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AbstractAbstractAbstractAbstract    

This paper addresses the problem of unsupervised decomposition of a multi�author 

text document: identifying the sentences that were written by each author assuming 

the number of authors is unknown. An approach, BayesAD, is developed for solving 

this problem: apply a Bayesian segmentation algorithm, followed by a segment 

clustering algorithm. Results are presented from an empirical comparison between 

BayesAD and AK, a modified version of an approach published by Akiva and Koppel in 

2013.  

BayesAD exhibited greater accuracy than AK in all experiments. However, BayesAD has 

a parameter that needs to be set and which had a non�trivial impact on accuracy. 

Developing an effective method for eliminating this need would be a fruitful direction 

for future work. When controlling for topic, the accuracy of BayesAD and AK were, in all 

but one case, worse than a baseline approach wherein one author was assumed to 

write all sentences in the input text document. Hence, room for improved solutions 

exists. 

1.1.1.1. IntroductionIntroductionIntroductionIntroduction    

Authorship analysis is a field of study which aims to infer authorship information from 

a document or corpus of documents. The field can be divided into several sub�fields 

depending upon the type of authorship information to be inferred. One sub�field is 

authorship distinction (or similarity detection), “…the task of grouping documents by 

authorship when the author of none of those documents is known…” (Layton, Watters, 

& Dazeley, 2011, p. 98).  An interesting variation on problems in this sub�field has 

received relatively little attention, namely, unsupervised decomposition of a single 



Approved for Public Release; Distribution Unlimited. 13-4038; ©2014-The MITRE Corporation. All 

rights reserved. 

 

 

 

multi�author text document: identifying the sentences that were written by each 

author assuming the number of authors is unknown. Akiva and Koppel argue that an 

effective solution to this problem, when the number of authors is assumed known, 

would be of practical interest in a variety of contexts including “…commercial or legal 

interest, as in the case of contemporary documents, or of academic or cultural interest, 

as in the case of important historical documents…” (Akiva & Koppel, 2012, p. 205). 

This argument applies also to the more general version of the problem where the 

number of authors is unknown. 

Formally stated, the unsupervised decomposition of a single multi�author document 

problem is defined as follows. Given D a multi�author document consisting of |D| 

sentences: d[1],…,d[|D|], produce a partition1 {C1,…,Cm} of the sentences matching 

authorship: d[i] and d[j] are in the same part if and only if d[i] and d[j] were written by 

the same author. The number of parts, m, is not specified and must be automatically 

determined. Furthermore, neither writing samples from the authors of D, nor ground 

truth of any kind is available. For brevity, in the remainder of this paper, “unsupervised 

decomposition of a single multi�author document” is shortened to “unsupervised 

authorship decomposition” or “authorship decomposition”. The same problem is 

addressed in (Akiva & Koppel, 2013), except there, the number of authors is assumed 

known. 

This paper develops an approach, BayesAD, for solving the authorship decomposition 

problem. The approach is summarized in Section 2: first divide D into sub�sequences 

of consecutive sentences (segments); second cluster the segments to produce the final 

authorship decomposition. The segmentation2 algorithm is described in Section 3 and 

adopts a Bayesian approach combining ideas from (Eisenstein & Barzilay, 2008) and 

(Utiyama & Isahara, 2001).  The segment clustering algorithm is described in Section 4 

(with details in the appendix, Section 9) and uses a modified version of the spectral 

clustering algorithm in (Zelnik�Manor & Perona, 2004).   

BayesAD was empirically compared with AK, a modified version of the approach in 

(Akiva & Koppel, 2013). The details of AK are contained in Section 5 along with the 

definition of the accuracy metric used to quantify the comparison. The details of the 

data used and experimental procedure are contained in Section 6. The results of the 

experiments are contained in Section 7. Related work is discussed in Section 8. 

                                                           
1
 A partition {C1,..,Cm} of the sentences in D is defined as follows.  Each part Ci is a non-empty subset of sentences 

in D. Each pair of parts Ci and Cj (i≠j) is disjoint. Every sentence in D is contained in some part. 
2
 Throughout this paper, the term “segmentation” is used to mean “linear segmentation”, as opposed to 

“hierarchical segmentation”.   
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2.2.2.2. Summary of BayesADSummary of BayesADSummary of BayesADSummary of BayesAD    

(i) Apply a segmentation algorithm to divide the sequence of sentences in D into sub�

sequences (segments) S1,...,Sq each consisting of consecutive sentences.  The 

number of segments q is not specified and must be automatically determined.  The 

goal of the algorithm is to produce as few segments as possible while respecting 

authorship: all sentences in the same segment are written by the same author.     

(ii) Apply a clustering algorithm to the segments with the goal of grouping together 

those whose sentences were written by the same author. Let SegC1,...,SegCm denote 

the resulting segment clusters; the number of segment clusters m must be 

automatically determined. The final partition {C1,…,Cm} is formed in the natural 

way: Ci is the set of all sentences that appear in a segment in SegCi.   

The figure below illustrates the overall approach. In this example, step (i) produces 

q=7 segments (top part of the figure).  Step (ii) produces m=3 segment clusters as 

illustrated in solid red {S1,S3,S4}, shaded blue {S2,S7}, and white {S5,S6}.     

 

 

 

3.3.3.3. TheTheTheThe    Bayesian Bayesian Bayesian Bayesian Segmentation AlgorithmSegmentation AlgorithmSegmentation AlgorithmSegmentation Algorithm    

D is assumed to arise according to a stochastic generative model described next. The 

model is a combination of the models described in (Eisenstein & Barzilay, 2008) and 

(Utiyama & Isahara, 2001).  An algorithm is developed for choosing a segmentation of 

the sentences in D maximizing the log�joint�likelihood.  

3.13.13.13.1 The The The The StochasticStochasticStochasticStochastic    Generative ModelGenerative ModelGenerative ModelGenerative Model    

Let |d[i]| denote the number of words3 in sentence d[i] and W denote the set of all 

words that appear in any sentence in D.  For simplicity, the words in all sentences are 

denoted by integers 1 to |W|.  Let Z denote the set of all segmentations of the 

sentences in D without restriction on the number of segments present.  Given a 

segmentation z in Z, |z| denotes the number of segments in z.  The segmentation is 

represented as a sequence of integers 0=z(0)<z(1)<…<z(|z|)=|D|. The jth segment is 

                                                           
3
 A word is simply any consecutive sequence of non-whitespace characters as defined by the Java character class 

“\s”: space, tab, newline, form feed, carriage-return, and vertical tab. 

S1 S2 S3 S4 S5 S6 S7 

S1 S2 S3 S4 S5 S6 S7 
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{d[z(j�1)+1],d[z(j�1)+2],…,d[z(j)]}. Let θ0 ∈ ℝ+
|W| denote a hyper�parameter vector 

specifying a Dirichlet prior in the following generative model. 

First, a segmentation z ∈ Z is drawn from the prior distribution defined in (Utiyama & 

Isahara, 2001) which assigns less probability to segmentations with more segments.  

Next, for each segment (the jth), the parameters θj for the word distribution are drawn 

from a Dirichlet prior with parameters θ0.  The sentences in the jth segment are 

generated independently. For each, the words are generated independently by drawing 

each from a categorical distribution with parameters θj. More precisely, the generative 

model proceeds as follows. 

1. Choose z with probability |D|�|z|/σ(Z,|D|) where σ(Z,|D|) is a normalization constant 

only depending on |D| and Z.  This prior distribution is based on the minimum 

description length principal as discussed in (Utiyama & Isahara, 2001). 

2. For j = 1 to |z| do 

a. Choose θj according to4 Dir(.;θ0). 

b. For i = z(j�1)+1 to z(j) do 

I. For h = 1 to |d[i]| do 

1. Generate the hth word of the ith sentence of the jth segment 

according to5 Cat(.;θj). 

The desired segmentation is z*=argmaxz∈Z�log�Pr	�D,z|θ0���.  An algorithm for computing 

z*, assuming fixed θ0, is described next. 

3.23.23.23.2 Maximizing the LogMaximizing the LogMaximizing the LogMaximizing the Log����JointJointJointJoint����Likelihood, Likelihood, Likelihood, Likelihood, logPr(D,z|θ0)    

Let S(W) denote the set of all probability distributions over W. It follows that: 

Pr�D,z|θ0�=	Pr	�z�� � Pr��d�i�:i=z�j-1�"1	to	z�j�$|θj%Pr�θj&θ0% dθjθj∈S�W�
|z|
j=1 . 

Pr({d[i]:i=z(j�1)+1 to z(j)}|θj}) denotes the probability of generating the jth segment 

{d[i]:i=z(j�1)+1 to z(j)} given word categorical distribution parameters θj.  

From the generative model priors, Pr(z) = |D|�k(z)/σ(Z,|D|) and Pr(θj|θ0) = Dir(θj;θ0), it 

follows that (with C not depending on z): 

                                                           
4
 Dir(.;θ0) denotes a Dirichlet distribution with parameters θ0.  See 

http://en.wikipedia.org/wiki/Dirichlet_distribution for details. 
5
 Cat(.;θj) denotes a categorical distribution with parameters θj.  See 

http://en.wikipedia.org/wiki/Categorical_distribution for details. 
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log�Pr�D,z|θ0�%=*+−log�|D|�" log- � Pr��d�i�:i=z�j-1�"1	to	z�j�$|θj%Dir�θj;θ0% dθjθj∈S�W� /0|z|
j=1 "C. 

Since each term in the above sum corresponds to one and only one segment in z, then argmaxz∈Z�log�Pr	�D,z|θ0��� can be computed using a weighted graph longest path 

approach like that in (Utiyama & Isahara, 2001). To see how, consider the directed 

graph with vertices {0,1,..,|D|} and an edge from u to v for all 0≤u<v≤|D|. Utiyama and 

Isahara illustrated how each segmentation z in Z corresponds to a path from vertex 0 

to |D|, and vice versa. Let Term(u,v) denote the weight on the edge from u to v and be 

defined as the term in the above sum corresponding segment {d[u+1],…,d[v]}: 

Term�u,v�≝−log�|D|�" log- � Pr��d�i�:i=u"1	to	v$|θj%Dir�θj;θ0%dθjθj∈S�W� / . 
Hence, argmaxz∈Z�log�Pr	�D,z|θ0��� can be computed by applying Dijkstra’s algorithm to 

find largest weight path from vertex 0 to |D|.   

3.33.33.33.3 Computing Term(u,vComputing Term(u,vComputing Term(u,vComputing Term(u,v))))    

Let c([u,v],w) denote the number of times word w appears in the sentences in the 

segment defined by edge [u,v]: {d[u+1],d[u+2],…,d[v]}. Let θ[u,v] denote the 

parameters of the word categorical distribution for the segment defined by edge [u,v]. 

From the generative model independence assumptions, it follows that: 

Term�u,v�=−log�|D|�" log- � �θ�u,v��w�c��u,v�,w�Dir�θ�u,v�;θ0%dθ�u,v�
|W|
w=1θ�u,v�∈S�W� / . 

Let s(c[u,v]) denote Σwc([u,v],w). From the definition of the Dirichlet distribution and a 

property of the Gamma function,6 it follows that: 

Term�u,v�=−log�|D|�" * * log�θ0�w�"i�c��u,v�,w�-1
i=0

|W|
w=1 − * log�σ�θ0�"i�s�c�u,v��-1

i=0 . 
4.4.4.4. Segment ClusteringSegment ClusteringSegment ClusteringSegment Clustering    

In this section, an algorithm is described for clustering a segmentation S1,…,Sq of the 

sentences in D. The clustering algorithm does not require the number of clusters to be 

                                                           
6
 For real x > 0 and integer k ≥ 0, 	 log�Γ�x� Γ�x"k�⁄ �=	 − ∑ log�x"i�k-1i=0   and 	log�Γ�x"k� Γ�x�⁄ �=	∑ log�x"i�k-1i=0  

where Γ(.) denotes the standard Gamma function, http://en.wikipedia.org/wiki/Gamma_function. 
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specified. The clustering algorithm is very similar to the one in (Zelnik�Manor & 

Perona, 2004). 

1. Compute qxq similarity matrix, M, whose (i,j) entry is 0 if i = j; otherwise, one 

minus the Jensen�Shannon divergence7 between the word frequency distributions 

over Si and Sj.   

2. Compute qxq normalized similarity matrix M’ = Deg(M)�0.5MDeg(M)�0.5.  Deg(M) is 

the degree matrix for M: the diagonal matrix whose ith diagonal entry is the sum of 

the entries in the ith row of M. 

3. Compute K*, the desired number of clusters, using an approach based on that in 

Section 3 of (Zelnik�Manor & Perona, 2004), but with non�trivial differences; see 

the appendix for details.  

4. Compute the dominant K* eigenvectors of M’. Let V denote the qxK* matrix whose 

ith column is the ith eigenvector. Normalize the rows of V to have Euclidean length 

one.  

5. Apply K*�means clustering to the normalized rows of V with initial centroids chosen 

according to (Arthur & Vassilvitskii, 2007). Si and Sj are put into a cluster if and only 

if the ith and jth normalized rows of V end up in the same K*�means cluster.  

5.5.5.5. ExperimentsExperimentsExperimentsExperiments::::    Decomposition Decomposition Decomposition Decomposition ApproacApproacApproacApproaches and Accuracy hes and Accuracy hes and Accuracy hes and Accuracy 

QuantificationQuantificationQuantificationQuantification    

5.15.15.15.1 AuthorAuthorAuthorAuthorshipshipshipship    Decomposition ApproachesDecomposition ApproachesDecomposition ApproachesDecomposition Approaches    

BayesAD was compared to a baseline approach, denoted “1Author”, which assigns a 

single author to D.  BayesAD was also compared to a modified version of the approach 

in (Akiva & Koppel, 2013), denoted AK and described below. 

1. Divide the sentences in D into sub�sequences (segments) of a fixed number, 

AK_Segment_Size, of consecutive sentences.8 The setting of AK_Segment_Size is 

explained later.  

2. For each word in D, count the number of different segments from step 1 in which 

the word appears. Sort the words in D in decreasing order by this count and identify 

the top 500 words in the sorted list; call these the 500 most common words. For 

each segment, build a length 500 binary vector whose ith entry is one (zero) if the ith 

most common word is (is not) in the segment.  

3. Build a segment similarity matrix, M, whose (i,j) entry is zero if i=j, else is the 

cosine similarity between the binary vectors for the ith and jth segments. 

                                                           
7
 http://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence 

8
 The last segment may have fewer sentences – whatever remains in D. 
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4. Cluster the segments as done in steps 2�5 of Section 4. The clustering algorithm is 

different than the one used by Akiva and Koppel. The primary difference is that the 

number of clusters is unknown and must be automatically determined (Akiva and 

Koppel assumed the number of authors was known). 

5. For each segment cluster, compute the “core” segments as follows. Let Cent denote 

the cluster centroid. Given segment S, let Row(S) denote the corresponding row for 

S in the eigenvector matrix V in step 4 of Section 4. Compute Cent2(S) the second 

closest centroid to Row(S) in terms of Euclidean distance.9 Compute CentDist(S) = 

EuclideanDistance[Cent,row(S)] and CentGap(S) = EuclideanDistance[Cent2(S),row(S)] 

� EuclideanDistance[Cent,Row(S)]. Compute BestCentDist, the top 80% (rounding 

down) of the segments in the cluster according to smallest CentDist(.). Compute 

BestCentGap, the top 80% (rounding down) of the segments in the cluster according 

to largest CentGap(.).  Compute the core segments in the cluster as the intersection 

between BestCentDist and bestCentGap. If the intersection is empty, then the top 

segment by CentDist(.) is assigned as the only core segment.  

6. Compute FT, the set of all words that appear at least five times in D.  Assign a label 

to each segment, the number of the cluster containing the segment. Represent each 

segment as a length |FT| feature vector whose ith entry is the number of times the 

ith word in FT appears in the segment. Using version 2.0.7 of the MALLET open�

source library (McCallum, 2002), train a maximum entropy classifier on the labeled 

feature vectors. Akiva and Koppel used a SVM, but for AK a maximum entropy 

classifier was used since, unlike an SVM, it directly provides label probability 

distributions.  

7. For each sentence in D, compute its length |FT| feature vector, then apply the 

maximum entropy classifier and compute the largest label probability.  For each 

sentence whose largest label probability was among the top 25%, assign the 

sentence its largest probability label. 

8. For each sentence s in D which was not assigned a label in step 7, find s’, the 

closest sentence10 to s in D which was assigned a label in step 7, and assign that 

label to s. Here, “closest” is based on the number of sentences in D between s and 

s’. Akiva and Koppel use a different procedure to assign labels to sentences.  Their 

procedure utilizes properties of the boundary of the SVM produced during their 

step 6.                

5.25.25.25.2 Quantifying Quantifying Quantifying Quantifying     AuthorAuthorAuthorAuthorshipshipshipship    Decomposition AccuracyDecomposition AccuracyDecomposition AccuracyDecomposition Accuracy    

                                                           
9
 By virtue of the way K-means clustering works, Cent is the closest centroid to Row(S). 

10
 If there are two sentences each assigned a label in step 5, each equally close to s, and with no closer sentence 

with an assigned label, then the label assigned to s is randomly chosen between the labels of the two sentences.     
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An authorship decomposition, {C1,…,Cm}, is a partition of the sentences in D.  Ground 

truth authorship forms another partition, denoted {Γ1,…,Γt}. Let nij denote |Ci∩Γj|. In 

(Akiva & Koppel, 2013), the accuracy of {C1,…,Cm} was quantified by using purity, a 

common extrinsic clustering validation index.  

|D|-1 * max1≤j≤t@nijBm
i=1  

A weakness of this index was pointed out on (Manning, Raghavan, & Schutze, 2008, p. 

357): “High purity is easy to achieve when the number of clusters is large – in 

particular, purity is 1 if each document gets its own cluster.” This is not a problem in 

Akiva and Koppel’s setting where the number of authors (t) is assumed known. 

However, with this assumption dropped, this weakness is a problem, hence, purity is 

not used in this paper. Instead, the extrinsic clustering validation index in (Akiva & 

Koppel, 2012) is used and is referred to as matching accuracy.  

To motivate the definition of matching accuracy, it is useful to first consider a simpler 

index that quantifies the accuracy of {C1,…,Cm} as follows. Assign each sentence in D 

proposed label i and ground truth label j if the sentence is in Ci and Γj. Compute 

standard classification accuracy: 

|D|-1 * nii
min�m,t$

i=1 . 
This index is flawed, however, as a renumbering of the parts in {C1,…,Cm} or {Γ1,…,Γt} 

could cause the standard classification accuracy to change. The accuracy should not be 

affected by any such renumbering. To remedy this flaw, maximum classification 

accuracy is chosen over all one�to�one mappings between part numbers.   

If t ≥ m, then let a(t≥m) denote the set of all one�to�one mappings from {1,…,m} into 

{1,…,t} and, given δ in a(t≥m), let 

MatchAcct≥m�δ�≝	|D|-1 * niδ�i�
m

i=1 .		 
If m > t, then let ∆(m>t) denote the set of all one�to�one mappings from {1,…,t} into 

{1,…,m} and, given δ in a(m>t), let 

MatchAccm>t�δ�≝|D|-1 * nδ�i�i
t

i=1 .	 
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The matching accuracy of {C1,…,Cm}, is defined as 

I maxδ∈Δ�t≥m��MatchAcct≥m�δ�$ 		if	t≥mmaxδ∈Δ�m>t��MatchAccm>t�δ�$		if	m>t. 
6.6.6.6. ExperimentsExperimentsExperimentsExperiments    ––––    Data and ProceduresData and ProceduresData and ProceduresData and Procedures    

6.16.16.16.1 DataDataDataData    

Upon request, Navot Akiva provided two corpora which appeared to be the same as 

ones used in (Akiva & Koppel, 2013): BP�Blog, NYT�Columnists. 

The BP�Blog corpus is a portion of the “Becker�Posner Blog”11 which consists of blog 

posts by Gary Becker and Richard Posner. This corpus was preprocessed as follows. 

Blog posts pertaining to six topics were manually selected, sentence segmented, their 

title lines (e.g. “Comment on Tort Reform�BECKER”) removed, and concatenated  to 

form six multi�author documents. Each multi�author document pertaining to one topic 

and has alternating authorship; see Table 1. 

Topic Author Order and Number of Sentences per Post 

Tort Reform (TR) Posner (29), Becker (31), Posner (24) 

Profiling (Pro) Becker (35), Posner (19), Becker (21) 

Tenure (Ten) Posner (73), Becker (36), Posner (33), Becker (19) 

Traffic Congestion (TC) Becker (57), Posner (33), Becker (20) 

Microfinance (Mic) Posner (51), Becker (37), Posner (44), Becker (33) 

Senate Filibuster (SF) Posner (39), Becker (26), Posner (28), Becker (24) 

Table 1: The seven multi-author documents created from the BP-Blog corpus. 

Many of the posts are direct responses to previous posts and contain sentences 

directly indicating the authorship of the previous post, e.g. “As Becker explains, a 

driver does not consider the effect of his driving on the other users of the road, but 

only on himself.” In these sentences, 14 in total, “Becker” or “Posner” was replaced with 

“XXXX”. Finally, the six multi�author documents were tokenized using the Stanford 

English core NLP tokenizer (version 1.3.4) with the default settings.12  

Six experiments were performed, one for each multi�author document. In each 

experiment: 1Author was run once and its matching accuracy was computed; BayesAD 

and AK were run 500 times and their mean matching accuracies and 0.95 confidence 

                                                           
11

 http://www.becker-posner-blog.com 
12

 http://nlp.stanford.edu/software/corenlp.shtml 
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intervals13 were computed. BayesAD and AK were run multiple times because they are 

non�deterministic, unlike 1Author. The clustering algorithm used by BayesAD and AK 

involves the non�deterministic setting of initial K*�means centroids using the 

technique in (Arthur & Vassilvitskii, 2007). 

In all experiments, the AK_Segment_Size parameter was set to 15 to be slightly smaller 

than all author run lengths (an author run is a consecutive sequence of sentences 

written by the same author). 

The NYT�Columnists corpus is a collection of opinion pieces written by four New York 

Times columnists, see Table 2.  The corpus appeared to be sentence segmented and 

tokenized.  This was confirmed by N. Akiva via email.   

Columnist Name Number of Opinion Pieces Total Number of Sentences 

Gail Collins 273 11327 

Maureen Dowd 299 11660 

Paul Krugman 331 12634 

Thomas Friedman 279 11230 

Table 2: Statistics regarding the NYT�Columnists corpus. 

For each columnist, sequence of sentences was formed by concatenating the 

columnist’s pieces in the order they appeared in the original corpus. Each of these 

sequences is referred to as a “columnist’s sequence”. Unlike the BP�Blog corpus, the 

experiments performed using the NYT�Columnists corpus are designed to examine the 

impact of author run length and number of runs per author on decomposition 

approach accuracy. As such, a more complex experimental procedure is used.    

6.26.26.26.2 Experimental Procedure Using the NYTExperimental Procedure Using the NYTExperimental Procedure Using the NYTExperimental Procedure Using the NYT����Columnists CorpusColumnists CorpusColumnists CorpusColumnists Corpus    

An experiment involved two parameters meanARL and numRperA: the mean author run 

length and number of runs per author. An experiment consisted of 500 trials, during 

each: a multi�author document D is produced, the authorship decomposition 

approaches are applied, and matching accuracy is computed for each approach. The 

procedure for producing multi�author documents guarantees that each contains 

exactly numRperA runs of consecutive sentences from each columnist’s sequence, 

concatenated in random order (possibly concatenating two runs from the same 

columnist).  In detail, each trial proceeds as follows.   

                                                           
13

 The t-test was used to compute the 0.95 confidence intervals. 
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For i in {0,1,2,3}, let numSentences(i) denote the number of sentences in the ith 

columnist’s sequence (the “Total Number of Sentences” in Table 2). 

1. For trial = 1 to 500, do set D to empty and: 

a. For i = 0 to 3 do  

A. Choose startSentence(i) uniformly from {0,1,..,(numSentences(i)�

4*numRperA*meanARL)}. Discard the first startSentence(i) sentences 

from the ith column’s sequence.   

b. Choose a random permutation P of {0,1,2,...,(4*numRperA�1)}.14   

c. For j = 0 to (4*numRperA�1) do 

A. Choose a number from an exponential distribution15 with mean 

meanARL and round to the nearest integer, denoted by ChunkSize(j). 

B. Compute i=[P(j)mod4] and choose the first ChunkSize(j) sentences 

(or as many as possible) from the ith columnist’s sequence; append 

these to the end of D; discard these from the columnist’s sequence.  

d. Apply BayesAD, AK, 1Author to D computing the matching accuracy for each. 

2. For each authorship decomposition approach, compute the mean and 0.95 

confidence interval16 over the 500 accuracies for the approach. 

In all experiments and all trials, the AK_Segment_Size parameter was set to 

min{40,ln(2)meanARL}, based on the following statement on (Akiva & Koppel, 2012, p. 

207):17 "Results aren't very sensitive to chunk size, as long as chunks are smaller than 

the median single�author run." 

The meanARL parameter controls the typical number of consecutive sentences from 

the same author (run length) in D. The numRperA parameter controls the number of 

runs from each author appearing in D. A smaller value of meanARL or larger value of 

numRperA tends to produce a more difficult authorship decomposition problem.  

Since the opinion pieces cover a wide variety of topics, D tends to contain multiple 

topics with each author transition tending to occur simultaneously with a topic 

transition. This is in marked contrast with the six multi�author documents produced 

from the BP�Blog corpus that are guaranteed to each pertain to a single topic.  

7.7.7.7.   ResultsResultsResultsResults    

                                                           
14

 The “Knuth Shuffle” was used: http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle 
15

 http://en.wikipedia.org/wiki/Exponential_distribution 
16

 The t-test was used to compute the 0.95 confidence interval. 
17

 AK_Segment_Size was set to 40 in all experiments reported in (Akiva & Koppel, 2012).  Each author chunk was 

drawn from an exponential distribution with median ln(2)meanARL. 
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7.17.17.17.1 Setting θSetting θSetting θSetting θ0000    

A series of experiments were run on the NYT�Columnist corpus with meanARL set to 

25, numRperA set to 2, and θ0 varied from 0.025 to 1. The mean matching accuracy of 

BayesAD ranged from 0.416 to 0.6, achieving its maximum near θ0=0.1. An “EM�style” 

approach similar18 to that in Section 3.4 of (Eisenstein & Barzilay, 2008) was 

implemented: alternately choose z* and θ0, each maximizing the log�joint�likelihood 

while keeping the other fixed. However the accuracies produced were considerably 

lower than those observed for θ0=0.1. 

In all subsequent experiments, involving the NYT�Corpus and the BP�Blog corpus, θ0 

was fixed at 0.1. 

7.27.27.27.2 Controlling for TopicControlling for TopicControlling for TopicControlling for Topic    

                                                           
18

 As implemented for this paper, all components of θ0 were forced to be the same; Eisenstein and Barzilay’s 

approach does not require this. 
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Figure 1: Results of the experiments using the BP-Blog corpus.  The x-axis depicts topic (see Table 1), 
the y-axis depicts matching accuracy, the data bars depict mean matching accuracies, and the error bars 
for BayesAD and AK depict 0.95 confidence intervals. In many cases the confidence intervals are quite 
small and are not easily seen in the figure. 

 

7.37.37.37.3 Controlling for Author Run Length and Number of Runs Per AuthorControlling for Author Run Length and Number of Runs Per AuthorControlling for Author Run Length and Number of Runs Per AuthorControlling for Author Run Length and Number of Runs Per Author    
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numRperA = 2 numRperA = 4 

Figure 2: Results of the experiments using the NYT-Columnists corpus. In both charts: the x-axes depict 
meanARL, the y-axes depict matching accuracy, the graph data points depict mean matching accuracies, 
and the error bars depict 0.95 confidence intervals. 

7.47.47.47.4 DiscussionDiscussionDiscussionDiscussion    

As seen in Figures 1 and 2, BayesAD had greater accuracy that AK for all topics and all 

examined values of mean author run length (meanARL) and number of runs per author 

(numRperA). For example:  

• in the experiment involving the “Tort Reform” document, BayesAD produced a 39% 

larger mean accuracy than AK;   

• in the NYT�Columnist corpus experiment with meanARL=35 and numRperA=4, 

BayesAD produced a 126% larger mean accuracy than AK. 

The overall difficulty of the authorship decomposition problem, when topic is 

controlled, is evident. As seen in Figure 1, the one author baseline approach, 1Author, 

had greater accuracy than BayesAD and AK on five of six topics.   

To better understand the observed accuracy advantage of BayesAD over AK, both 

approaches were modified to work when the number of authors is assumed known. 

Step 3 was modified in the segment clustering algorithm (Section 4) to set K* to the 

known number of authors. The same experiments were run using the BP�Blog corpus 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5 15 25 35 5 15 25 35



Approved for Public Release; Distribution Unlimited. 13-4038; ©2014-The MITRE Corporation. All 

rights reserved. 

 

 

 

and the accuracy advantage of BayesAD was found to largely go away. This is due to 

the fact that AK relies more heavily on the clustering algorithm than BayesAD, hence, 

choosing the wrong number of clusters effects AK more. 

Conclusions:  

• The author�decomposition approach developed in this paper, BayesAD, exhibited 

greater accuracy than its leading competitor, AK, in all experiments.   

• However, the accuracy of BayesAD was sensitive to the setting of its parameter, θ0.  

A method for eliminating the need to manually set this parameter reported in the 

literature was implemented and yielded no success. Developing an effective method 

for eliminating this need would be a fruitful direction for future work.   

• The authorship decomposition problem is challenging and much room for improved 

solutions exists. Indeed, when controlling for topic, the accuracy of BayesAD (and 

AK) was, in all but one case, worse than a simple, one author, baseline approach.  

             

8.8.8.8. Related WorkRelated WorkRelated WorkRelated Work    

8.18.18.18.1 Unsupervised Unsupervised Unsupervised Unsupervised Text Segmentation by TopicText Segmentation by TopicText Segmentation by TopicText Segmentation by Topic    

Many researchers have addressed the problem of dividing, in unsupervised fashion, a 

text document into sub�sequences of consecutive sentences or paragraphs (segments) 

with the goal of producing as few segments as possible while respecting topic. Step (i) 

in Section 2 addresses the analogous problem with authorship.  

Some researchers have adopted a probabilistic viewpoint and developed algorithms for 

choosing a maximum�likelihood segmentation based on various modeling 

assumptions. The Bayesian segmentation algorithm in Section 3 directly applies some 

of these modeling ideas to text segmentation by authorship.  Specifically, the 

algorithm extends the approach in (Eisenstein & Barzilay, 2008) allowing the number of 

segments to be unspecified. The algorithm combines the segmentation probability 

model of Eisenstein with the non�uniform prior on segmentations from (Utiyama & 

Isahara, 2001).  Misra et al. (Misra, Yvon, Cappe, & Jose, 2011) adopt a similar 

approach and use a segment prior similar to that of Utiyama, but consider 

segmentation probabilities based on latent Dirichlet allocation and multinomial 

mixture models. The Bayesian segmentation algorithm in Section 3 could be replaced 

with Misra’s algorithm. Examining this idea is left for future work.   
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Other researchers have adopted a variety of other approaches, for example: peak 

finding in a lexical cohesion curve (Hearst, 1997), minimization of an ad�hoc 

segmentation cost function (Kehagias, Pavlina, & Petridis, 2003), converting the text 

segmentation problem to one of image segmentation then applying techniques from 

image processing (Ji & Zha, 2003), and using affinity propagation in factor graphs 

(Kazantseva & Szpakowicz, 2011). 

8.28.28.28.2 Intrinsic Plagiarism DetectionIntrinsic Plagiarism DetectionIntrinsic Plagiarism DetectionIntrinsic Plagiarism Detection    

Some researchers have focused on developing computational approaches to detect 

plagiarism in a given text document when no reference documents are provided. Their 

key supposition was that changes in writing style are indicative of a change in 

authorship. Stamatatos (Stamatatos, 2009) developed an approach centered on a “style 

change function” based on character n�grams which quantified the stylistic difference 

between the writing in a window of fixed size to the left and right of a fixed point in a 

document. The approach built a style curve by sliding the style function across the 

document, then, based on variance and the presence of peaks in the curve, determined 

if the document contained plagiarized passages and identified them. A modest 

modification of this approach could be used in place of the Bayesian segmentation 

algorithm in Section 3. Examining this idea is left to future work.          

Stein et al. (Stein, Lipka, & Prettenhofer, 2011) developed an approach which started by 

decomposing the given document in sections of uniform length and identifying outliers 

based on a variety of stylometric features. The non�outlying sections were presumed 

to have been written by a single author and “unmasking” (Koppel, Schler, & Bonchek�

Dokow, 2007) was applied to decide if that author also wrote all the outlying sections. 

8.38.38.38.3 Authorship AnalysisAuthorship AnalysisAuthorship AnalysisAuthorship Analysis    

The application of statistical and computational methods to problems in authorship 

analysis has been the focus of much study.  Koppel et al. (Koppel, Schler, & Argamon, 

2009) surveyed this line of work,19 focused on three specific types of problems, and 

discussed how machine learning methods can be applied to those problems.   

Layton et al. (Layton, Watters, & Dazeley, 2011) addressed the problem of authorship 

distinction: cluster a batch of documents (the number of clusters is not specified) with 

the goal that for any pair of documents, the documents are in the same cluster if and 

only if the documents were written by the same author. The document clustering 

                                                           
19

 Koppel et al. refer to authorship analysis as “authorship attribution”. 
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algorithm Layton developed could be used in place of the segment clustering algorithm 

in Step (ii) of Section 2.  Doing so is left to future work.     

Graham et al. (Graham, Hirst, & Marthi, 2005) developed an approach for segmenting 

text documents by identifying paragraph breaks where the writing style changes 

significantly. Their approach is supervised in that it used a training set of documents in 

which the significant style change points are known. A neural network was trained to 

classify consecutive paragraphs in terms of whether or not the first is significantly 

different in style than the second. Non�training documents were segmented by 

applying the classifier to each pair of consecutive paragraphs in the documents.  Due 

to its fundamentally supervised nature, Graham et al.’s approach is not applicable to 

the unsupervised author segmentation problem addressed in this paper.     

Akiva and Koppel (Akiva & Koppel, 2013) define a close variant of unsupervised author 

segmentation problem. In their definition, the number of authors is assumed known, 

but that assumption is dropped in this paper. Akiva and Koppel’s approach was 

modified to work after dropping this assumption, details are contained in Section 5. 

The modified approach was compared to BayesAD, results are contained in Section 7. 

To the author’s knowledge, (Akiva & Koppel, 2013) is the most closely related work to 

this paper. 

9.9.9.9.   Appendix Appendix Appendix Appendix ––––    Computing K*Computing K*Computing K*Computing K*, the Desired Number of , the Desired Number of , the Desired Number of , the Desired Number of ClustersClustersClustersClusters    

Some notation is needed before discussing the computation of K*. Given an arbitrary 

matrix B, Bij denotes the (i,j) entry in B. Bi. denotes the ith row of B and ||Bi.|| denotes 

the two�norm of that row. BT denotes the transpose matrix of B, i.e. (BT)ij = Bji for all i,j. 

B is orthogonal if BTB is the identity matrix. ||B||F denotes the Frobenius norm.20  

Assume B is square, with the same number of rows as columns. Then B�1 denotes the 

inverse matrix of B, i.e. B�1 is the square matrix such that B�1B is the identity matrix. 

The reader is referred to (Strang, 2005) for a discussion of the fundamental definitions 

and properties of the eigenvectors and eigenvalues.   

To understand how K* can be computed from the qxq normalized similarity matrix M’, 

it is useful to consider the following hypothetical assumption. 

9.19.19.19.1 HyHyHyHypothetical Assumptionpothetical Assumptionpothetical Assumptionpothetical Assumption    

Assume the segments cluster cleanly with respect to their similarities in M: Mij=0 if Si 

and Sj are in a different cluster, otherwise Mij=1. The columns and their corresponding 

                                                           
20

 http://en.wikipedia.org/wiki/Matrix_norm 
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rows of M can be reordered to produce a block�diagonal matrix where each block 

corresponds to a cluster. The same column and row reordering of the normalized 

matrix M’ produces the same block�diagonal structure. 

Example: K*=3 and each cluster contains three segments (so q=9). M’, after column 

and row reordering, is 

M’11 M’12 M’13 0 0 0 0 0 0 

M’12 M’22 M’23 0 0 0 0 0 0 

M’13 M’23 M’33 0 0 0 0 0 0 

0 0 0 M’44 M’45 M’46 0 0 0 

0 0 0 M’45 M’55 M’56 0 0 0 

0 0 0 M’46 M’56 M’66 0 0 0 

0 0 0 0 0 0 M’77 M’78 M’79 

0 0 0 0 0 0 M’78 M’88 M’89 

0 0 0 0 0 0 M’79 M’89 M’99 

 

Key to recovering K* is the following fact, similar to Proposition 2 in (von Luxburg, 

2007). There exists a qxK* orthogonal matrix X whose columns form a basis for the 

eigenspace associated with the largest eigenvalue of M’, and each row of X contains all 

zeros except a single entry.21  

For a given K’, let X’ denote a qxK’ matrix X’ produced by a standard eigensolver: X’ is 

orthogonal and its columns are the K’ dominant eigenvectors of M’. If K’=K*, then, like 

X, the columns of X’ form a basis for the eigenspace associated with the largest 

eigenvalue of M’. However, there is no guarantee that X’ will equal X. Nonetheless, 

some K’xK’ orthogonal matrix O must exist such that X’O equals X, hence all rows of 

X’O contain all zeros except a single entry. Moreover, if K’>K*, then for any O, X’O will 

contain a row with more than one non�zero entry.  

Let Θ denote an error function mapping K’xK’ orthogonal matrices, O, to a number 

quantifying the extent to which all rows of X’O contain all zeros except a single entry.  

Formally22   

Θ�O�≝	 *N1 − SimpsonIndex Q �X'O�i12∑ �X'O�ij2K'j=1 ,…,	 �X'O�iK'2∑ �X'O�ij2K'j=1 	W 		if	*�X'O�ij2
K'
j=1 X0	

0																																																																																										otherwise
q

i=1 	
                                                           
21

 More specifically: segment Sj is in the i
th

 cluster if and only if the j
th

 row of X contains all zeros except in the entry 

for column i. 
22

 The Simpson Index is defined here: http://en.wikipedia.org/wiki/Diversity_index 
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=*
Z[\
[] 1-	 ^ 1‖X'i.‖4a* -*X'ijOjh

K'
j=1 /4K'

h=1 	if	bX'i.b4X0
0																																																												otherwise.

q
i=1 	

The last equality follows from the definition of the Simpson Index and the fact that O is 

orthogonal. Θ(O) equals its minimum of zero exactly when all rows of X’O contain all 

zeros except at most a single entry. Let minK’(Θ) denote the minimum of Θ over all 

K’xK’ orthogonal matrices. Reasoning in the previous paragraph implies the approach 

to recovering K*, namely, find the largest value of K’ such that minimizes minK’(Θ). 

Computing minK’(Θ) amounts to solving a constrained optimization problem. minimize�Θ�O�:O	any	K'xK'	real-valued	matrix$		subject	to:	O	is	orthogonal.	
Constrained optimization problems with such constraints have been addressed in the 

literature, in particular (Wen & Yin, 2013). The gradient�descent search therein will find 

a critical point of Θ and guarantee that the matrix produced at each step is orthogonal. 

However, a critical point of Θ is not guaranteed to be a local minimum, let alone a 

global minimum. A simple way to deal with this problem is by repeating the gradient�

descent search ten times from randomly chosen starting points and picking the search 

termination matrix, O(terminate), which minimizes Θ over all termination matrices.  

9.29.29.29.2 The General CaseThe General CaseThe General CaseThe General Case    

If the hypothetical assumption is dropped that the segments cluster cleanly with 

respect to their similarities, then M’ will enjoy only approximately the block structure 

described earlier. Nonetheless, the approach described in the hypothetical case is still 

applied. To be clear, the algorithm for finding K* in the general case is as follows. 

I. For K’ = 2 to q�1, do 

a. Use a standard eigensolver to produce qxK’ orthogonal matrix X’ whose 

columns are the K’ dominant eigenvectors of M’.  

b. Generate 10 matrices randomly from the space of all K’xK’ orthogonal 

matrices. Each of these will serve as a starting point to a gradient�descent 

search as described next. Each search will find an orthogonal matrix which is 

approximately a critical point of Θ. Let err(K’) denote the minimum value of 

Θ over all these 10 approximate critical points.  

II. Return the largest 2≤K*≤q�1 for which err(K*)=min{err(K’): 2≤K’≤q�1}. 

 

9.39.39.39.3 GradientGradientGradientGradient����DeDeDeDesssscent on Θ Under Orthogonality Constraintscent on Θ Under Orthogonality Constraintscent on Θ Under Orthogonality Constraintscent on Θ Under Orthogonality Constraints    
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Let B denote a K’xK’ matrix and G[B] denote a K’xK’ matrix whose (a,b) entry is the 

partial derivative of Θ with respect to Oab evaluated at B:   

∂Θ∂Oab �B�	=*
Z[\
[]- ^ 4‖X'i.‖4a* -*X'ijOjh

K'
j=1 /3 *X'ij ∂Ojh∂Oab �B�	K'

j=1
K'

h=1 	if	bX'i.b4X0		
0																																																																																	otherwise

	q
i=1  

=	*
Z[\
[]−h 4X'ia‖X'i.‖4i-*X'ijBjb

K'
j=1 /3 if	bX'i.b4X0		

0																																														otherwise.
q

i=1  

A gradient�descent approach is described in Algorithm 1 in (Wen & Yin, 2013). This 

algorithm takes inputs: X’ the matrix of orthogonal eigenvectors of M’, X(0)’ an 

orthogonal K’xK’ matrix that serves as the starting point of the search and parameters 

0<c, ρ<1, 0<ε, 0<maxNumSteps. The ith step of the search will produce a new K’xK’ 

orthogonal matrix X(i+1)’.  

I. Set the step number i to 0 and compute gradient matrix G[X(0)’] and matrix A(0) = 

G[X(0)’]X(0)’T – X(0)’G[X(0)’]T. 

II. For any τ>0, let Y(τ) denote [I+A(i)(τ/2)]�1[I�A(i)(τ/2)]X(i)’. [Lemma 3 in (Wen & Yin, 

2013) shows that Y(τ) is defined, orthogonal, and represents a descent path for Θ 

from X(i)’.] Use a line search algorithm to determine τ’ the step size taken along 

path Y(τ). The line search algorithm uses parameters ρ and c and is described later.  

III. Set I to i+1 and X(i)’ to Y(τ’). Compute gradient matrix G[X(i)’] and matrix A(i) = 

G[X(i)’]X(i)’T – X(i)’G[X(i)’]T. 

IV. If i≥maxNumSteps or ||A(i)X(i)’||F<ε, then return X(i)’ and terminate, otherwise go to 

step II. The second condition checks whether the first�order Lagrange optimality 

condition is close enough to being satisfied at X(i)’ �� as discussed in Lemma 1 of 

(Wen & Yin, 2013). If so, then X(i)’ is regarded as an approximate critical point of Θ 

and the algorithm terminates. 

 

For the stopping parameters ε and maxNumSteps, values of 0.00001 and 1000 were 

used, the same ones used by (Wen & Yin, 2013) in their experiments. The line search 

algorithm is called “backtracking�Armijo” and is described by Procedure 3.1 in 

(Nocedal & Wright, 1999). The algorithm takes inputs: X(i)’ a K’xK’ orthogonal matrix 

which is the starting point of the line search, i.e. Y(0) = X(i)’, A(i) the matrix G[X(i)’]X(i)’T 

– X(i)’G[X(i)’]T, and parameters 0<ρ, 0<c. 

I. Set τ’ to 1. 

II. Repeat until Θ([I+A(i)(τ’/2)]�1[I�A(i)(τ’/2)]X(i)’) ≤ Θ(X(i)’) � 0.5τ’c(||A(i)||F)2 
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a. Set τ’ = ρτ’ 

 

The “Repeat�until” condition is drawn from (26a) and Lemma 3 part 3 in (Wen & Yin, 

2013). It is based on the Armijo condition which, if true, implies that the step length 

yields a sufficient decrease in Θ. The geometric reduction in the step length ensures 

that the step length will not be too small. Common settings were used for ρ and c, 0.5 

and 0.0001, respectively. The setting for c is based on (Nocedal & Wright, 1999, p. 38).    
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