About Us Our Work Employment News & Events
MITRE Remote Access for MITRE Staff and Partners Site Map
Our Work

Follow Us:

Visit MITRE on Facebook
Visit MITRE on Twitter
Visit MITRE on Linkedin
Visit MITRE on YouTube
View MITRE's RSS Feeds
View MITRE's Mobile Apps
Home > Our Work > Technical Papers >

Phase Estimation Algorithm for Frequency Hopped Binary PSK and DPSK Waveforms with Small Number of Reference Symbols

June 2005

Benjamin Wiederholt, The MITRE Corporation
Mario Blanco, The MITRE Corporation

ABSTRACT

In military satellite communication systems that use frequency hopped waveforms, it is difficult to coherently detect phase shift keying (PSK) (binary or M-ary) signals unless many reference symbols are used to aid with phase estimation of the received signal. For this reason, many systems use differential phase modulations, such as differential phase shift keying (DPSK), which can be detected noncoherently without the use of phase information. However, the use of DPSK over PSK results in reduced power efficiency. This paper presents a novel approach to phase estimation that provides improved power efficiency through coherent detection of phase modulated signals (with and without differential encoding) using few reference symbols. More specifically, the algorithm presented herein uses signal processing techniques to estimate the phase of each hop by using both reference and information symbols in a hop. This paper focuses on binary PSK and DPSK waveforms where data is transmitted in blocks with only one or two reference symbols per block. The performance of this algorithm was evaluated for the case of additive white Gaussian noise (AWGN) and Rayleigh fading channels via Monte Carlo simulations. At bit error rates (BER) of interest, the results indicate that, depending on the environment and modulation used, performance gains of up to 3 dB were realized when hops contain as few as two reference symbols. The results also show that coherent detection of binary phase shifting keying (BPSK) and DPSK modulated waveforms containing one reference symbol per hop performed more efficiently than noncoherent detection in all channels considered.

View/Download Document

Additional Search Keywords

N/A

 

Page last updated: June 21, 2005   |   Top of page

Homeland Security Center Center for Enterprise Modernization Command, Control, Communications and Intelligence Center Center for Advanced Aviation System Development

 
 
 

Solutions That Make a Difference.®
Copyright © 1997-2013, The MITRE Corporation. All rights reserved.
MITRE is a registered trademark of The MITRE Corporation.
Material on this site may be copied and distributed with permission only.

IDG's Computerworld Names MITRE a "Best Place to Work in IT" for Eighth Straight Year The Boston Globe Ranks MITRE Number 6 Top Place to Work Fast Company Names MITRE One of the "World's 50 Most Innovative Companies"
 

Privacy Policy | Contact Us