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Digital Copilot  is  a  prototype information system  providing  cognitive assistance to  pilots  

in general aviation. This  paper presents methods  and results of  an analysis  quantifying  the 

expected safety  benefits  of  the system.  The methods  include:  Cognitive Performance Analysis,  

to  quantify  pilot  workload in flight activities; Human Reliability  Analysis,  to  quantify  pilot  

error probabilities; and  Probabilistic Risk  Assessment,  to  quantify  accident sequence  

frequencies. These methods   are   used to   model flight risk   with and   without pilots’   use of   Digital   
Copilot,  and  the comparison provides  a  quantitative measure of  expected safety  benefits  

assuming  the prototype system  is  adopted by  pilots.  The  results  suggest that  Digital Copilot  

technology  has  the potential  to  significantly  reduce  the  rates of  total  and  fatal accidents in  

general aviation. The same methods  also  enable a  detailed analysis  of  individual pilot  actions  

and  system  features, to  quantify  their risk  importance  and  identify  the most  promising  

opportunities for further system  improvements.  

I. Introduction  

APROXIMATELY 75% of  accidents  in  general aviation  are attributed  to  pilot error  [1-5],  as a  pilot must perform  

numerous  information  processing  tasks  while at the same time controlling  the aircraft through  all phases  of  flight. 

These tasks  include: scanning  for  traffic; accessing  charts,  checklists,  manuals, and  weather  reports; planning  and  re-

planning  en  route as  required  by  weather  conditions  and  fuel supply; and  communicating  with  air  traffic controllers.  

The complexity  of  these tasks  is  compounded  in  flights  operated  by  a single pilot. Recent efforts  to  improve the safety  

of  general aviation  have attempted  to  address  pilot workload  by  applying  concepts  of  crew resource  management [6]  

from  commercial aviation,  where pilots  fly  with  trained  copilots  and  each  individual has  assigned  roles.   

 In  one such  effort, a prototype  mobile computing  application  known  as Digital Copilot [7]  has been  developed  to  

demonstrate technology  for  providing  cognitive assistance  to  pilots. Using  a speech  recognition  interface,  the pilot  

can   receive   answers   to   questions   and   request information   to   be read   aloud.   For   example,   when   asked   “Will the tower   
be open?” (at the destination   airport),   Digital Copilot responds   after   estimating   the arrival time and   accessing  the tower  

schedule stored   in   its   records.   The system   is   also   able to   anticipate a pilot’s   information   needs,   such  as the ATIS 

(Automatic Terminal Information  Service)  frequency,  by  inferring  the phase of  flight and  expected  arrival airport.   

 This  prototype system  has been  designed  to  reduce  pilot workload,  and  thereby  prevent errors  that may  lead  to  

accidents.  The question  is: To  what extent does the  Digital Copilot reduce  pilot  workload,  and  to  what  extent  do  these  

workload  reductions prevent  pilot errors  and  avert accidents?  This  question  cannot be answered  in  retrospective  

fashion,   because historical data do   not include operations   with   pilots’   use of   Digital Copilot. Therefore,   our   approach   
uses  prospective methods  of  Probabilistic Risk  Assessment, Human  Reliability  Analysis,  and  Cognitive Performance  

Analysis   to   quantify   the safety   of   general aviation   both   with   and   without pilots’   use of   Digital Copilot.   
 A  previous  study  [8]  used  standard  methods  of  Human  Reliability  Analysis  and  Probabilistic  Risk  Assessment to  

quantify   human   errors   and   accident sequences   with   and   without pilots’   use of   Digital Copilot. However,  that  study  

was  limited  by  existing  methods  for  computing  Human  Error  Probabilities as a function  of  various  Performance  

Shaping  Factors, including  Stress/Stressors,  Complexity,  Available Time,  and  Ergonomics/Human-Machine  

Interface. The treatment of  Ergonomics/Human-Machine Interface was especially  problematic,  as existing  methods  

do  not identify W orkload  as a Performance  Shaping  Factor  or  quantify  the expected  impacts  of  Workload  on  Human  

Error  Probabilities. The present study  overcomes these limitations  by  defining  a new  Performance  Shaping  Factor  for  

Workload,  and  by  developing  a novel Workload-Reliability  Correlation  that quantifies Human  Error  Probabilities as  

a function  of  Workload.  
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These advancements in Cognitive Performance Analysis, detailed in Section II, enable more accurate and credible 

predictions of the expected safety benefits provided by Digital Copilot technology, discussed in Section III. 

II. Methods 

Three classes of methods are used in this study, namely: Probabilistic Risk Assessment (PRA); Human Reliability 

Analysis (HRA); and Cognitive Performance Analysis (CPA). The key inputs, outputs, and use cases for these methods 

are summarized in Table 1, with details of each method discussed in subsections below. 

Table 1 Input, output, and use case for each method 

Method Input Output Use Case 

PRA Human Error Probabilities Accident Sequence Frequencies With and Without Digital Copilot 

HRA Performance Shaping Factors Human Error Probabilities Without Digital Copilot 

CPA Subjective Workload Ratings Human Error Probabilities With Digital Copilot 

A. Probabilistic Risk Assessment 

PRA [9] is a prospective approach to quantifying the risks of human-system operations under hazardous 

conditions, using event trees to identify accident sequences that stem from failures of critical safety functions, and 

using fault trees [10] to identify combinations of basic events that lead to failures of critical safety functions. Each 

basic event is either a human error, system failure, or world event such as the presence of a hazard, and each basic 

event is quantified with a probability of occurrence. 

The present study is focused on pilot-related accidents that might be mitigated by features of Digital Copilot 

technology. Therefore, all basic events in our PRA fault trees represent human errors or world events that set the 

context for human errors, and all accident sequences in our PRA event trees represent combinations of these basic 

events. A total of eight event trees are used to model sequential phases of flight as follows: Taxi-out, Takeoff, Climb, 

En route, Descent, Approach, Landing, and Taxi-in. A total of 30 fault trees are used to model failures of critical safety 

functions appearing in the event trees. A total of 12 world events (see Table 2) and 38 pilot actions (see Table 3) 

appear as fault tree basic events. The trees are linked and solved using standard methods [11] to compute event tree 

accident sequences as combinations of fault tree basic events, where each accident sequence represents a unique 

combination of human errors and world events. Similar sequences are then binned to obtain subtotals for 14 accident 

sequence bins, and the bins are summed to obtain an overall accident sequence frequency. 

As outlined above, PRA was performed for two cases that differed in the underlying probabilities of human errors 

used as inputs to the analysis (see Table 1). First, a baseline PRA model was quantified with Human Error Probabilities 

obtained from HRA, assuming pilots were not using the Digital Copilot. Then, a revised PRA model was quantified 

with Human Error Probabilities obtained from CPA, assuming pilots were using the Digital Copilot. Results of the 

two models were then compared to compute the numbers of accidents expected to be averted by pilots’ use of the 
Digital Copilot, as discussed in Section III. 

Table 2 World event probabilities 

Phase of Flight World Event Probability 

Taxi-out Collision hazard present 0.1 

Takeoff Collision hazard present 0.1 

Climb Collision hazard present 0.01 

En route Collision hazard present 0.00001 

Descent Collision hazard present 0.001 

Approach Collision hazard present 0.1 

Landing Collision hazard present 0.1 

Taxi-in Collision hazard present 0.1 

Takeoff Departure airport controlled 0.40 

Approach Arrival airport controlled 0.40 

En route Hazardous weather en route 0.05 

En route Hazardous weather at destination 0.05 
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Table 3 Pilot actions, types, and Performance Shaping Factor multipliers for Stress/Stressors (s),  
Complexity (c), and Available Time (t)  

Phase Pilot Action Type s c t s*c*t 

Taxi-out 1. Fail to hold short as required K 1 1 1 1 

Taxi-out 2. Fail to follow proper taxi route to proper runway R 1 2 1 2 

Taxi-out 3. Fail to avoid collision with hazard K 5 1 10 50 

Taxi-out 4. Fail to manage systems and maintain control S 1 1 1 1 

Takeoff 5. Fail to obtain clearance for takeoff (controlled airport) R 1 1 1 1 

Takeoff 6. Fail to verify runway clear of hazards (non-controlled airport) K 1 1 1 1 

Takeoff 7. Fail to avoid collision with hazard K 5 1 10 50 

Takeoff 8. Fail to manage systems and maintain control (wake turbulence) R 2 2 1 4 

Takeoff 9. Fail to ensure sufficient runway remaining K 2 2 1 4 

Takeoff 10. Fail to reject takeoff if insufficient runway remaining K 5 1 1 5 

Climb 11. Fail to maintain proper climb profile or heading R 1 1 1 1 

Climb 12. Fail to avoid collision with hazard K 5 1 10 50 

Climb 13. Fail to manage systems and maintain control S 1 1 1 1 

En route 14. Fail to conform to flight plan / airspace requirements R 1 2 1 2 

En route 15. Fail to avoid collision with hazard K 5 1 10 50 

En route 16. Fail to avoid hazardous weather en route K 2 2 1 4 

En route 17. Fail to avoid loss of control in hazardous weather en route K 5 1 10 50 

En route 18. Fail to manage systems and maintain control, fuel sufficiency R 1 2 1 2 

En route 19. Fail to avoid hazardous weather at destination K 2 2 1 4 

En route 20. Fail to avoid loss of control in hazardous weather at destination K 5 1 10 50 

Descent 21. Fail to maintain proper descent profile or heading R 1 1 1 1 

Descent 22. Fail to avoid collision with hazard K 5 1 10 50 

Descent 23. Fail to manage systems and maintain control S 1 1 1 1 

Approach 24. Fail to conform to ATC directives (controlled airport) R 1 1 1 1 

Approach 25. Fail to ID proper runway / approach (non-controlled airport) K 1 2 1 2 

Approach 26. Fail to avoid collision with hazard K 5 1 10 50 

Approach 27. Fail to detect infeasible approach and execute go around K 5 1 1 5 

Approach 28. Fail to manage systems and maintain control (wake turbulence) R 2 2 1 4 

Landing 29. Fail to obtain clearance for landing (controlled airport) R 1 1 1 1 

Landing 30. Fail to verify runway clear of hazards (non-controlled airport) K 1 1 1 1 

Landing 31. Fail to avoid collision with hazard K 5 1 10 50 

Landing 32. Fail to manage systems and maintain control S 2 2 10 40 

Landing 33. Fail to ensure sufficient runway remaining K 2 2 1 4 

Landing 34. Fail to go around if insufficient runway remaining K 5 1 1 5 

Taxi-in 35. Fail to hold short as required K 1 1 1 1 

Taxi-in 36. Fail to follow proper taxi route from proper runway R 1 2 1 2 

Taxi-in 37. Fail to avoid collision with hazard K 5 1 10 50 

Taxi-in 38. Fail to manage systems and maintain control S 1 1 1 1 

B. Human Reliability Analysis 

HRA [12] is a prospective approach to quantifying Human Error Probabilities (HEPs), based on various 

Performance Shaping Factors (PSFs) that account for the situational context in which human actions are accomplished. 

These PSFs are modeled as multipliers to nominal HEPs, which in turn model fundamentally different types of human 

actions. In our approach, each of the 38 pilot actions appearing as a fault tree basic event was classified as one of three 

types, in accordance with the qualitative cognitive performance model proposed by Rasmussen [13]. These three types 

are Knowledge-based (K), Rule-based (R), and Skill-based (S), where: K refers to goal-directed behavior involving 

reasoning and planning to diagnose and act; R refers to procedural behavior in accordance with explicit, step-by-step 

guidance; and S refers to sensory-motor behavior accomplished without conscious control. The 38 actions and their 

types (K, R, S) are listed in Table 3, along with PSF multipliers discussed further below. 
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The numerical values of nominal HEPs are assumed to be ordered such that K >> R > S, consistent with the relative 

complexity of the three types. However, unlike the standard method of [12], we do not assume numerical values for 

nominal error probabilities. Instead, we compute nominal values for K, R, and S using historical accident rate data 

aligned with our PRA accident sequences, as discussed in Section III. This is because the standard method was 

developed for analysis of accidents in nuclear power operations, and general aviation differs in the following respects: 

First, general aviation usually involves a single pilot flying without a copilot and executing highly-practiced 

actions, as opposed to the multi-person crews of control room and auxiliary operators responding to rarely-occurring 

nuclear power plant accidents. Second, timeframes for pilot actions in general aviation are typically seconds or several 

minutes, as opposed to the many minutes or hours that are often involved in responding to nuclear accidents. Finally, 

unlike nuclear accidents that rarely occur, large amounts of historical data from aviation safety databases are available 

to support estimation of pilot error probabilities in flight operations. 

Along with nominal HEP values discussed above, the standard method of HRA [12] uses numerical PSF 

multipliers to modify the nominal HEPs and thereby account for the performance shaping context of different 

situations in which actions of types K, R, or S are accomplished. The PSFs are generic factors, including multipliers 

for Stress/Stressors, Complexity, and Available Time that are expected to apply in any domain, unlike the nominal 

HEPs for K, R, and S that are expected to vary from domain to domain. Therefore, our approach uses the PSFs and 

associated multipliers of the standard method [12], with only minor modifications described in [8] to ensure that PSF 

multipliers for Stress/Stressors, Complexity, and Available Time are applied consistently across actions of type K, R, 

and S. The resulting set of PSF levels and associated multiplier values, derived from the standard method [12], are as 

follows: 

- Stress/Stressors  (s):   Nominal (1),  High  (2),  Extreme (5)  

- Complexity  (c):    Low  (0.1),  Nominal (1),  Moderate (2),  High  (5)  

- Available Time  (t):   Extra Time (0.1),  Nominal (1),  Barely  Adequate  Time  (10)  

In applying the standard method of HRA [12], one or more Subject Matter Experts (SMEs) are provided with a 

detailed description of each action and asked to rate the associated level of each PSF (s, c, t). Although it is common 

practice in HRA to obtain PSF judgments from only one or two SMEs, we obtained consensus ratings from four SMEs, 

including two general aviation experts who are also human factors engineers, and two risk analysts who are HRA 

specialists. The resulting PSF multipliers (s, c, t) for all 38 pilot actions in the PRA model are listed in Table 3. The 

corresponding HEP for an action of type K, or R, or S is computed as K*s*c*t, or R*s*c*t, or S*s*c*t, respectively. 

Besides nominal HEPs and PSF multipliers, the PRA model also requires values for the probabilities of various 

world events listed in Table 2. Probabilities for controlled/non-controlled airports were obtained from statistics on 

airport operations, and probabilities for all other world events were obtained as judgments from the same SMEs that 

provided judgments of PSFs. These judgments are supported by empirical benchmarking of the integrated PRA model, 

which includes nominal HEPs, PSFs, and world event probabilities. This benchmarking, described in Section III, 

compares the computed accident sequence frequencies to historical accident frequencies for pilot-related accidents in 

general aviation [1-5]. 

C. Cognitive Performance Analysis 

As described above, the baseline model (without pilots’ use of Digital Copilot) uses three PSFs (s, c, t) to model 

how nominal HEPs (K, R, S) are affected by the performance-shaping context of Stress/Stressors, Complexity, and 

Available Time. In a previous study [8], a fourth PSF for Ergonomics/Human-Machine Interface (HMI) was then used 

in accordance with the standard method of HRA [12] to quantify a revised model that included pilots’ use of Digital 
Copilot. However, that approach suffered from several important limitations, as follows: 

First, the benefits of Digital Copilot were modeled using a PSF for Ergonomics/HMI that could not be 

benchmarked empirically, because the historical data do not include operations with Digital Copilot. Second, the three 

PSFs that were benchmarked in the baseline model, namely Stress/Stressors, Complexity, and Available Time, would 

all be affected by Ergonomics/HMI. Ideally a PSF for Ergonomics/MHI would be directly related to these three PSFs, 

and thereby enable more integrated analysis of safety with and without pilots’ use of Digital Copilot. Finally, in 

accordance with the standard method of HRA [12], the PSF multiplier for Ergonomics/HMI was limited to a numerical 

value of either 1.0 (Nominal) or 0.5 (Good) based on SME judgments about the effectiveness of the HMI. Ideally the 

multiplier would instead vary along a continuum, and thereby provide more fine-grained modeling of how nominal 

HEPs are affected by the Ergonomics/HMI of a system such as Digital Copilot. 
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The present study overcomes these limitations by replacing the PSF for Ergonomics/HMI with a new PSF for 

Workload, and by measuring Workload on a continuous scale aligned with the three categorical PSFs of 

Stress/Stressors, Complexity, and Available Time. This enables benchmarking of the new PSF for Workload against 

the baseline PSFs of Stress/Stressors, Complexity, and Available Time, which in turn have been benchmarked against 

historical accident rate data using the integrated PRA model. The approach includes an instrument for measuring 

Workload and a Workload-Reliability Correlation, as discussed in two subsections below. 

1. Instrument for Measuring Workload 

Use of a new PSF for Workload requires that SMEs provide ratings of Workload for pilot actions in the PRA 

model, both with and without pilots’ use of the Digital Copilot. A number of instruments exist for obtaining such 

ratings of Workload, including the NASA Task Load Index (TLX) [14], the Subjective Workload Assessment 

Technique (SWAT) [15], and the Overall Workload (OW) [16] scale. NASA-TLX requires that SMEs provide ratings 

on a scale of 0-20 along six different dimensions of Workload. Three of these dimensions are directly related to our 

three PSFs of Stress/Stressors, Complexity, and Available Time, namely Frustration Level, Mental Demand, and 

Temporal Demand. Two other dimensions, referred to as Mental Effort and Performance, appear to be somewhat 

redundant, and another dimension, referred to as Physical Demand, is not relevant to our study of cognitive workload. 

SWAT includes only three dimensions, namely Psychological Stress, Mental Effort, and Time Load, which are aligned 

with our PSFs of Stress/Stressors, Complexity, and Available Time. OW obtains a direct measure of Overall 

Workload, without the need to combine measures made along individual dimensions as in NASA-TLX and SWAT. 

Our instrument includes elements of NASA-TLX, SWAT, and OW as follows: First, we define Stress Level, 

Mental Demand, and Temporal Demand as three factors to be considered in ratings of Overall Workload. The 

definitions of these factors are taken directly from NASA-TLX, and the three factors are also consistent with the three 

dimensions of SWAT. Then, similar to OW, we obtain integer ratings of Overall Workload on a scale of 0-20 like that 

used in NASA-TLX. When providing their ratings, SMEs are instructed that Overall Workload is to be rated in 

accordance with the following definition: Considering Stress Level, Mental Demand, and Temporal Demand, how 

much overall load does this task impose to achieve a sufficient level of performance? What is the overall difficulty of 

this task? Could you perform other tasks at the same time, or does this task demand your full attention? 

Using the scale of 0-20, a rating of 10 represents a nominal level of Workload. As such, the instrument elicits 

ratings on a ten-point scale of 0-9 lower than nominal Workload and a ten-point scale 11-20 higher than nominal 

Workload. When providing their ratings, SMEs are instructed to use these scale ranges below and above nominal, as 

they see fit, to characterize levels of Overall Workload that are judged to be lower, higher, or equal to the nominal 

anchor of 10. 

This instrument was implemented in the form of a spreadsheet describing each of the 38 pilot actions in our PRA 

model, along with a dropdown menu for rating Overall Workload on the scale of 0-20. For each action, the spreadsheet 

also described relevant features of the Digital Copilot that can potentially affect the action. Using the spreadsheet, a 

total of 26 general aviation pilots each provided ratings of expected Overall Workload for all 38 pilot actions assuming 

flight without Digital Copilot. Then, for the 19 actions potentially affected by Digit Copilot, each pilot provided ratings 

of Overall Workload assuming flight with Digital Copilot. The participants were recruited with a “call for pilots” that 
described the purpose and method of our study, sent via email to a local (Washington, D.C., area) listing of general 

aviation pilots. As a requirement for participation, all pilots reviewed a detailed training briefing describing features 

of Digital Copilot. The training also included instructions on the method and scale to be used for reporting judgments 

of Workload on the spreadsheet. After this training, completion of the spreadsheet by a pilot required approximately 

one hour. All materials were distributed to participants via email, and the spreadsheets with ratings were collected via 

email as they were completed at the convenience of each individual pilot over a two-week period. All 26 pilots were 

Part 91 certificated, and none of the pilots was employed by The MITRE Corporation or any government agency. Of 

the 26 pilots: 17 (65%) were private pilots with instrument rating; 7 (27%) were commercial pilots with instrument 

rating; and 2 (8%) were airline transport pilots. The pilots’ logged flight hours ranged from 200 to 3200, with a mean 

of 1228 and standard deviation of 861. 

Each pilot provided ratings first assuming flight using a familiar Electronic Flight Bag (EFB) without Digital 

Copilot technology, and then assuming flight using Digital Copilot technology integrated into the same EFB. This 

was to ensure that changes in Workload with Digital Copilot would be attributed to the new technology and not 

existing technology available in today’s EFBs. All except one pilot used an EFB on a regular basis, and the most 

popular EFB was Foreflight, which was used by 17 (65%) of the 26 pilots. When providing their ratings, pilots were 

instructed to assume the following situational conditions: 
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- A daytime flight under Visual Flight Rules with clear weather conditions and average winds, except for specific  
actions that are identified in the spreadsheet as being associated with hazardous weather conditions.  
- A somewhat familiar airport with two runways and moderately complex taxi routes.  
- A fixed-wing, single-engine, propeller driven aircraft, such as a Cessna 172, with a standard "six-pack" set of  
primary flight instruments.  
- A familiar tablet-based EFB application, such as ForeFlight, Garmin Pilot, or WingX, for the case of flight  
without Digital Copilot. The same EFB, but with Digital Copilot technology integrated into the application, for  
the case of flight with Digital Copilot.  

The resulting ratings of expected Workload, and associated impacts on accident sequence frequencies, are 

discussed in Section III. 

2. Workload-Reliability Correlation (WORC) 

Numerous studies have measured subjective Workload in various tasks of aviation and other domains, using 

instruments similar to ours described above. However, we are not aware of any existing method for converting 

measured Workload quantities to human error probabilities, as needed for quantifying fault tree basic events and 

computing event tree accident sequences. Here we present a novel method for doing so in the form of a Workload-

Reliability Correlation (WORC), which is a key component of our analytic approach to quantifying the safety benefits 

of Digital Copilot. 

Mathematically, WORC uses probability P to model how a human’s propensity for failure on a task increases with 

Workload W. The underlying assumption is that human reliability is bounded by a finite capability for managing 

Workload, such that P increases with W in a manner that depends on P itself. More specifically: the marginal increase 

in failure probability dP/dW at a given level of Workload is assumed to be proportional to the value of P at that level 

of Workload; and this increase occurs at a probability 1-P, which represents the probability that failure has not already 

occurred at the current level of Workload. Taken together, these two effects lead to the following differential equation: 

dP/dW = ω * P * (1-P), 

where ω is a constant of proportionality. Integrating this equation yields a logistic function as follows: 

       ω*(X – W)), P = 1 / (1 + e 

where X is the value of Workload at which P = 0.5. 

This  theoretical model is  supported  by  empirical data from  laboratory  experiments,  which  measure reliability  (1-

P)  in  the range  0-1  as a  function  of  task  difficulty  and  find  that human  performance  exhibits  the  characteristic S-shape 

of  a logistic function [17]. Elsewhere in  human  performance modeling,  a logistic function  also  appears  in  the well-

known  Rasch  [18]  equation      P = 1 / (1 + ea-d) for the probability (P) of incorrect item response as a function of ability 

(a)  and  task  difficulty  (d).   

For pilot actions in general aviation, human error probabilities are orders of magnitude less than 0.5, and when P 

is less than 0.5 the logistic function is very closely approximated by a simple exponential function. Therefore, we can 

reformulate the WORC equation as follows: 

P = P0 * eML , 

where L  is  a measure of  Workload  defined  as L  =  (W-10)/5,  and  W  is  Workload  measured  on  a scale of  0-20  in  

accordance  with  the instrument described  above.  This  rescaling  is  performed  so  that P =  P0  is  the nominal HEP ( K,  R,  

or  S) corresponding  to  the nominal level of  Overall Workload  W  = 10  where L  = 0  and  eML  =  1.  The resulting  

formulation  of  WORC  can  now  be related  directly  to  the PSF  approach  used  in  our  benchmarked  HRA,  by  mapping  

vectors  of  categorical PSF  multipliers  [Low,  Nominal, High,  Extreme]  to  associated  values in  the range of  the  

numerical Workload  scale  [0,  10,  15,  20].  The value of  M in  the WORC  equation  eML  is  then  adjusted  to  fit the  

exponential function  to  corresponding  values of  the total PSF  multiplier  (s*c*t)  in  the baseline model,  as shown  in  

Fig. 1.  Note that the plot of  Fig. 1 contains  only six  data points,  because SME  judgments  of  PSFs  in  the baseline model 

resulted  in  only  six  unique combinations  of  the PSF  multipliers  for  Stress/Stressors,  Complexity,  and  Available Time  

(see  Table 3).  As  illustrated  in  Fig. 1, the benchmarked  WORC  equation eML  with  a value of  M =  2.8  provides an  
excellent fit to  values of  the combined  PSF  multipliers ( s*c*t).  
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 As outlined  above,  WORC  computes  a multiplier  (eML)  that predicts  how  Workload  L  affects a  pilot error  

probability  P.  The same correlation  enables calculation  of  another  multiplier,  denoted  ’  w  = P’/P = eML /eML,  which  

predicts  how   a change in   Workload   from   L   to   L’   will change the pilot error   probability   from   P   to   P’.   Substituting  the  

expressions  L’   = (W’-10)/5  and  L  = (W-10)/5, and  using  the  value M =  2.8,  yields  the following  expression  for  w  as  

a function  of  ΔW: w = e -0.56*ΔW  ,   where ΔW   = W   –   W’.   This  Workload  multiplier  w,  computed  from  ΔW   for   a given   
pilot action  with  baseline error  probability  P,  is  then  used  to  obtain  a revised  error  probability  P’   = w*P   that accounts   
for  the change in  Workload  from   W   to   W’.   

The values of w, computed in this manner, are provided in Table 4 for the 19 pilot actions in Table 3 that are 

affected by Digital Copilot. These values of w, and the underlying values of   ΔW obtained from pilots’  ratings of 

expected Workload, are discussed further in Section III. 

Fig. 1  Fit  of  Workload-Reliability  Correlation (eML,  with M  =  2.8)  to  combined Performance Shaping  Factor 

multipliers  (s*c*t)   

Table 4 Pilot actions, system features, and Performance Shaping Factor multiplier (w) for Workload 

affected by Digital Copilot 

Pilot Action (Phase) 

System Feature 

w 

1. Fail to hold short as required (Taxi-out). 

Digital Copilot provides an auditory alert if the pilot is approaching a hold short line when not cleared to cross and it 

appears that the aircraft is not going to stop. 0.23 

2. Fail to follow proper taxi route to proper runway (Taxi-out). 

Digital Copilot captures pilot readback of taxi instructions, and provides turn by-turn taxi instructions using auditory 

commands and visual guidance, including an auditory alert if the pilot deviates from the taxi route. 0.09 

8. Fail to manage systems and maintain control including wake turbulence avoidance (Takeoff). 

Digital Copilot provides the pilot with a takeoff checklist and reads the checklist items aloud. 0.42 

10. Fail to reject takeoff if insufficient runway remaining (Takeoff). 

Digital Copilot audibly reports the runway length remaining during the takeoff roll when there are 2000 feet or fewer 

remaining (but does not advise the pilot on whether to abort takeoff). 0.27 

11. Fail to maintain proper climb profile or heading (Climb). 

Digital Copilot provides audible alerts if the climb rate (vertical speed) slows or if the aircraft begins to sink. 0.42 

14. Fail to conform to flight plan / airspace requirements (En route). 

7 



      

    

      

Digital Copilot provides an audible alert if the flight route deviates from way points entered by the pilot. In controlled 

airspaces, Digital Copilot captures pilot readback of altitude clearances and audibly alerts the pilot of clearance 

deviations. If the pilot sets an altitude, Digital Copilot will audibly alert the pilot of a deviation, and if the aircraft is 

approaching rising terrain, Digital Copilot alerts the pilot when vertical speed is insufficient to clear the terrain. 0.27 

16. Fail to avoid hazardous weather (En route). 

Digital Copilot assimilates data from a variety of weather reports and monitors weather along the flight route, alerting 

the pilot to unfavorable trends over time (but does not help plan routing around weather). If the pilot modifies the route 

to avoid weather, and enters the revised route into Digital Copilot, the system will audibly alert the pilot of deviations 

from this revised routing. 0.28 

17. Fail to avoid loss of control in hazardous weather (En route). 

Digital Copilot monitors for “slow rolls” where the bank angle steadily increases, and audibly alerts the pilot if this 

condition is detected. 0.28 

18. Fail to manage systems and maintain control including fuel sufficiency (En route). 

Digital Copilot monitors for “slow rolls” where the bank angle steadily increases, and audibly alerts the pilot if this 

condition is detected. If requested by the pilot, Digital Copilot can also provide an audible reminder to switch fuel tanks 

(but does not monitor fuel levels or warn of potential fuel insufficiency). 0.45 

19. Fail to avoid hazardous weather at destination (En route). 

Digital Copilot monitors weather conditions at the destination and audibly alerts the pilot if visibility or the ceiling fall 

below certain thresholds. Digital Copilot provides an alert when the weather changes from VMC to Marginal, from 

Marginal to IMC, or from IMC to low IMC (but does not assist in selecting a divert location or revising the flight plan). 0.26 

20. Fail to avoid loss of control in hazardous weather at destination (En route). 

Digital Copilot monitors for “slow rolls” where the bank angle steadily increases, and audibly alerts the pilot if this 

condition is detected. 0.42 

21. Fail to maintain proper descent profile or heading (Descent). 

Digital Copilot alerts the pilot if the aircraft is trending toward the ground (other than the airport runway surface). 0.48 

24. Fail to conform to ATC directives at controlled airport (Approach). 

Digital Copilot automatically provides the tower frequency in an audible notification, and alerts the pilot if the tower 

will be open at the estimated arrival time. Digital Copilot provides guidance on joining and conforming to the approach 

pattern, by drawing the location of where to join the pattern, providing guidance on reaching that location, and alerting 

the pilot when the location has been reached. Digital Copilot also monitors conformance to the downwind leg and alerts 

the pilot if the aircraft is drifting toward or away from the runway. While monitoring conformance along the downwind 

and base legs, Digital Copilot alerts the pilot if an overly steep turn to final would be required or if predicted to pass 

through the final approach path. On approach, Digital Copilot alerts the pilot if the aircraft will pass through the extended 

runway centerline. 0.36 

25. Fail to ID proper runway / approach at non-controlled airport (Approach). 

Digital Copilot provides guidance on the proper runway to use based on winds, and alerts the pilot if approaching a 

runway that is not open or if approaching the incorrect destination airport. Digital Copilot also provides other guidance 

and alerts in the approach phase of flight as described for action #24 above. 0.37 

27. Fail to detect infeasible approach and execute go around (Approach). 

Digital Copilot continually monitors conformance to the approach pattern, providing guidance and alerts as described 

for actions #24 and #25 above (but does not advise the pilot on whether to go around or in executing a go around). 0.39 

28. Fail to manage systems and maintain control including wake turbulence avoidance (Approach). 

Digital Copilot provides a GUMPS (Gas, Undercarriage, Mixture, Propeller, Seat belts and Switches) notification that 

alerts the pilot to check these items before landing. The system can also be configured to provide additional before-

landing checklist items. 0.54 

34. Fail to go around if insufficient runway remaining (Landing). 

Digital Copilot audibly reports the runway length remaining during landing (but does not advise the pilot on whether to 

go around). 0.35 

35. Fail to hold short as required (Taxi-in). 

Digital Copilot provides an auditory alert if the pilot is approaching a hold short line when not cleared to cross and it 

appears that the aircraft is not going to stop. 0.23 

36. Fail to follow proper taxi route from proper runway (Taxi-in). 

Digital Copilot captures pilot readback of taxi instructions, and provides turn by-turn taxi instructions using auditory 

commands and visual guidance, including an auditory alert if the pilot deviates from the taxi route. 0.09 
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III. Results  

 As described  in  Section  II,  HEPs  needed  for  input to  our  PRA  models are  computed  in  two  ways.  First, in  a baseline  

model without pilots’   use of   Digital Copilot, the HEP   for   each   pilot action   is   quantified   as   the product of   a nominal 
HEP  (K,  R,  or  S) and  PSF multipliers  s*c*t corresponding  to  PSFs  of  Stress/Stressors,  Complexity  and  Available 

Time. Then,  in  a revised  model,  each  HEP  is  multiplied  by  an  additional factor  w  that accounts  for  the impacts  of  

Digital Copilot on  pilot Workload  quantities and  error  probabilities. Results  from  these two  models are presented  in  

two  subsections  below,  followed  by  a third  subsection  presenting  results  for  the risk  importance  of  each  individual  

pilot action  and  associated  features of  the Digital Copilot.  

A. Baseline Model Without Digital Copilot 

 In  the baseline model,  numerical PSF  multipliers  for  Stress/Stressors  (s),  Complexity  (c),  and  Available Time (t)  

were applied  to  HEPs  (K,  R,  and  S) appearing  in  PRA  accident sequence  equations.  Numerical values for  nominal 

HEPs  were obtained  by  treating  K,  R,  and  S as  variables  in  these accident sequence  equations,  which  were aligned  to  

historical accident frequencies  in  14  discrete bins,  summarized  in  Table 5.  Historical data for  each  bin  were obtained  

as a five-year  average of  accident rates derived  from  Nall reports  [1-5]  of  general aviation  accidents. These data,  which  

included  all pilot-related  accidents  for  domestic,  non-commercial,  fixed-wing  aircraft operating  under  Visual Flight  

Rules,  accounted  for  over  70% of  accidents  that occur  annually  in  general  aviation.  Using  the  historical data,  along  

with  the PSF  multiplier  values  for  s,  c,  and  t in  Table 3  and  world  event probabilities in  Table 2,  the 14  accident  

sequence  equations  were each  solved  for  the value of  one variable (K,  R,  or  S).  The resulting  eight values  for  K were 

then  averaged  to  obtain  a point estimate for  K,  and  similarly  for  the three  values  of  R  and  three  values  of  S, thereby  

obtaining th e following  point  estimates:  

K = 3.0E-04  

R  = 1.5E-06  

S =  2.5E-07.  

Table 5 Listing of 14 accident sequence bins 

Event 

Tree 

Accident 

Bin 

Action 

Type 

Taxi-out/in a. Collision with Hazard K 

Takeoff b. Collision with Hazard K 

Takeoff c. Insufficient Runway K 

En route d. Weather Related K 

Approach e. Collision with Hazard K 

Approach f. Failed Approach / Go-around K 

Landing g. Collision with Hazard K 

Landing h. Insufficient Runway K 

Takeoff i. Loss of Control R 

En Route j. Fuel Management R 

Approach k. Loss of Control R 

Taxi l. Loss of Control S 

Climb m. Loss of Control S 

Landing n. Loss of Control S 

To  gauge the fit o f th e  overall model  to  historical data,  these  point-estimate values for  K,  R,  and  S  were then  used  

in  the 14 accident sequence  equations  to  compute the annual number  of  accidents  in  each  bin. The fit to  the five-year  

historical accident rate data,  illustrated  in  Fig.  2,  is  within  about 20% for  each  bin  and  about 5% over  all  bins.  For  

most bins,  the fit  is  within  the  error  bar  that represents  plus  or  minus  one standard  deviation  in  the five-year  data.  Over  

all bins,  the total number  of  accidents  annually  is  767  for  the  model versus  734  for  the data.  
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This  empirical benchmarking  of  the baseline model is  important because most inputs  to  the model,  including  PSF  

multipliers  in  Table  3  and  world  event probabilities in  Table  2,  were based  on  SME  judgments. The good  fit of  model 

to  data,  illustrated  in  Fig.  2,  supports  the validity  of  these SME  judgments  as  incorporated  into  the integrated  PRA 

model of  general aviation  risk  (without Digital Copilot).  

Fig. 2 Number of accidents annually in each accident sequence bin, model (white) and data (gray) 

B. Revised Model With Digital Copilot 

After benchmarking the baseline model (without Digital Copilot) against historical data, as reported above, a 

revised model was used to account for the expected impacts of Digital Copilot on pilot workload, error probabilities, 

and accident frequencies. This was done using pilot judgements of expected Workload without Digital Copilot (W) 

and with Digital Copilot (W’), to compute ΔW = W – W’ along with a corresponding HEP multiplier (w) for each 

action via the Workload-Reliability Correlation. 

As described in Section II, ratings of expected Workload were obtained from a total of 26 general aviation pilots, 

after the pilots reviewed a training briefing that provided detailed descriptions of Digital Copilot functionality. Each 

pilot provided ratings first assuming flight using a familiar Electronic Flight Bag without Digital Copilot technology, 

and then assuming flight using Digital Copilot technology integrated into the same Electronic Flight Bag. On average 

across all 26 pilots and the 19 actions affected by Digital Copilot, ΔW = 2.2 on the scale of 0-20. The degree of inter-

rater agreement was computed using a standard statistic known as the Intraclass Correlation Coefficient (ICC) [19]. 

Across all 26 pilots and the 19 actions affected by Digital Copilot, ICC(ΔW) = 0.85. In accordance with standard 

guidelines, ICC > 0.75 is considered excellent. 

For each of the 19 actions affected by Digital Copilot, the distribution of ratings across all 26 pilots was used to 

obtain four different point estimates of ΔW, namely the mean (average), median (50th percentile), lower quartile (25th 

percentile), and upper quartile (75th percentile). Each set of point estimates, for all 19 actions, was then used in the 

WORC equation w = e -0.56*ΔW to compute multipliers that account for the impacts of Digital Copilot on baseline HEPs. 

Finally, using these HEP multipliers, the PRA model was re-quantified and compared to results of the baseline PRA 

model (without Digital Copilot) that had been benchmarked earlier against historical accident rate data. 
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The resulting values of w, computed from mean values of ΔW across pilots, appear in Table 4. Figs. 3 and 4 

compare the results of the PRA model using these HEP multipliers to the baseline model without pilots’ use of Digital 
Copilot. Fig. 3 presents results for total accidents in all 14 bins. Fig. 4 presents results for fatal accidents, using a 

fraction for fatal/total accidents in each bin based on the five-year average of historical data [1-5]. 

Fig. 3 Total accidents in each accident sequence bin, with Digital Copilot (black) and without (white) 

Fig. 4 Fatal accidents in each accident sequence bin, with Digital Copilot (black) and without (white) 
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Referring to bar heights in Fig. 3 with bin identifiers in Table 5, Digital Copilot has the largest impacts on total 

accident rates in bins i, j, and k involving Rule-based actions to maintain control during Takeoff, En route, and 

Approach phases of flight. Fig. 4 shows large impacts for fatal accidents in the same three bins, as well as a large 

impact in bin d involving Knowledge-based actions to avoid hazardous weather. Further insights into individual 

accident sequences within the 14 bins are provided by risk importance results presented below in Section III.C. 

Over all accident sequence bins, assuming Digital Copilot technology is adopted and used by all pilots in general 

aviation, the model predicts an expected reduction of 40% in the total accident rate and 66% in the fatal accident rate. 

The significance of this reduction was established with a t-test, by comparing the predicted number of total accidents 

annually to the mean of the five-year historical distribution. This test showed that the expected number of total 

accidents with pilots’ use of Digital Copilot was significantly less than the five-year mean, p < 0.001. 

Besides these calculations using mean values of ΔW, the PRA model was also re-quantified using median, lower 

quartile, and upper quartile values of ΔW. The results of each case were compared to the baseline model (without 
pilots’ use of Digital Copilot), to quantify the sensitivity of model results to variability in Workload ratings across 

pilots. The resulting percentages of total accidents and fatal accidents expected to be averted are summarized in Table 

6, once again assuming Digital Copilot technology is adopted and used by all pilots in general aviation. 

Table 6 Percentage of annual accidents expected to be averted by pilots’ use of Digital Copilot 

ΔW Values Total Accidents Fatal Accidents 

Mean 40% 66% 

Median 39% 64% 

Lower Quartile 10% 25% 

Upper Quartile 49% 77% 

As seen in Table 6, the results are almost identical using mean and median values of ΔW, and these results for the 
mean and median differ more from the lower quartile than they do from the upper quartile. The reason is that   ΔW 
values have an exponential impact on pilot error probabilities via the WORC equation  w = e -0.56*ΔW. This exponential 

impact on error probabilities, in turn, produces a non-linear impact on accident sequence frequencies such that results 

tend to saturate as   ΔW values increase from  lower quartile to mean (or median) to upper quartile. 

C. Risk Importance of Individual Pilot Actions 

Besides results  for  14  accident sequence  bins  and  the overall sum  of  these bins,  the PRA  models developed  in  this  

study  enable more detailed  analyses of  individual risk  contributors.  In  particular,  the notion   of   “risk   importance”   
provides a direct comparison  of  risk  contributed  by  each  of  the 38  pilot actions  that  appear  as fault tree  basic  events  

in  event tree  accident sequences.  Here risk  importance  is  measured  by  Risk  Reduction  Worth  (RRW),  which  is  defined  

[20]  as the reduction  in  accident frequency  that would  result if  the human  error  probability  for  a pilot action  was  

changed  to  zero  (i.e.,  the potential for  error  was  eliminated).  Therefore,  RRW  represents  the contribution  of  an  

individual error  rate to  the overall accident rate.   

RRW was computed first for each action in the baseline model, without pilots’ use of Digital Copilot, and then for 
each action in the revised model, with pilots’ use of Digital Copilot. In each case, RRW was computed for total 
accidents and for fatal accidents as illustrated in Figs. 5 and 6, respectively. In these figures, the total (black + white) 

bar height for each action represents the risk importance (RRW) of that action in the baseline model without Digital 

Copilot, and the black bar height represents RRW in the revised model with Digital Copilot. Therefore, the white 

portions of bars represent how much risk has been reduced by Digital Copilot, and the black portions of bars represent 

how much risk remains with the Digital Copilot. 

Referring to action #32 in Fig. 5, which has the highest RRW for total accidents, we see that RRW is the same 

both with and without Digital Copilot. The reason is that this is a Skill-based action to maintain control during landing, 

and Digital Copilot is an information system rather than a robotic control system that can assist the sensory-motor 

functions of landing an aircraft. However, loss of control during landing is rarely fatal, and Fig. 6 shows that action 

#32 has a small RRW for fatal accidents. 
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For other risk contributors to total accidents, Fig. 5 shows that Rule-based actions to maintain control during 

Takeoff (#8), En route (#18), and Approach (#28) phases of flight have relatively high RRW both with and without 

Digital Copilot. The white portions of bars show that the system has substantially reduced risk from these actions, and 

the black portions of bars show that substantial risk remains. For the same three Rule-based actions, Fig. 6 shows 

similar results for fatal accidents. Therefore, although the current system features are expected to accomplish risk 

reductions for these actions, the residual RRWs (black bars) suggest that the same actions remain candidates for 

additional system features to further reduce risk. 

Fig. 5 Total Risk Reduction Worth for 38 pilot actions, with Digital Copilot (black) and without (white) 

Fig. 6 Fatal Risk Reduction Worth for 38 pilot actions, with Digital Copilot (black) and without (white) 
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Besides Rule-based actions #8, #18, and #28, Fig. 6 shows that Digital Copilot is expected to achieve a large 

reduction in fatal RRW for several Knowledge-based actions including #16, #17, #19, #20 associated with avoiding 

hazardous weather. The residual RRWs (black bars) for these actions are small, which suggests that there is relatively 

little more risk to be averted by system features that might further address actions #16, #17, #19, and #20. 

Regarding total accidents in Fig. 5, important Knowledge-based actions include #9, #10, #33, and #34, which are 

actions associated with ensuring sufficient runway during Takeoff or Landing. Digital Copilot directly affects 

Workload for actions #10 and #34, as noted in Table 4, but does not directly affect Workload for actions #9 or #33. 

However, Digital Copilot affects RRW for all of these actions because accidents result from failures of both #9 and 

#10 or both #33 and #34. That is, a reduction in error rate by Digital Copilot for action #10 reduces the RRW for 

action #9 appearing in the same accident sequence equation as #10, and a reduction in error rate by Digital Copilot 

for action #34 reduces the RRW for action #33 appearing in the same accident sequence equation as #34. 

Taken together, these risk importance results are informing the continued development of Digital Copilot 

technology in efforts to reduce risk. Here it should be noted that these results are enabled not only by measures of 

pilot Workload and associated reductions in pilot error probabilities, but also by the integrated PRA models used to 

compute accident sequence frequencies. For example, based only on measures of Workload, the actions for which 

Digital Copilot achieves the greatest reductions are those with the lowest values of w in Table 4, namely Taxi actions 

#2 and #36. But Figs. 5 and 6 show that these actions have very small RRW even without Digital Copilot, so there is 

little risk to be averted regardless of how much the Workload may be reduced. In this case the benefits of the system 

are primarily associated with operational efficiency rather than operational safety. Conversely, Table 4 shows that 

action #28 to maintain control in Approach has the smallest Workload reduction (largest value of w) by Digital 

Copilot, yet Figs. 5 and 6 show that the associated risk reduction is among the highest of all actions modeled. Other 

actions for which Digital Copilot accomplishes relatively modest Workload reductions but large risk reductions 

include actions #8 and #18 to maintain control in Takeoff and En route, respectively. 

IV. Conclusion 

A. Contributions 

This paper presented methods and results of analyses to quantify the safety benefits of a Digital Copilot in general 

aviation. The methods include PRA, HRA, and CPA. Our CPA is novel in its use of a Workload-Reliability 

Correlation, which overcomes limitations of the standard PSF approach to HRA in analyzing the effects of 

Ergonomics/Human-Machine Interface on HEPs. 

An innovative aspect of our approach involved benchmarking the PRA model of accident sequence frequencies, 

including the HRA model of HEPs, against historical accident data. This enabled calculation of nominal HEPs for 

Knowledge-based, Rule-based, and Skill-based actions specific to the domain of general aviation. It also enabled 

benchmarking of PSFs for Stress/Stressors, Complexity, and Available Time, which are applied as multipliers to the 

nominal HEPs for individual pilot actions in specific situations. These benchmarked PSFs were then used to calibrate 

the new Workload-Reliability Correlation, which computes another multiplier to HEPs that accounts for the effects of 

Digital Copilot on pilot error probabilities, and thereby enables re-quantification of the PRA model to predict the 

expected impacts on accident sequence frequencies. 

Taken together, our CPA, HRA, and PRA models predict an expected reduction in accidents assuming Digital 

Copilot technology is adopted by pilots in general aviation. Results were also computed for the risk importance of 

individual pilot actions, to identify those actions that contribute most to total and fatal accident rates, both with and 

without Digital Coplot. The detailed results for these pilot actions and associated system features are currently being 

used as a risk-informed basis for implementing Digital Copilot technologies and prioritizing ongoing development 

activities. 

B. Limitations 

The most significant limitation of our approach lies in the Workload ratings needed as input to the Workload-

Reliability Correlation. These ratings are an improvement over the standard method of HRA, which uses judgments 

of a PSF for Ergonomics/Human-Machine Interface obtained from one or a few analysts (not operators) making only 

a categorical distinction between “Nominal” or “Good”. Our Workload ratings were integer values in the range 0-20, 

obtained from a total of 26 general aviation pilots, but these ratings are still human judgments and therefore subject to 

biases and differences between raters. The ratings were found to exhibit excellent inter-rater reliability, but PRA 

results for accident sequence frequencies were sensitive to whether the model was quantified with mean (median), 

lower quartile, or upper quartile values from the distributions of ratings across pilots. 
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Regarding potential biases in ratings of Workload, it is important to acknowledge that the present study obtained 

pilots’ judgments of expected Workload, not experienced Workload. In so doing, we were careful to explain the pilot 

actions of interest and describe associated features of Digital Copilot, to ensure that pilots had a credible basis for 

making judgments of Workload with and without the system. But these judgments were still based on expectations of 

pilots, rather than experiences of pilots using the prototype system in actual operations or flight simulations. Pilots 

may have been biased toward overestimating Workload reductions from Digital Copilot, due to wishful thinking about 

potential benefits or failure to imagine potential negative impacts of the system. Or, pilots may have been biased 

toward underestimating Workload reductions, because they had not actually experienced system benefits directly. 

One direction for future research would be to obtain pilots’ ratings of experienced Workload using Digital Copilot 

while engaged in flight simulations, and thereby benchmark the expected Workload ratings of the present study. But 

experienced Workload is still subjective and will vary between pilots and between flights for the same pilot, as well 

as between flight simulations and actual operations. Therefore, uncertainty in Workload ratings and variability in risk 

results would remain even if such further research were undertaken. Meanwhile, the present study based on pilots’ 
ratings of expected Workload offers useful insights into the potential safety benefits of the prototype Digital Copilot. 

These insights include overall estimates of accident rates, as well as more detailed results for the relative risk 

importance of individual pilot actions and associated system features. The results for relative risk importance are 

arguably less susceptible to potential bias in pilots’ ratings of expected Workload, because the same bias (optimistic 

or pessimistic) would presumably apply across pilot actions and system features. 

Disclaimer 

The contents of this document reflect the views of the authors and The MITRE Corporation and do not necessarily 

reflect the views of the Federal Aviation Administration (FAA) or the Department of Transportation (DOT). Neither 

the FAA nor the DOT makes any warranty or guarantee, expressed or implied, concerning the content or accuracy of 

these views. 
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