About Us Our Work Employment News & Events
MITRE Remote Access for MITRE Staff and Partners Site Map
Our Work

Follow Us:

Visit MITRE on Facebook
Visit MITRE on Twitter
Visit MITRE on Linkedin
Visit MITRE on YouTube
View MITRE's RSS Feeds
View MITRE's Mobile Apps
Home > Our Work > Technical Papers >

Discriminating Gender on Twitter

May 2011

John Burger, The MITRE Corporation
John Henderson, The MITRE Corporation
George Kim, The MITRE Corporation
Guido Zarrella, The MITRE Corporation

ABSTRACT

Accurate prediction of demographic attributes from social media and other informal online content is valuable for marketing, personalization, and legal investigation. This paper describes the construction of a large, multilingual dataset labeled with gender, and investigates statistical models for determining the gender of uncharacterized Twitter users. We explore several different classifier types on this dataset. We show the degree to which classifier accuracy varies based on tweet volumes as well as when various kinds of profile metadata are included in the models. We also perform a large-scale human assessment using Amazon Mechanical Turk. Our methods significantly out-perform both baseline models and almost all humans on the same task.

View/Download Document

Additional Search Keywords

n/a

 

Page last updated: July 22, 2011   |   Top of page

Homeland Security Center Center for Enterprise Modernization Command, Control, Communications and Intelligence Center Center for Advanced Aviation System Development

 
 
 

Solutions That Make a Difference.®
Copyright © 1997-2013, The MITRE Corporation. All rights reserved.
MITRE is a registered trademark of The MITRE Corporation.
Material on this site may be copied and distributed with permission only.

IDG's Computerworld Names MITRE a "Best Place to Work in IT" for Eighth Straight Year The Boston Globe Ranks MITRE Number 6 Top Place to Work Fast Company Names MITRE One of the "World's 50 Most Innovative Companies"
 

Privacy Policy | Contact Us