About Us Our Work Employment News & Events
MITRE Remote Access for MITRE Staff and Partners Site Map
  Home > Our Work > Technology Transfer Office >
Technology Transfer Office
2007 Patents

Tactical aircraft check algorithm, system and method

A method of generating aircraft tactical alerts includes receiving track positions for two aircraft; receiving trajectories and static conformance bounds for the two aircraft; receiving current position for the two aircraft; generating tactical check segments and variable conformance bounds for the two aircraft based on the current position, the static conformance bounds, trajectory, adapted data, and the track positions; and generating a tactical alert if the variable conformance bounds overlap within a specified lookahead time. The variable conformance bounds can be either symmetric or asymmetric about projected tracks. The variable conformance bounds can use step functions, or continuously widening bounds up to the static conformance bounds. The variable conformance bounds can be based on modifying the static conformance bounds in two or three spatial dimensions.

System and method for locating targets using measurements from a space based radar

A system and method for determining a position of a target within an acceptable tolerance using an iterative approach. A airborne or space-based measuring device is used to measure an estimated position of the target. The information from the measuring device is used in conjunction with either live captured or stored topography, or the like, information relating to the surface of the planet proximate the target to iteratively determine the actual position of the target.

System and method for stochastic aircraft flight-path modeling

Stochastic models of aircraft flight paths and a method for deriving such models from recorded air traffic data. Each stochastic model involves identifying the flight plan for one or more aircraft; identifying important parameters from each flight plan, such as aircraft type, cruise altitude, and airspeed; optionally identifying flight plan amendments for each flight; representing each route of flight as a series of navigational fixes; representing at least one aircraft flight parameter probabilistically; modeling realistic differences in at least one dimension between each planned route of flight and the flight path as it might actually be flown; and communicating the modeled deviations or simulated flight paths to the user.

System for direct acquisition of received signals

Signal processing architectures for direct acquisition of spread spectrum signals using long codes. Techniques are described for achieving a high of parallelism, employing code matched filter banks and other hardware sharing. In one embodiment, upper and lower sidebands are treated as two independent signals with identical spreading codes. Cross-correlators, in preferred embodiments, are comprised of a one or more banks of CMFs for computing parallel short-time correlations (STCs) of received signal samples and replica code sequence samples, and a means for calculating the cross-correlation values utilizing discrete-time Fourier analysis of the computed STCs. One or more intermediate quantizers may optionally be disposed between the bank of code matched filters and the cross-correlation calculation means for reducing word-sizes of the STCs prior to Fourier analysis. The techniques described may be used with BOC modulated signals or with any signal having at least two distinct sidebands.

 

 

Page last updated: January 28, 2008   |   Top of page

Homeland Security Center Center for Enterprise Modernization Command, Control, Communications and Intelligence Center Center for Advanced Aviation System Development

 
 
 

Solutions That Make a Difference.®
Copyright © 1997-2013, The MITRE Corporation. All rights reserved.
MITRE is a registered trademark of The MITRE Corporation.
Material on this site may be copied and distributed with permission only.

IDG's Computerworld Names MITRE a "Best Place to Work in IT" for Eighth Straight Year The Boston Globe Ranks MITRE Number 6 Top Place to Work Fast Company Names MITRE One of the "World's 50 Most Innovative Companies"
 

Privacy Policy | Contact Us