
Formal Support for Standardizing Protocols

with State

Joshua D. Guttman, Moses D. Liskov,
John D. Ramsdell, and Paul D. Rowe

The MITRE Corporation

Abstract. Many cryptographic protocols are designed to achieve their
goals using only messages passed over an open network. Numerous tools,
based on well-understood foundations, exist for the design and analysis
of protocols that rely purely on message passing. However, these tools
encounter difficulties when faced with protocols that rely on non-local,
mutable state to coordinate several local sessions.
We adapt one of these tools, cpsa, to provide automated support for
reasoning about state. We use Ryan’s Envelope Protocol as an example
to demonstrate how the message-passing reasoning can be integrated
with state reasoning to yield interesting and powerful results.

1 Introduction

Many protocols involve only message transmission and reception, controlled by
rules that are purely local to a session of the protocol. Typical protocols for
authentication and key establishment are of this kind; each participant maintains
only the state required to remember what messages must still be transmitted,
and what values are expected in messages to be received from the peer.

Other protocols interact with long-term state, meaning state that persists
across different sessions and may control behavior in other sessions. A bank
account is a kind of long term state, and it helps to control the outcome of
protocol sessions in the ATM network. Specifically, the session fails when we try
to withdraw money from an empty account. Of course, one session has an effect
on others through the state: When we withdraw money today, there will be less
remaining to withdraw tomorrow.

Hardware devices frequently participate in protocols, and maintain state that
helps control those protocols. For example, PKCS#11 devices store and use keys,
and are constrained by key attributes that control e.g. which keys may be used
to wrap and export other keys. Trusted Platform Modules (TPMs) maintain
Platform Configuration Registers (PCRs) some of which are modified only by
certain special instructions. Thus, digitally signing the values in these registers
attests to the history of the platform.

State-based protocols are more challenging to analyze than protocols in which
all state is session-local. Among the executions that are possible given the mes-
sage flow patterns, one must identify those for which a compatible sequence

of states exists. Thus, to justify standardizing protocols involving PKCS#11
devices or TPMs, one must do a deeper analysis than for stateless protocols.
Indeed, since these devices are themselves standardized, it is natural to want to
define and justify protocols that depend only on their required properties, rather
than any implementation specific peculiarities.

The goal of this paper is to explain formal ideas that can automate this
analysis, and to describe a support tool that assists with it.

Enrich-by-need analysis. In our analysis, the input is a fragment of protocol
behavior. The output gives zero or more executions that contain this fragment.
We call this approach “enrich-by-need” analysis (borrowed from Guttman [15]),
because it is a search process that gradually adds information as needed to
explain the events that are already under consideration.

An analysis begins with an execution fragment A, which may, for instance,
reflect the assumption that one participant has engaged in a completed local
session; that certain nonces were freshly chosen; and that certain keys were
uncompromised.

The result of the analysis is a set S of executions enriching the starting
fragment A. An algorithm implementing this approach is sound if—for every
possible execution C that enriches A–there is a member B ∈ S such that C

enriches B.
We do not require S to contain all possible executions because there are

infinitely many of them if any. For instance, executions may always be extended
by including additional sessions by other protocol participants. Thus, we want
the set S to contain representatives that cover all of the essentially different
possibilities. We call these representatives S the shapes for A.

In practice, the set S of shapes for A is frequently finite and small.
When we start with a fragment A and find that it has the empty set S = ∅ of

shapes, that means that no execution contains all of the structure in A. To use
this technique to show confidentiality assertions, we include a disclosure event
in A. If A extends to no possible executions at all, we can conclude that this
secret cannot be revealed. If S is non-empty, the shapes are attacks that show
how the confidentiality claim could fail.

The set S of shapes, when finite, also allows us to ascertain whether authen-
tication properties are satisfied. If each shape B ∈ S satisfies an authentication
property, then every possible execution C enriching A must satisfy the prop-
erty too: They all contain at least the behavior exhibited in some shape, which
already contained the events that the authentication property required.

This style of analysis is particularly useful in a partially ordered execution
model, such as strand spaces provide [25]. In this model, when events e1, e2 are
causally unrelated, neither precedes the other. In linearly ordered execution mod-
els, both interleavings e1 ≺ e2 and e2 ≺ e1 are possible, and must be considered.
When there are many such pairs, this leads to exponentially many interleavings.
None of the differences between them are significant.

A logical interpretation. This type of analysis has a natural logical inter-
pretation. Suppose we explore the shapes of a fragment A. We can summarize

2

all of the facts holding in A by a conjunction of atomic assertions; we call this
conjunction the characteristic formula cf(A). The protocol analysis will tell us
what must occur in all executions that satisfy this formula. In particular, sup-
pose that the analysis delivers a finite set of shapes S = {B1, . . .Bk}. Each of
the shapes Bi has a characteristic formula cf(Bi). If yi are the variables that
occur in cf(Bi) but not in cf(A), then we have learnt that in this branch of the
analysis, ∃yi . cf(Bi) holds. Hence, the logical content of the analysis is that the
protocol ensures:

cf(A) =⇒
∨

i≤k

∃yi . cf(Bi). (1)

We call this the shape analysis formula for A. In fact, it is the strongest security
goal with hypothesis cf(A) that the protocol achieves.

In case the analysis tells us that A is impossible, i.e. that S = ∅, then the
conclusion of the shape analysis formula is the empty disjunction. The empty
disjunction is the constantly false formula. Thus, the shape analysis formula is
equivalent to ¬(cf(A)).

For a fuller discussion of these ideas, as they apply to security protocol com-
parison and standardization, see work by Rowe et al. [24]. In particular, they
argue that the natural partial ordering of implication among formulas leads to a
useful way to measure and compare the security properties of alternative versions
of protocols under standardization.

Contributions of this paper. In this paper, we make three main contribu-
tions:

1. We identify two central axioms of state that formalize the semantics of state-
respecting executions (Def. 2).

(a) One axiom characterizes how state transitions control protocol behavior.
It says that the state produced by a transition can be consumed by at
most one immediately subsequent transition.

This is the essence of how the state-respecting analysis differs from stan-
dard message-based analysis.

(b) A second axiom constrains state observations. An event in which state
s is observed must occur after a transition that produces s, but before s

is consumed by the next transition.

Like the reader/writer principle in concurrency, this allows many obser-
vations to occur with no intrinsic order among them, so long as they
all occur while that state is available. It preserves the advantages of our
partial order model, as enriched with state.

2. We incorporated these two axioms into the tool cpsa [22], obtaining a tool
that can perform state-respecting enrich-by-need protocol analysis.

3. We applied the resulting version of cpsa to an interesting TPM-based pro-
tocol, the Envelope Protocol [2], verifying that it meets its security goal. We
have also analyzed some incorrect variants, obtaining attacks.

3

Roadmap. After describing the Envelope Protocol and the TPM behaviors it
relies on (Section 2), we introduce our protocol model (Section 3) in both its
plain form, and the form enriched by the axioms in Contribution 1. Section 4
describes the cpsa analysis in the original model where state propagation is
not distinguished from message-passing, and in the enriched model. We turn to
related work in Section 5. Section 6 briefly describes the logical interpretation
mentioned above. The bottom line here is that no aspect of the logical language
or its interpretation needs to change when it is transported to the enriched model.
This adds evidence that our method is a clean and non-disruptive extension to
the work of Rowe et al [24]. We end with a brief comment on conclusions and
future work.

2 The Envelope Protocol

We use Mark Ryan’s Envelope Protocol [3] as a concrete example throughout the
paper. The protocol leverages cryptographic mechanisms supported by a TPM
to allow one party to package a secret such that another party can either reveal
the secret or prove the secret never was and never will be revealed, but not both.

It is a particularly useful example to consider because it is carefully designed
to use state in an essential way. In particular, it creates the opportunity to
take either of two branches in a state sequence, but not both. In taking one
branch, one loses the option to take the other. In this sense, it utilizes the non-
monotonic nature of state that distinguishes it from the monotonic nature of
messages. Additionally, although the Envelope Protocol is not standardized, it
demonstrates advanced and useful ways to use the TPM. Standardization of
such protocols is under the purview of the Trusted Computing Group (TCG). It
will be very useful to understand the fundamental nature of state and to provide
methods and tools to support the future standardization of protocols involving
devices such as the TPM.

Protocol motivation. The plight of a teenager motivates the protocol. The
teenager is going out for the night, and her parents want to know her destination
in case of emergency. Chafing at the loss of privacy, she agrees to the following
protocol. Before leaving for the night, she writes her destination on a piece of
paper and seals the note in an envelope. Upon her return, the parents can prove
the secret was never revealed by returning the envelope unopened. Alternatively,
they can open the envelope to learn her destination.

The parents would like to learn their daughter’s destination while still pre-
tending that they have respected her privacy. The parents are thus the adversary.
The goal of the protocol is to prevent this deception.

Necessity of long-term state. The long-term state is the envelope. Once the
envelope is torn open, the adversary no longer has access to a state in which
the envelope is intact. A protocol based only on message passing is insufficient,
because the ability of the adversary monotonically increases. At the beginning
of the protocol the adversary has the ability to either return the envelope or

4

tear it. In a purely message-based protocol the adversary will never lose these
abilities.

Cryptographic version. The cryptographic version of this protocol uses a
TPM to achieve the security goal. Here we restrict our attention to a subset
of the TPM’s functionality. In particular we model the TPM as having a state
consisting of a single PCR and only responding to five commands.

A boot command (re)sets the PCR to a known value. The extend command
takes a piece of data, d, and replaces the current value s of the PCR state with
the hash of d and s, denoted #(d, s). In fact, the form of extend that we model,
which is an extend within an encrypted session, also protects against replay.
These are the only commands that alter the value in a PCR.

The TPM provides other services that do not alter the PCR. The quote

command reports the value contained in the PCR and is signed in a way as to
ensure its authenticity. The create key command causes the TPM to create an
asymmetric key pair where the private part remains shielded within the TPM.
However, it can only be used for decryption when the PCR has a specific value.
The decrypt command causes the TPM to decrypt a message using this shielded
private key, but only if the value in the PCR matches the constraint of the
decryption key.

In what follows, Alice plays the role of the teenaged daughter packaging the
secret. Alice calls the extend command with a fresh nonce n in an encrypted
session. She uses the create key command constraining a new key k′ to be used
only when a specific value is present in the PCR. In particular, the constraining
value cv she chooses is the following:

cv = #(obt,#(n, s))

where obt is a string constant and s represents an arbitrary PCR value prior the
extend command. She then encrypts her secret v with k′, denoted {|v|}k′ .

Using typical message passing notation, Alice’s part of the protocol might
be represented as follows (where we temporarily ignore the replay protection for
the extend command):

A → TPM : {|ext, n|}k
A → TPM : create,#(obt,#(n, s))

TPM → A : k′

A → Parent : {|v|}k′

The parent acts as the adversary in this protocol. We assume he can perform all
the normal Dolev-Yao operations such as encrypting and decrypting messages
when he has the relevant key, and interacting with honest protocol participants.
Most importantly, the parent can use the TPM commands available in any order
with any inputs he likes. Thus he can extend the PCR with the string obtain

and use the key to decrypt the secret. Alternatively, he can refuse to learn the
secret and extend the PCR with the string ref and then generate a TPM quote
as evidence the secret will never be exposed. The goal of the Envelope Protocol

5

Sorts: ⊤, A, S, D, E
Subsorts: A < ⊤, S < ⊤, D < ⊤
Operations: (·, ·) :⊤×⊤ → ⊤ Pairing

{| · |}(·) :⊤×⊤ → ⊤ Encryption

(·)−1 : A → A Asymmetric key inverse

(·)−1 : S → S Symmetric key inverse
:⊤ → ⊤ Hashing
ai, bi : A Asymmetric key constants
si : S Symmetric key constants
di : D Data constants
gi :⊤ Tag constants

Equations: ai
−1 = bi bi

−1 = ai (i ∈ N)

∀k : A. (k−1)
−1

= k ∀k : S. k−1 = k

Fig. 1. Crypto algebra with state signature

is to ensure that once Alice has prepared the TPM and encrypted her secret, the
parent should not be able to both decrypt the secret and also generate a refusal
quote, {| quote,#(ref,#(n, s)), {|v|}k′ |}aik .

A crucial fact about the PCR role in this protocol is the collision-free nature
of hashing, ensuring that for every x

#(obt,#(n, s)) 6= #(ref, x) (2)

Formal protocol model. We formalize the TPM-based version of the Enve-
lope Protocol using strand spaces [13]. Messages and states are represented as
elements of a crypto term algebra whose signature is shown in Fig. 1. The algebra
is the initial quotient term algebra over the signature. Sort ⊤ is the top sort of
messages. Messages of sort A (asymmetric keys), sort S (symmetric keys), sort D
(data), and sort E (text) are called atoms. Messages are atoms, tag constants,
or constructed using encryption {| · |}(·), hashing #(·), and pairing (·, ·), where
the comma operation is right associative and parentheses are omitted when the
context permits.

We represent each TPM command with a separate role that receives a re-
quest, consults and/or changes the state and optionally provides a response. We
use m→• and •→m to represent the reception and transmission of message m

respectively. Similarly, we use s❀◦ and ◦❀s to represent the actions of reading
and writing the value s to the state.

As noted above, the boot role and the extend role are the only two roles
that alter the state. This is depicted with the single event ❀◦❀ that atomically
reads and then alters the state. The boot role receives the command and resets
any current state s to the known value s0. An alternate version of boot is needed
to ensure that our sequences of state are well-founded. This version has a single
state write event ◦❀ s0.

The extend role first creates an encrypted channel by receiving an encrypted
session key esk which is itself encrypted by some other secured TPM asymmetric

6

[re-]boot

boot // •

��

[
s ///o/o/o]◦

s0 ///o/o/o

create key

create,s
// •

��

•
{| created,k′,s|}aik //

quote

quote,n
// •

��s ///o/o/o ◦

��

•
{| quote,s,n|}aik //

extend

sess,tpmk,{| esk |}tpmk
// •

��

•

��

sess,sid
//

{| ext,n,sid |}esk // •

��s ///o/o/o/o/o/o/o/o/o/o ◦
#(n,s)

///o/o/o/o/o

decrypt

dec,{|m|}k′

// •

��{| created,k′,s|}aik // •

��s ///o/o/o/o/o/o/o/o/o ◦

��

•
m //

Fig. 2. TPM roles

key tpmk. The TPM replies with a random session id sid to protect against
replay. It then receives the encrypted command to extend the value n into the
PCR and updates the arbitrary state s to become #(n, s).

The create key role does not interact directly with the state. It receives the
command with the argument s specifying a state. It then replies with a signed
certificate for a freshly created public key k′ that binds it to the state value s.
The certificate asserts that the corresponding private key k′−1 will only be used
in the TPM and only when the current value of the state is s. This constraint is
leveraged in the decrypt role which receives a message m encrypted by k′ and
a certificate for k′ that binds it to a state s. The TPM then consults the state
(without changing it) to ensure it is in the correct state before performing the
decryption and returning the message m.

Finally, the quote role receives the command together with a nonce n. It
consults the state and reports the result s in a signed structure that binds the
state to the nonce to protect against replay. To ensure that our sequences of
state are well-founded we also include another TPM role that creates the initial
state. It has a single state write event ◦❀ s0, that writes the well-known boot
value into the freshly created state.

We similarly formalize Alice’s actions. Her access to the TPM state is entirely
mediated via the message-based interface to the TPM, so her role has no state
events. It is displayed in Fig. 3

Alice begins by establishing an encrypted session with the TPM in order to
extend a fresh value n into the PCR. She then has the TPM create a fresh key
that can only be used when the PCR contains the value #(obt,#(n, s)), where
s is whatever value was in the PCR immediately before Alice performed her

7

Alice

•

��

sess,tpmk,{| esk |}tpmk
//

sess,sid
// •

��

•

��

{| ext,n,sid|}esk //

•

��

create,#(obt,#(n,s))
//

{| created,k′,#(obt,#(n,s))|}aik // •

��

•
{|v|}k′

//

Fig. 3. Alice’s role

extend command. Upon receiving the certificate for the freshly chosen key, she
uses it to encrypt her secret v that gives her destination for the night.

The parents may then either choose to further extend the PCR with the
value obt in order to enable the decryption of Alice’s secret, or they can choose
to extend the PCR with the value ref and get a quote of that new value to prove
to Alice that they did not take the other option. The adversary roles displayed in
Fig. 5 constrain what the parents can do. It is important to note that, like Alice’s
role, the adversary roles do not contain any state events. Thus the adversary can
only interact with the state via the interface provided by the TPM commands.

We aim to validate a particular security goal of the Envelope Protocol using
the enrich-by-need method. The parent should not be able to both learn the
secret value v and generate a refusal token.

Security Goal 1 Consider the following events:

– An instance of the Alice role runs to completion, with secret v and nonce n

both freshly chosen;
– v is observed unencrypted;
– the refusal certificate {| quote,#(ref,#(n, s)), {|v|}k′ |}aik is observed unen-

crypted.

These events, which we call jointly A0, are not all present in any execution.

3 An Execution Model for Protocols with State

The cpsa tool is based on strand space theory, in which an execution is described
as a set of events partially ordered by two fundamental relations: strand succes-
sion (⇒) and transmission (→). Strand succession represents the ordering, in
sequence, of a viewpoint of a local participant, while transmission represents the
causal ordering of a reception event following the transmission of the received

8

message. A bundle is a set of strands (sequences of events, each of which is a
transmission or reception) in which for every reception event, there is a unique
corresponding transmission that satisfies it.

Bundles are partially ordered (by the transitive closure of the two relations),
rather than totally ordered. The non-comparison of certain events allows bun-
dles to represent as large a class of real executions as possible. Two events not
comparable in a bundle are events whose ordering is not observable or inferable
by any protocol participant.

The diagrams in Section 2 imply a somewhat natural way to incorporate state
into our execution model: we add a second type of event that deals with state
rather than messages, along with an additional relation ❀. Our model contains
three types of state events and two types of message events, each of which occur
in our Envelope Protocol example.

– (s❀ ◦) Observation records the current state without changing it. We use
obsv s to indicate an observation of state s.

– (s0❀◦❀ s1) Transition represents the moment at which the state changes
from a specific pre-state to a specific post-state. We use tran (s0, s1) to
indicate a state transition with pre-state s0 and post-state s1.

– (◦❀s) Initiation records the event of creating a new state. We use init s to
indicate an initiation of state to s.

– (•→m) Transmission is the sending of a message. We use send m to indicate
the transmission of m.

– (m→•) Reception is the receiving of a message. We use recv m to indicate
the reception of a message m.

Definition 1 (Bundle). Let tr be a set of disjoint sequences of events, where
N is the set of all events occurring in some sequence. Let →,❀∈ N ×N where
→ is a relation from send events to recv events and ❀ is a relation from init or
tran events to tran or obsv events. The triple (tr ,→,❀) is a bundle if:

1. For each message reception event n1 = recv m there exists a unique n0 =
send m where n0 → n1.

2. For each observation event n1 = obsv s or transition event n1 = tran (s, ·)
there exists a unique n0 such that either n0 = init s or n0 = tran (·, s).

3. (⇒ ∪ → ∪ ❀)+–the transitive closure of the three arrow relations—is
acyclic.

A bundle is thus a set of strands in which for every event that expects an
incoming arrow with a specific value, there is a unique corresponding event that
satisfies it by producing an outgoing arrow of the same type with the same value.

Our axioms of state. Bundles are not a sufficient execution model, however,
because they do not capture what is essentially different about state as compared
to messages: its sequential nature.

The initiation and transition events are meant to describe the sequence of
values a state goes through. The notion of bundle says nothing about the “out-
degree” of an event. A message transmission event can satisfy more than one

9

message reception. However, a state event (initiation or transition) can satisfy
only one state transition event.

Observation events are not strictly necessary; we could model the checking
of a state value as a transition s❀◦❀s. However, this would imply that several
observation events be ordered in a sequence, even though they need not occur in
any specific order, which violates the principled choice that our execution model
not include unnecessary ordering. Thus, we include observation as a distinct type
of state event.

Observations must occur in a well-defined place in the sequence of states.
They require an incoming ❀ arrow that must come from either a transition or
an initiation and represents the moment at which the state became the observed
value. It can be inferred that such an observation occurs before any subsequent
change in the state.

These two principles—that transitions occur in a non-forking sequence, and
the observations occur before a subsequent change in the observed state—motivate
our execution model.

Definition 2 (State-respecting bundle). Let B = (tr ,→,❀) be a stateful
bundle. B is a state-respecting bundle if and only if:

1. if n ❀ n0 and the event at n0 is a transition then if n ❀ n1 and the event
at n1 is also a transition, then n1 = n0;

2. The relation ≺ is acyclic, where ≺ is the smallest transitive relation such
that (1) (⇒ ∪ → ∪ ❀) ⊂≺ and (2) whenever n0 ❀ n1 and n0 ❀ n2 where
n1 is a transition event and n2 is an observation, then n2 ≺ n1.

◦

��
�X
�X
�X
�X

��
�F
�F
�F
�F

tran = tran

◦

��
�X
�X
�X
�X
�X

��
�F
�F
�F
�F

obsv ≺ tran

(1) (2)

Fig. 4. State-respecting semantics. (1) State produced (either from a tran or init event)
cannot be consumed by two distinct transitions. (2) Observation occurs after the state
observed is produced but before that state is consumed by a subsequent transition.

3.1 Protocols and the adversary model

A protocol consists of a set of roles, each of which is a sequence of events. An
instance of a role is an image of some prefix of the role’s event sequence under
an algebra map.

10

For most protocols, it is anticipated that there is a bundle in which all of the
strands are instances of protocol roles. However, interesting attacks on protocols
may require instances of another type of role, representing allowable attacker
behavior. These penetrator roles are protocol-independent. For the basic crypto
algebra, the five penetrator roles are pairing and decomposition (for assembling
and dismantling pairs), encryption and decryption (for building and deconstruct-
ing encryptions), and creation (for production of atomic values not assumed to
be unavailable to the attacker. See Fig. 5 for the adversary roles.

create

•
a //

pair

x // •

��y
// •

��

•
(x,y)

//

sep

(x,y)
// •

��

•
x //

��

•
y

//

enc

x // •

��k // •

��

•
{|x|}k //

dec

{|x|}k // •

��k−1

// •

��

•
x //

Fig. 5. Adversary roles

Analysis of a protocol is an exploration of the space of bundles consisting of
a combination of protocol role instances and penetrator role instances.

Note that none of the penetrator roles involve any kind of state events. This
is a deliberate choice to focus on an attack model in which the attacker can
influence state only through the included protocol roles.

3.2 Enrich-by-need for stateful protocols

The cpsa tool is driven by the bundle model of executions, but its actual op-
erations are on a different sort of object called skeletons, which are partial de-
scriptions of an execution that abstract away adversarial strategies for delivering
messages. cpsa enrich-by-need analysis is based on refining a skeleton A with
at least one undeliverable message, into a set of skeletons {Bi} each of which
refines A, such that any execution that includes the structure in A includes the
structure of at least one of the Bi.

In order to handle state appropriately within cpsa analysis, we expanded
the notion of a skeleton to include initiation, transition, and observation events
explicitly and also to explicitly represent the ❀ arrows. The enrich-by-need
analysis needs a second case, to handle skeletons with at least one unexplained
state event, that is, either a transition or observation without an incoming ❀.
We solve this case by considering all possible state events that could possibly
provide the required state—either a fresh state event derived from a protocol
role, or a pre-existing one. In the latter case, if the unexplained reception is
a transition, the pre-existing state event must not have already had its state
consumed by a different transition.

11

We also maintain a skeleton ordering so that the ordering reflects the ordering
described in Condition 2 of Def. 2, and we discard a skeleton if it contains a cycle.

4 Analysis of the Envelope Protocol

The two conditions of Def. 2 identify the crucial aspects of state that distinguish
state events from message events. They axiomatize necessary properties of state
that are not otherwise captured by the properties of bundles. In order to give
the reader some intuition for these properties, we present several analyses of the
Envelope Protocol in this section. We begin by contrasting two analyses; one is
based on plain bundles that only satisfy Definition 1, while the other is based
on state-respecting bundles that also satisfy Definition 2

Plain vs. state-respecting bundles. Recall that the Envelope Protocol was
designed to satisfy Security Goal 1. That is, there should be no executions in
which (1) Alice completes a run with fresh, randomly chosen values for v and n,
(2) v is available unencrypted on the network, and (3) the refusal certificate Q is
also available on the network. Whether we use plain bundles or state-respecting
bundles as our model of execution, the analysis begins the same way. The relevant
fragment of the point at which the two analyses diverges is depicted in Fig. 6.
The reader may wish to refer to the figure during the following description of the
enrich-by-need process. The first three steps describe how we infer the existence
of the top row of strands from right to left. The last two steps explain how we
infer the strands in the bottom row from left to right.

1. The presence of v in unencrypted form implies the existence of a decrypt

strand to reveal it.
2. The decrypt strand requires the current state to be #(obt,#(n, s)), so our

new principle of enrichment for state implies the existence of an extend
strand with input value obt.

3. This newly inferred extend strand, in turn must have its current state
#(n, s) explained which is done by another extend strand that receives the
value n from Alice.

4. The presence of the quoted refusal token Q implies the existence of a quote

strand to produce it.
5. The quote strand requires the state to be #(ref,#(n, s)), which allows us

to infer the third extend strand.

At this point in the analysis, the underlying semantics of bundles begins to
matter. Our analysis still must explain how the state became #(n, s) for this last
extend strand. If we use plain bundles that do not satisfy Definition 2, then we
may re-use the extend strand inferred in Step 3 as an explanation. This would
cause us to add a ❀ arrow between these two state events (along the dotted
arrow ∗ of Fig. 6) forcing us to “split” the state coming out of the earlist extend
strand. Further enrichments allow us to discover a bundle compatible with our

12

alice

��

extend

��

extend

��

decrypt

��

•
···n··· //

��

•

��

◦ ///o/o/o/o/o/o

∗

��

◦ ///o/o/o/o/o/o ◦

��

quote

��

extend

��

•
v //

• // •

��

◦

��

◦oo o/ o/ o/ o/ o/ o/

•
Q

oo

Fig. 6. A crucial moment in the cpsa analysis of the Envelope Protocol, demonstrating
the importance of our first axiom of state.

starting point, contrary to Security Goal 1. It is important to note, however, that
all bundles that enrich the fragment with the split state are not state-respecting.

If, on the other hand, we only allow state-respecting bundles, Condition 1 of
Definition 2 does not allow us to re-use the extend strand inferred in Step 3 to
explain the state found on the strand of Step 5. Instead, we are forced to infer
yet another extend strand that receives Alice’s nonce n. However, since Alice
uses an encrypted session that provides replay protection, the adversary has no
way to return the TPM state to #(n, s). Thus, although there are plain bundles
that violate Security Goal 1, there are no state-respecting bundles that do so.

A flawed version. We also performed an analysis of the Envelope Protocol,
removing the assumption that Alice’s nonce n is fresh, to demonstrate our state-
respecting variant’s ability to automatically detect attacks. The analysis pro-
ceeds similarly; as in the previous analysis we decline to add a ❀ arrow along
∗ thanks to our stateful semantics. However, the alternative possibility that a
fresh extend strand provides the necessary state proves to work out. Because n

is not freshly chosen, the parent can engage in a distinct extend session with
the same n.

Note that our analysis does not specify that the s = s0, where s is the state of
the PCR when first extended. For the case where s = s0, the attack is to reboot
the TPM after obtaining one value (either the refuse token or Alice’s secret),
re-extend the boot state with n, and then obtain the other. In fact, so long as

13

s represents a state of the PCR that the parent can induce, a similar attack is
possible.

4.1 The Importance of Observer Ordering

The Envelope Protocol example demonstrates the crucial importance of captur-
ing our first axiom of state correctly. The second axiom, involving the relative
order of observations and state transition, is no less crucial to correct under-
standing of stateful protocols.

Another example protocol illustrates the principle more clearly. Suppose a
hardware device is capable of producing keys that are meant to be managed by
the device and not learnable externally. If the device has limited memory, it may
be necessary to export such a key in an encrypted form so the device can utilize
external storage.

Thus, device keys can be used for two distinct purposes: for encryption /
decryption of values on request, or for encrypting internal keys for external
storage. It is important that the purpose of a given key be carefully tracked, so
that the device is not induced to decrypt one of its own encrypted keys.

Suppose that for each key, the device maintains a piece of state, namely, one
of three settings:

– A wrap key is used only to encrypt internal keys
– A decrypt key may be used to encrypt or decrypt arbitrary values specified

by a user
– An initial key has not yet been assigned to either the “wrap” or “decrypt”

state.

If a key in the wrap state can later be put in the decrypt state, a relatively
obvious attack becomes possible: while in the wrap state, the device encrypts
some internal key, and later, when the key is in the decrypt state, the device
decrypts the encrypted internal key.

However, if keys can never exit the wrap state once they enter it, this attack
should not be possible. If we were to represent this protocol within cpsa, we
would include the following roles:

– A create key role that generates a fresh key and initializes its state to initial

– A set wrap role that transitions a key from initial or decrypt to wrap.
– A set decrypt role that transitions a key from initial to decrypt.
– A wrap role in which a user specifies two keys (by reference), and the device

checks (with an observer) that the first is in the wrap state and if so, then
encrypts the second key with the first and transmits the result.

– A decrypt role in which a user specifies a key (by reference) and a ciphertext
encrypted under that key, and the device checks (with an observer) that
the key is in the decrypt state and if so, then decrypts the ciphertext and
transmits the resulting plaintext.

14

init

��

set decrypt

��

set wrap

��

wrap

��

◦ ///o/o/o/o/o/o/o ◦ ///o/o/o/o/o/o/o/o

##
#c

#c
#c

#c
#c

#c
#c

#c
#c

#c
#c

#c
#c

#c
#c

#c
#c

#c
#c

#c
#c

#c
◦ ///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o ◦

��

decrypt

��

•

{|k2|}k1
yyss
s
s
s
s
s
s
s
s
s

•

��

◦

��

YY

•
k2 //

Fig. 7. Observer ordering example

Note that the attack should not be possible. However, the bundle described in
Fig. 7 is a valid bundle, and fails to be state-respecting only because of our axiom
about observers. Our second axiom induces an ordering so that the observer in
the decrypt strand occurs before the following transition event in the set wrap

strand. The induced ordering is shown in the figure with a single dotted arrow;
note the cycle among state events present with that ordering that is not present
without it.

5 Related Work

The problem of reasoning about protocols and state has been an increasing focus
over the past several years. Protocols using TPMs and other hardware security
modules (HSMs) have provided one of the main motivations for this line of work.

A line of work was motivated by HSMs used in the banking industry [16, 26].
This work identified the effects of persistent storage as complicating the security
analysis of the devices. There was also a strong focus on the case of PKCS #11
style devices for key management [5, 6, 11]. These papers, while very informa-
tive, exploited specific characteristics of the HSM problem; in particular, the
most important mutable state concerns the attributes that determine the usage
permitted for keys. These attributes should usually be handled in a monotonic
way, so that once an attribute has been set, it will not be removed. This justifies
using abstractions that are more typical of standard protocol analysis.

In the TPM-oriented line of work, an early example using an automata-based
model was by Gürgens et al. [12]. It identified some protocol failures due to the
weak binding between a TPM-resident key and an individual person. Datta
et al.’s “A Logic of Secure Systems” [8] presents a dynamic logic in the style

15

of PCL [7] that can be used to reason about programs that both manipulate
memory and also transmit and receive cryptographically constructed messages.
Because it has a very detailed model of execution, it appears to require a level of
effort similar to (multithreaded) program verification, unlike the less demanding
forms of protocol analysis.

Mödersheim’s set-membership abstraction [19] works by identifying all data
values (e.g. keys) that have the same properties; a change in properties for a given
key K is represented by translating all facts true for K’s old abstraction into
new facts true of K’s new abstraction. The reasoning is still based on monotonic
methods (namely Horn clauses). Thus, it seems not to be a strategy for reasoning
about TPM usage, for instance in the Envelope Protocol.

Guttman [14] developed a theory for protocols (within strand spaces) as
constrained by state transitions, and applied that theory to a fair exchange pro-
tocol. It introduced the key notion of compatibility between a protocol execution
(“bundle”) and a state history. This led to work by Ramsdell et al. [21] that
used cpsa to draw conclusions in the states-as-messages model. Additional con-
sequences could then be proved using the theorem prover PVS [20], working
within a theory of both messages and state organized around compatibility.

A group of papers by Ryan with Delaune, Kremer, and Steel [9, 10], and with
Arapinis and Ritter [2] aim broadly to adapt ProVerif for protocols that interact
with long-term state. ProVerif [4, 1] is a Horn-clause based protocol analyzer with
a monotonic method: in its normal mode of usage, it tracks the messages that
the adversary can obtain, and assumes that these will always remain available.
Ryan et al. address the inherent non-monotonicity of adversary’s capabilities by
using a two-place predicate att(u,m) meaning that the adversary may possess m
at some time when the long-term state is u. In [2], the authors provide a compiler
from a process algebra with state-manipulating operators to sets of Horn clauses
using this primitive. In [10], the authors analyze protocols with specific syntactic
properties that help ensure termination of the analysis. In particular, they bound
the state values that may be stored in the TPMs. In this way, the authors verify
two protocols using the TPM, including the Envelope Protocol.

Meier, Schmidt, Cremers, and Basin’s tamarin prover [18] uses multiset rewrit-
ing (MSR) as a semantics in which to prove properties of protocols. Since MSR
suffices to represent state, it provides a way to prove results about protocols
with state. Künnemann studied state-based protocol analysis [17] in a process
algebra akin to StatVerif, which he translated into the input language of tamarin
to use it as a proof method. Curiously, the main constructs for mutable state
and concurrency control (locking) are axiomatized as properties of traces rather
than encoded within MSR (see [17, Fig. 10]).

Our work. One distinguishing feature of this work is our extremely simple
modification to the plain message passing semantics to obtain a state-respecting
model. These are the two Axioms 1–2 in Def. 2. We think it is an attractive
characteristic of the strand space framework that state reflects such a clean
foundational idea. Moreover, this foundational idea motivated a simple set of
alterations to the enrich-by-need tool cpsa.

16

6 Protocol Security Goals

The enrich-by-need analysis performed in our enhanced version of cpsa is fully
compatible with the language of goals found in previous work such as [24]. The
goal language is based on two classes of predicates:

– Role-related predicates that relate an event or parameter value to its use
within a specific protocol role.

– Bundle-related predicates that are protocol-independent and describe
important properties of bundles. These include the ordering of events as well
as assumptions about freshly chosen values and uncompromised keys.

Both classes of predicates apply within state-respecting bundles in a natural
way. The role-related predicates are sensitive only to the position of an event in
the sequence of events of a role, and to the choice of parameter values in that
instance of the role. Indeed, nodes that represent state transitions or observations
are handled in exactly the same way, since they have positions in the role and
parameter values in just the same way as the message transmission and reception
events.

Freshness and uncompromised keys are of course handled in the same way
in the state-respecting semantics. For instance, a value first arising in the post-
state of a transition event can originate freshly there, just as it could originate
freshly when first transmitted.

Thus, the state-respecting version of cpsa can verify formulas expressing
security goals in exactly the same way as the previous version, and with the
same semantic definitions.

Conclusion. In this paper, we have argued that cpsa—and possibly other for-
malized protocol analysis methods—can provide reliable analysis when protocols
are standardized, even when those protocols are manipulating devices with long-
term state. A core idea of the formalization are the two axioms of Def. 2, which
encapsulate the difference between a message-based semantics and the state-
respecting semantics.

References

1. Mart́ın Abadi and Bruno Blanchet. Analyzing security protocols with secrecy types
and logic programs. Journal of the ACM, 52(1):102–146, January 2005.

2. Myrto Arapinis, Eike Ritter, and Mark Dermot Ryan. Statverif: Verification of
stateful processes. In Computer Security Foundations Symposium (CSF), pages
33–47. IEEE, 2011.

3. Myrto Arapinis, Mark Ryan, and Eike Ritter. StatVerif: Verification of stateful
processes. In IEEE Symposium on Computer Security Foundations. IEEE CS Press,
June 2011.

4. Bruno Blanchet. An efficient protocol verifier based on Prolog rules. In 14th
Computer Security Foundations Workshop, pages 82–96. IEEE CS Press, June
2001.

17

5. Véronique Cortier, Gavin Keighren, and Graham Steel. Automatic analysis of the
security of xor-based key management schemes. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 538–552. Springer, 2007.

6. Véronique Cortier and Graham Steel. A generic security api for symmetric key
management on cryptographic devices. In Computer Security–ESORICS 2009,
pages 605–620. Springer, 2009.

7. Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. A deriva-
tion system and compositional logic for security protocols. Journal of Computer
Security, 13(3):423–482, 2005.

8. Anupam Datta, Jason Franklin, Deepak Garg, and Dilsun Kaynar. A logic of
secure systems and its application to trusted computing. In Security and Privacy,
2009 30th IEEE Symposium on, pages 221–236. IEEE, 2009.

9. Stéphanie Delaune, Steve Kremer, Mark D Ryan, and Graham Steel. A formal
analysis of authentication in the TPM. In Formal Aspects of Security and Trust,
pages 111–125. Springer, 2011.

10. Stéphanie Delaune, Steve Kremer, Mark D. Ryan, and Graham Steel. Formal anal-
ysis of protocols based on TPM state registers. In IEEE Symposium on Computer
Security Foundations. IEEE CS Press, June 2011.

11. Sibylle Fröschle and Nils Sommer. Reasoning with past to prove PKCS# 11 keys
secure. In Formal Aspects of Security and Trust, pages 96–110. Springer, 2011.

12. Sigrid Gürgens, Carsten Rudolph, Dirk Scheuermann, Marion Atts, and Rainer
Plaga. Security evaluation of scenarios based on the TCG’s TPM specification. In
Computer Security–ESORICS 2007, pages 438–453. Springer, 2007.

13. Joshua D. Guttman. Shapes: Surveying crypto protocol runs. In Veronique Cortier
and Steve Kremer, editors, Formal Models and Techniques for Analyzing Security
Protocols, Cryptology and Information Security Series. IOS Press, 2011.

14. Joshua D. Guttman. State and progress in strand spaces: Proving fair exchange.
Journal of Automated Reasoning, 48(2):159–195, 2012.

15. Joshua D. Guttman. Establishing and preserving protocol security goals. Journal
of Computer Security, 22(2):201–267, 2014.

16. Jonathan Herzog. Applying protocol analysis to security device interfaces. IEEE
Security & Privacy, 4(4):84–87, 2006.

17. Steve Kremer and Robert Künnemann. Automated analysis of security protocols
with global state. In IEEE Symposium on Security and Privacy, pages 163–178,
2014.

18. Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. The tamarin
prover for the symbolic analysis of security protocols. In Computer Aided Verifi-
cation (CAV), pages 696–701, 2013.

19. Sebastian Mödersheim. Abstraction by set-membership: verifying security proto-
cols and web services with databases. ACM Conference on Computer and Com-
munications Security, pages 351–360, 2010.

20. S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification system.
In Deepak Kapur, editor, 11th International Conference on Automated Deduction
(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752,
Saratoga, NY, jun 1992. Springer-Verlag. http://pvs.csl.sri.com.

21. John D. Ramsdell, Daniel J. Dougherty, Joshua D. Guttman, and Paul D. Rowe.
A hybrid analysis for security protocols with state. In Integrated Formal Methods,
pages 272–287, 2014.

22. John D. Ramsdell and Joshua D. Guttman. CPSA: A cryptographic protocol
shapes analyzer, 2009. http://hackage.haskell.org/package/cpsa.

18

23. John D. Ramsdell, Joshua D. Guttman, Jonathan K. Millen, and Brian O’Hanlon.
An analysis of the CAVES attestation protocol using CPSA. MITRE Technical
Report MTR090213, The MITRE Corporation, December 2009. http://arxiv.

org/abs/1207.0418.
24. Paul D. Rowe, Joshua D. Guttman, and Moses D. Liskov. Measuring protocol

strength with security goals. Submitted to IJIS in the SSR 2014 special issue. Avail-
able at http://web.cs.wpi.edu/~guttman/pubs/ijis_measuring-security.pdf,
April 2015.

25. F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces:
Proving security protocols correct. Journal of Computer Security, 7(2/3):191–230,
1999.

26. Paul Youn, Ben Adida, Mike Bond, Jolyon Clulow, Jonathan Herzog, Amerson
Lin, Ronald Rivest, and Ross Anderson. Robbing the bank with a theorem prover.
In Security Protocols Workshop, 2007. Available at http://www.cl.cam.ac.uk/

techreports/UCAM-CL-TR-644.pdf.

19

