About Us Our Work Employment News & Events
MITRE Remote Access for MITRE Staff and Partners Site Map
Our Work

Follow Us:

Visit MITRE on Facebook
Visit MITRE on Twitter
Visit MITRE on Linkedin
Visit MITRE on YouTube
View MITRE's RSS Feeds
View MITRE's Mobile Apps
Home > Our Work > Technical Papers >

Simultaneous Spectral/Spatial Detection of Edges for Hyperspectral Imagery: The HySPADE Algorithm Revisited

April 2012

Ronald G. Resmini, The MITRE Corporation

ABSTRACT

The hyperspectral/spatial detection of edges (HySPADE) algorithm, originally published in 2004 [1], has been modified and applied to a wider diversity of hyperspectral imagery (HSI) data. As originally described in [1], HySPADE operates by converting the naturally two-dimensional edge detection process based on traditional image analysis methods into a series of one-dimensional edge detections based on spectral angle. The HySPADE algorithm: i) utilizes spectral signature information to identify edges; ii) requires only the spectral information of the HSI scene data and does not require a spectral library nor spectral matching against a library; iii) facilitates simultaneous use of all spectral information; iv) does not require endmember or training data selection; v) generates multiple, independent data points for statistical analysis of detected edges; vi) is robust in the presence of noise; and vii) may be applied to radiance, reflectance, and emissivity data—though it is applied to radiance and reflectance spectra (and their principal components transformation) in this report. HySPADE has recently been modified to use Euclidean distance values as an alternative to spectral angle. It has also been modified to use an N-pixel x N-pixel sliding window in contrast to the 2004 version which operated only on spatial subset image chips. HySPADE results are compared to those obtained using traditional (Roberts and Sobel) edge-detection methods. Spectral angle and Euclidean distance HySPADE results are superior to those obtained using the traditional edge detection methods; the best results are obtained by applying HySPADE to the higher-order, information-containing bands of principal components transformed data (both radiance and reflectance). However, in practice, both the Euclidean distance and spectral angle versions of HySPADE should be applied and their results compared. HySPADE results are shown; extensions of the HySPADE concept are discussed as are applications for HySPADE in HSI analysis and exploitation.

View/Download Document

Additional Search Keywords

edge detection, hyperspectral imagery, HSI, spatial, spectral, spectral angle, Euclidean distance, Roberts, Sobel

 

Page last updated: May 17, 2012   |   Top of page

Homeland Security Center Center for Enterprise Modernization Command, Control, Communications and Intelligence Center Center for Advanced Aviation System Development

 
 
 

Solutions That Make a Difference.®
Copyright © 1997-2013, The MITRE Corporation. All rights reserved.
MITRE is a registered trademark of The MITRE Corporation.
Material on this site may be copied and distributed with permission only.

IDG's Computerworld Names MITRE a "Best Place to Work in IT" for Eighth Straight Year The Boston Globe Ranks MITRE Number 6 Top Place to Work Fast Company Names MITRE One of the "World's 50 Most Innovative Companies"
 

Privacy Policy | Contact Us