed
in [17] that different instances of the same TPM model had
different baseline tick count times. The experiment outlined
in that paper used STMicro TPMs, and we wanted to see if
our Broadcom TPMs would behave similarly.

This experiment was performed on 17 Latitude E6400 lap-
tops running Windows 7 32 bit on a 2.80 GHz Core 2 Duo
CPU with a Broadcom BCM5880KFBG TPM. Two ver-
sions of our BC code were created: an unmodified (here-
after referred to as “clean”) version and a version containing
hide-only malware (hereafter referred to as the “forged” ver-
sion). Both the clean and forged version of the code were
run twenty times at each of 625K, 1.25M, and 2.5M itera-
tions of the BC measurements. Each measurement recorded
8 separate timing data points that will be discussed later.
To support the experiments, additional code was added to
both the clean and forged versions to record the timing data
points to SMRAM memory. To collect the stored data, a
kernel driver was written to signal the SMI handler to make
the data available for reading and outputting to file. Ad-
ditionally, a windows batch file was written to execute on
Windows startup to load and execute the kernel driver and
then reboot the machine. The batch file repeats this process
20 times.

We found that the Broadcom TPMs did provide an equiv-
alent baseline for the runtimes across multiple hosts for the
clean and forged code. The results are shown in Table 2.

Table 2: Clean and forged BIOS Chronomancy run-
times for different numbers of iterations.

Iterations Clean Clean Forged Forged
average std. dev. average std. dev.
TPM TPM TPM TPM
ticks ticks ticks ticks

625K 16723 15.98 16771 29.13
1.25M 21069 16.42 21793 156.75
2.5M 29756 16.90 31817 207.78

Additionally, if this technique is to be used in commer-
cial BIOSes, we need to set a fixed number of iterations
for the BC code that show a clear difference between the
attacker runtime and defender runtime. This means setting
some range relative to the average runtime which if exceeded
indicates that an attacker has influenced the runtime. We
have chosen to set the baseline range to avg.± 3 ∗ std.dev.,
ensuring a less than .3% chance that a normal measure-
ment will fall outside of the expected range. In Figure 3
we have taken the attacker runtimes and normalized them
against the upper bound of the acceptable range by sub-
tracting it from each attacker measurement; displaying the
difference in time the attackers code took to execute. This
figure shows that a few of the 625K iteration attacker mea-
surements are negative, indicating that they fall within the
acceptable range. However, even the machine which had
the best results for an attacker only had 6 of 20 measure-
ments fall into the acceptable range; therefore in practice
the attacker would be detected. But for all measurements
with 1.25M and 2.5M iterations, the attacker data is well
into positive territory, and therefore can clearly be distin-
guished. To guard against possible future optimization by
the attacker, it would make sense to use a number of itera-
tions of 1.25M or 2.5M in practice.

For experimental purposes we collected eight more-granular
measurement time points to show what subcomponents of
measurement or forgery dominate runtime.

1. RDTSC OUT - Time stamp obtained from the RDTSC
time stamp counter; referred to as “out” because it oc-
curs “outside” of the TPM tickstamp.
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Figure 3: Attacker overhead runtimes, normalized
against upper bound of acceptable clean runtime.
Positive values indicate that the attacker failed to
hide runtime overhead. Negative values indicate
the attacker succeeded in running in an acceptable
amount of time. 1 TPM tick is about 64µs.

2. TPM Tickstamp 1(TS1) - Tickstamp used for report-
ing run start

3. RDTSC IN start - Time stamp obtained from the RDTSC
time stamp counter; referred to as “in” because it falls
“inside” the TPM tickstamp measurement and the ac-
tual measurement code.

4. Linear Sweeps start - Measured with an RDTSC

5. Linear Sweeps end - Measured with an RDTSC

6. RDTSC IN end

7. TPM Tickstamp 2 (TS2)

8. RDTSC Out End

We will refer to these times by their number. So for in-
stance time 3 minus time 1 is the time it takes to receive
the tickstamp result from the TPM. Time 4 minus 3 is dom-
inated by the self-check code running. Time 5 minus 4 is
the time for all the linear sweeps over SMRAM, BIOS, and
IVT. The total runtime, time 8 minus 1 gives us the total
runtime for BIOS Chronomancy in CPU cycles, which can
then be converted to an absolute runtime, as shown in Ta-
ble 3. Note that runtimes do not double as the number of
iterations double, in part because of overhead such as the 2
TPM tickstamp operations taking about 166ms each. The
difference on top of the baseline runtime is seen to double
as the number of iterations doubles.

Table 3: Average total runtime for BIOS Chrono-
mancy on a single host for a 20 runs, for a given
number of iterations, in milliseconds.

Iterations Runtime (ms)
625K 1376
1.25M 1646
2.5M 2188

When we examined the runtime for clean code within the
time range given by times 3 to 6, we found that 72.9 % of
the time is spent between time 3 and 4, and only 6.9% of

the time is spent between time 4 and 5. When we examine
the hide-only adversary’s 20 run average time overhead on a
single host at 1.25M iterations, we see that he takes 47.1ms
more than the clean code, for a total of 2.9% overhead. By
comparing the RDTSC measurements again from times 3 to
6 we found that 98.6% of the overhead occurs between time
3 and time 4. Only .02% of his overhead occurs between
times 4 and 5 (where even a hide-only adversary must forge
the sweep of SMRAM and BIOS.) This same comparison
can be seen in Table 4. Ultimately, this tells us that even
for more complicated malware like a flea, the overwhelming
majority of differences in timing are caused by forging the
self-checksum itself, not by any other miscellaneous cleanup
the attacker must do.

Table 4: Percentage overhead for a sub-section of
runtime, as a portion of total overhead for the given
attacker. Data taken from average of 20 runs using
1.25M iterations.

Attack Type Percentage of Percentage of
total overhead total overhead
incurred from incurred from
time 3 to 4 time 4 to 5

Hide-only 98.6 .02
Tick 73.55 6.73
Flea 73.80 6.75

7. CONCLUSION
As the core root of trust for measurement, proper imple-

mentation of the CRTM is critical. However, this work is
the first detailed examination of a real implementation of a
CRTM & SRTM and finds that implementation to be un-
trustworthy.

We believe that both NIST 800-147 and 800-155 are im-
portant guidelines which should be followed by their respec-
tive audiences. To demonstrate the danger of putting false
trust in opaque SRTM implementations, we implemented a
proof of concept attack that we called a tick, that modified
the BIOS on our Dell Latitude E6400 while not causing a
change to any of the PCRs. A common remediation that
might be employed to try to remove a tick is to reflash the
BIOS with a known-clean version. However this is not suffi-
cient to protect against existing BIOS malware maintaining
a foothold on the system. To show this we implemented a
flea, which can jump into and compromise the new BIOS
image during the update process.

Because all CRTMs, including those on the latest UEFI
systems, are rooted in mutable firmware, the applicability
of these attacks is very broad. PC vendors seem unwill-
ing to root their trust in truely immutable ROM, likely
because modern firmware is large and complex (as multi-
ple BIOS updates attest to). Therefore, in the absense of
immutable roots of trust, we have found and fixed prob-
lems with existing work on TPM tickstamp timing-based
attestation, and adapted it to run in BIOS and SMM. Our
BIOS Chronomancy system provides robust protection un-
der the demonstrably real assumption that an attacker can
be operating at the same privilege level as the CRTM in the
BIOS. Although BIOS vendors place a premium on speed
of boot time, some customers such as governments require
much higher assurance that their firmware is not modified.



We believe our evaluation has shown that BC is a practical
technique and can be incorporated into existing OEM BIOS
codebases as an optional configurable option for those cus-
tomers who need trustworthy detection of BIOS infection.
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APPENDIX
A. TERMINOLOGY REFERENCE

There are numerous acronyms related to low level firmware,
trusted computing, and timing-based attestation technolo-
gies. Although all terms are defined when first used in the
paper, this appendix can serve as an easier reference.

AIK - Attestation Identity Key - A TPM key with more
restricted capabilities than a general signing key.
BIOS - Basic Input Output System - The firmware that
executes at system reboot on an x86 PC.
BC - BIOS Chronomancy - The name of our timing-based
attestation system hosted in the BIOS.
CS - (BC-specific) CheckSum
CTS - (BC-specific) Current TickStamp
CRTM - Core Root of Trust for Measurement - The initial
component of the SRTM that must be trusted implicitly,
and that must measure itself.
DP - (BC-specific) Data Pointer
*DP - (BC-specific) A pseudo-C language style indication
of dereferencing the DP
DRTM - Dynamic Root of Trust for Measurement - A root
of trust that is instantiated on demand. While technically
BC is a DTRM, we use this term only to refer to the more
commonly understood implementations such as Intel TXT
or AMD SVM.
EEPROM - Electronically Erasable Programmable Read
Only Memory - The storage type often used for BIOS.
EIP DST - (BC-specific) The x86 extended instruction pointer
(EIP) that is the destination for the next BC block jump.
flash chip - Synonym of EEPROM for our purposes.
ICH - I/O Controller Hub - Responsible for mediating ac-
cess to slow peripherals
LPC Bus - Low Pin Count Bus - The bus the TPM is on.
MCH - Memory Controller Hub - Responsible for mediat-
ing access to RAM and fast peripherals
OEM - Original Equipment Manufacturer
PCR - Platform Configuration Register - A storage area on
a TPM that can only be set by SHA1 hashing the current
value concatenated with the input value.
PRN - (BC-specific)Pseudo-Random Number - Updated in
every BC block, and seeded by the TSN.
SMI - System Management Interrupt - Dedicated x86 in-
terrupt to invoke SMM code
SMM - System Management Mode - The most privileged
general execution domain on x86 systems
SMRAM - System Management RAM - The memory where
SMM code and data is stored
SPI Bus - Serial Peripheral Interface Bus - The bus the
BIOS EEPROM is located on.
SRTM - Static Root of Trust for Measurement - A root of
trust that indicates the configuration that the system booted

into.
TCG - Trusted Computing Group - Responsible for the
TPM specification.
Tickstamp - A tick count according to the TPM’s internal
clock, that has been signed by a TPM key.
TPM - Trusted Platform Module - A dedicated chip that
provides some cryptographic capabilities.
TS1,TS2 - (BC-specific) TickStamp1,2
TSN - Tick Session Nonce - A part of a TPM TickStamp
data that is pseudo-randomly generated on each TPM reset.
UEFI - Unified Extensible Firmware Interface - A specifi-
cation for firmware design.
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