About Us Our Work Employment News & Events
MITRE Remote Access for MITRE Staff and Partners Site Map
Our Work

Follow Us:

Visit MITRE on Facebook
Visit MITRE on Twitter
Visit MITRE on Linkedin
Visit MITRE on YouTube
View MITRE's RSS Feeds
View MITRE's Mobile Apps
Home > Our Work > MITRE Research Program > Best Paper Awards >

Using Sample Size to Limit Exposure to Data Mining

2000 Award Winner

Chris Clifton, The MITRE Corporation

ABSTRACT

Data mining introduces new problems in database security. The basic problem of using non-sensitive data to infer sensitive data is made more difficult by the "probabilistic" inferences possible with data mining. This paper shows how lower bounds from pattern recognition theory can be used to determine sample sizes where data mining tools cannot obtain reliable results.

View/Download Document

Publication

Published in 2000. Journal of Computer Security, Vol. 8, pp. 281-307.

Additional Search Keywords

n/a

 

Page last updated: January 7, 2003   |   Top of page

Homeland Security Center Center for Enterprise Modernization Command, Control, Communications and Intelligence Center Center for Advanced Aviation System Development

 
 
 

Solutions That Make a Difference.®
Copyright © 1997-2013, The MITRE Corporation. All rights reserved.
MITRE is a registered trademark of The MITRE Corporation.
Material on this site may be copied and distributed with permission only.

IDG's Computerworld Names MITRE a "Best Place to Work in IT" for Eighth Straight Year The Boston Globe Ranks MITRE Number 6 Top Place to Work Fast Company Names MITRE One of the "World's 50 Most Innovative Companies"
 

Privacy Policy | Contact Us