
 

Approved for Public Release. Public Release Case Number 19-2615. Distribution Unlimited. 
©2020 The MITRE Corporation. All Rights Reserved. 

Flight Object Sharing Capability Using Blockchain 

Duncan Thomson1 , Steven R. Bodie2 , David E. Bryson3 , Timothy S. Luc4 , and Joel G. Korb5   

The MITRE Corporation, McLean, VA, 22102, USA 

 

Abstract  

This paper describes a concept and a prototype for sharing flight information using blockchain technology. 

Providing all stakeholders access to complete, consistent, and up-to-date information about each flight 

facilitates efficient aviation operations. Existing flight information exchange methods are limited; the concept 

of a “flight object” that provides a complete solution for all stakeholders has yet to be realized. A complete 

solution requires either a centrally administered data store, which is unsuitable for an international context, 

or a distributed ledger. Distributed ledgers are at the heart of blockchain technology, which makes this 

technology a good match for implementing the flight object. The authors have proven it is possible to provide 

a complete flight object solution using blockchain technology by demonstrating a prototype based on 

Tendermint: an open-source blockchain implementation. The demonstrated solution offers additional 

benefits like strong integrity guarantees and role-based update permissions enforcement. Prototype 

performance indicates a production implementation is likely to provide sufficient speed and capacity to 

support global aviation operations for flight planning negotiation, as well as possible future concepts such as 

trajectory-based operations and international flow management. The paper’s conclusion discusses steps 

necessary for the flight object sharing capability to be adopted as the basis for a real-world international 

aviation solution 

 

I. Introduction 

The idea of a flight object providing 

stakeholders complete, consistent, and up-to-date 

information about every flight has been discussed for 

many years. In 2000, a MITRE paper [1] defined the 

flight object as “…a collection of common 

information elements describing an individual flight 

and available electronically for use by both the 

National Airspace System (NAS) users and the Air 

Traffic Management (ATM) service providers.” And, 

a 2003 EUROCONTROL paper [2] described the 

concept as follows: “For each flight which is planned, 

is currently active, or has taken place, there will be a 

‘flight object’ which contains the latest confirmed 

information about the flight…”. Providing an 

interoperable flight object to stakeholders such as 

ATM service providers (ASPs), aircraft operators, air 

defense units, and airport authorities was described in 

Ref. [2] as a means to reduce “unnecessary workload, 

inefficient use of resources, and unnecessary delays.” 

The flight object remains an important part of the 

International Civil Aviation Organization (ICAO) 
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Global Air Traffic Management Concept [3] to this 

day. However, despite its importance, the flight 

object concept has never been implemented. There 

are flight object implementations within specific ASP 

systems, but these are internal solutions not 

accessible by other ASPs or airspace users. There are 

solutions for digital exchange of flight information 

among international ASPs and airspace users, but the 

information exchanged is limited and these methods 

do not ensure that all participants have access to 

complete, consistent, and up-to-date information. The 

objective of this paper is to show how the flight 

object concept can be fully realized, through the 

application of blockchain technology. 

Section II describes limitations of legacy 

flight information exchange methods, which are 

based on air traffic services (ATS) messages. Section 

II also describes improvements to ATS messaging 

being explored by the Federal Aviation 

Administration (FAA) and international aviation 

participants. These improvements, which include the 

introduction of XML message structures and message 

bus technology, will allow more flight information to 

be exchanged but still cannot guarantee that complete 

and consistent information is available to every 

concerned entity. At first, it might appear that a 

network accessible central database could be the 

solution. However, in Sec. II, we explain why a 

centralized solution is not suitable for international 

aviation. To make the flight object available 

internationally, to ASPs as well as airspace users, a 

distributed solution is needed. 

In Sec. III, we describe the flight object 

sharing capability (FOSC) concept, which is a 

distributed solution using blockchain technology. In 

this concept, each stakeholder controls their own 

flight object instances, and consistency is maintained 

among these instances using a blockchain-based 

distributed consensus protocol. Section III describes 

the proof-of-concept FOSC prototype we built to test 

the feasibility of this concept. 

Having implemented the FOSC, we also 

needed to ensure it can provide the necessary 

functionality to be used in international aviation 

operations. Section IV describes how this was 

accomplished. We created an end-system application 

to represent the automation systems used by ASPs 

and airline flight operation centers (FOCs). We 

developed an operational scenario consistent with 

international collaborative flight planning concepts 

being explored by the international aviation 

community. Then, we used the end-system 

application to demonstrate how airlines and ASPs 

could use the FOSC to conduct early flight planning 

for a flight traversing multiple national airspaces. 

This successful demonstration with our prototype 

provides confidence that an FOSC implemented in 

this way can provide the functionality necessary to 

support international flight planning operations. 

The next question to be addressed is whether 

the FOSC can provide the necessary performance and 

scale. Section V describes how we addressed this 

question. We built a performance test framework and 

used it to measure end-to-end latency and query 

response times under varying conditions and at 

varying scale. The results show that even our initial 

rapid prototype, running on limited capacity virtual 

machines, could potentially scale up to support 

international aviation flight planning operations. A 

robust and optimized implementation should be able 

to support not only flight planning but even more 

dynamic scenarios like envisioned trajectory-based 

operations (TBO). [A trajectory defines where an 

aircraft will be at any given point in time. This is 
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sometimes referred to as a “four-dimensional (4-D) 

trajectory,” referencing the four parameters: time, 

latitude, longitude, and altitude.] 

Section VI discusses some of the steps that 

would be required to transition the FOSC from a 

proof-of-concept prototype to an operational system. 

We present a possible deployment model for FOSC 

blockchain nodes, end systems, and governance 

entities; and we discuss the need for an ICAO 

standardization path. 

 

II. Problem Statement 

A. Legacy Flight Information Sharing  

 The flight information life cycle has 

remained relatively unchanged for many years. The 

current process focuses on the international flight 

operator “filing” a flight plan by sending messages 

over the Aeronautical Fixed Telecommunications 

Network or the ATS message handling system 

(AMHS). The messages include filed flight plan 

(FPL), modification, delay, cancellation, and many 

others. Reflecting their teletype legacy, these 

messages are encoded in uppercase letters, numbers, 

and punctuation characters. Figure 1 shows an 

example FPL message. In this example, we can see 

the flight call sign (UAL43); aircraft type (B763 

means this is a Boeing 767-300); and characters 

providing more details on the flight rules, aircraft 

equipage, and so on. Further down, we see that this 

flight is planned to depart Denver (KDEN) at 0030 

hrs, with a cruising speed of 459 kt (N0459) and an 

altitude of 32,000 ft (F320), following a route from 

the airport direct (DCT) to the DBL waypoint, and so 

on.  

 

 

Fig. 1  Example Legacy Flight Plan (FPL) Message 

 

As the flight progresses, information is 

transferred point to point. Each ASP controls and 

manages elements of flight information by receiving 

or transmitting flight plan amendments. In some 

cases, the information is transferred by voice 

communications or requires human interpretation. In 

other cases, the information is transferred point to 

point in ATS messages. Only limited information can 

be transmitted electronically due to the limited ATS 

message format. For example, in the FPL message, 

there is no way to provide a complete trajectory, nor 

is there a means to communicate constraints (for 

example, altitude limits, likelihood of congestion, or 

time constraints) that apply at points along the route. 

Another limitation is that the ATS messages are only 

sent to specific recipients, and not to all stakeholders. 

Each system will only have access to information that 

it has originated or that has been specifically sent to it 

by another system. And, since flight information is 

only communicated to neighbors when very specific 

events occur, stakeholders will frequently be unaware 

that the information has changed until one of these 

triggering events occurs. The net result of all these 

limitations is that there is no assurance that all 

stakeholders have complete, consistent, and up-to-

date flight information. 

The ICAO Global Air Traffic Management 

Operational Concept [3] summarizes the problem as 
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“limited facilities for real-time information exchange 

among ATM, aerodrome operators and aircraft 

operators, resulting in less than optimal responses to 

real-time events and changes in users’ operational 

requirements.” The ICAO plan for TBO [4] provides 

more detail on these limitations, citing “lack of 

information sharing,” “disparate information across 

participants and automation systems,” and “No 

single, consistent trajectory is maintained using the 

best-known information.” And, in Ref. [5], the ICAO 

asserts: 

The Global ATM Operational Concept has 

greater data requirements than can be supported by 

the existing flight planning provisions. These include 

system-wide information sharing, providing early 

intent data, management by trajectory, CDM,**  and 

high automation support requiring machine 

readability and unambiguous information. 

 

B. Improvements Currently Underway  

 Overcoming the limitations of the global 

ATM system is a goal of the international aviation 

community. The ICAO Manual on ATM System 

Requirements [6] states “It is expected that through 

dynamic renegotiation of agreed 4-D trajectory 

contracts … the ATM system will not experience 

‘chokepoints.’ Potential ATM system chokepoints 

should be increasingly more predictable as 4-D 

trajectories become available together with 

automated tools for mitigation.” 

The initial steps being taken to improve 

international flight information sharing to make 4-D 

trajectories available include Flight and Flow– 

Information for a Collaborative Environment (FF-

ICE) [5] and the Flight Information Exchange Model 

(FIXM) [7]. FF-ICE is a set of international flight 

management collaboration concepts that use the 

information contained in FIXM, which is an evolving 

structured model of flight information. FIXM 

provides a much richer and more complete structure 

for representing flight information than is possible 

with legacy ATS messages. In FIXM, a Flight is a 

complex data structure that is built from other data 

structures, including an Aircraft, a Departure, 

an Arrival, a Desired route, and so on. Each of these 

is in turn a complex data structure built up of other 

structures. A FIXM Flight structure can also contain 

trajectory information. A FIXM Route Trajectory is a 

complex type that contains climb and descent profiles 

as well as schedules, and an array of up to 2000 

elements that specify predicted aircraft state and 

position along the route as a function of time. 

The Route Trajectory structure can also specify 

constraints that apply at any point along the route. 

This capability to represent complex structured flight 

information allows the airspace users and ASPs to 

exchange the additional information needed for the 

FF-ICE concepts. Initial FF-ICE concept 

demonstrations have been conducted in which flight 

information is exchanged using FIXM-based 

messages, formatted in Extensible Markup Language 

(XML). 

While the information content of FIXM is a 

significant improvement over the legacy ATS 

message formats, there remains the question of how 

this content will be shared among different systems. 

Initially, the FF-ICE concepts will be implemented 

by ASP automation systems sending FIXM-based 

messages addressed individually to other automation 

systems, just as ATS messages are currently sent in a 

point-to-point manner. In the future, FF-ICE might be 

extended to use the publish/subscribe paradigm 

envisioned in global System Wide Information 

Management (SWIM) concepts [8]. This would allow 
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an ASP to notify all affected stakeholders of a change 

to flight information by publishing an appropriate 

FIXM message, which SWIM would disseminate to 

all subscribers. Regardless of whether point-to-point 

or publish/subscribe messaging is used, aviation 

standards bodies will need to define the rules that 

determine which entities should send which messages 

to which other entities, and when these messages 

should be sent. Currently, the rules for sending ATS 

messages for international flights are defined in 

ICAO Document 4444 [9], with specific rules for the 

United States defined in Ref. [10]. These rules are 

currently relatively simple, but as FF-ICE is extended 

to handle concepts such as TBO, the information 

exchanges will become more dynamic and complex, 

and the message transmission rules will need to be 

reexamined and may need to be revised or extended. 

The rules must accommodate not only the expected 

scenarios but also all the possible “error paths,” 

including message transmission failures, systems 

crashing and restarting, and systems misbehaving in 

unpredictable or even malicious ways. As we attempt 

to handle increasingly dynamic and complex 

scenarios, it will become increasingly difficult to 

ensure that our rules are correctly handling all the 

various things that can go wrong. 

Another, perhaps even more serious, 

problem with an approach based on ATS messaging 

(either legacy or FIXM-based) is the resulting 

software complexity. As illustrated on the left side of 

Fig. 2, with this approach, each ATM application 

uses a messaging application program interface (API) 

defined by a messaging service provider to send and 

receive ATS or FIXM messages. The ATM 

application must of course contain the business logic 

(e.g., route or trajectory negotiation and 

management) that makes changes to flight 

information and reacts to changes made by other 

systems. With a messaging approach, the ATM 

application must also contain the logic that uses the 

messaging API to generate messages when needed. 

While the underlying details of message transmission 

are encapsulated behind the API, the information 

exchange logic that determines which messages to 

send, and when to send them, remains within the 

same application as the business logic. This increases 

application complexity and will make it difficult to 

implement new operational concepts without 

affecting the message transmission logic. 

 

Fig 2.  Messaging Approach vs. Flight Object Approach 

 

The complexity of the messaging approach 

can be avoided by defining a flight object API that 

clearly separates the business logic from the 

information exchange logic. Such an approach is 

illustrated on the right side of Fig. 2. In this approach, 

the ATM application accesses a well-defined API 

that allows it to read and write the flight object, and 

the information exchange logic is encapsulated 

behind this API. The problem then is to find a way to 
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implement this flight object approach in a way that is 

suitable for aviation. 

 

C. Distributed Consensus 

To address the problems discussed earlier in 

this paper, we need “…a globally consistent 

mechanism and consistent interface for providing and 

receiving flight and flow (FF) information” [2]. This 

mechanism should clearly separate the application 

“business logic” software performing functions such 

as route planning and traffic management from the 

software that ensures all participants have complete 

and consistent information. 

One might consider solving the problem by 

providing a centralized database that contains a 

complete set of flight information, with all 

participants having remote access to the database so 

they can update it and read it, as shown in Fig.3. 

However, this is not a viable solution in an 

international context because it requires a central 

entity that controls and operates the database. Such 

an entity would need the technical capability to run 

an operational system critical to the efficient 

operation of international aviation. It would need a 

source of funding, and it would need to be trusted and 

accepted globally by ASPs and airspace users. It does 

not seem possible for the international aviation 

community to select and fund a single service 

provider, either private or governmental, that could 

fill this role globally. Furthermore, the database 

administrators would have the ability to control 

international flight information content and could 

control which entities have access to the information. 

Because of the daunting political, economic, and 

technical challenges, we do not believe that a 

centralized flight object database is a feasible or 

desirable solution for international aviation. 

 

 

  

Fig. 3  Flight Object Database Solution  

 

We believe that ASPs, airspace users, and 

other international aviation stakeholders are much 

more likely to adopt a solution in which they can 

operate autonomously. We seek a solution in which 

each participant controls their own instance of the 

flight object store, with some internationally 

standardized way to maintain consistency among all 

instances, as shown in Fig. 4. Such a solution would 

allow each stakeholder to operate their own system to 

maintain their instance of the flight object, or to 

select a service provider to perform this function on 

their behalf. It would not require stakeholders to 

agree on, and place their trust in, a central flight 

object database operator. The question then becomes: 

If we allow each participant to control their own 

instance of the flight object, how do we ensure that 

these instances are kept consistent? 
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Fig. 4  Distributed Consensus Protocol Flight Object 

Solution 

Maintaining information consistency among 

a set of independent instances distributed across a 

network is a well-studied problem in computer 

science, which is referred to as “distributed 

consensus.” Distributed consensus is discussed in 

classic papers such as Refs. [11–13]. There are well-

known algorithms, known as “distributed consensus 

protocols,” that that solve distributed consensus 

problems with formally provable properties. A 

distributed consensus protocol solution provides each 

party with its own copy of the shared information, 

with consistency maintained by a protocol that 

operates over a communications network connecting 

the instances. If we can apply a distributed consensus 

protocol to the flight object problem, we can create 

the desired architecture shown in Fig. 4, and we can 

do this in a way that maintains a clear separation 

between the application business logic (within the 

automation system) and the information sharing logic 

(embodied in the distributed consensus protocol). The 

next section describes how this can be done using 

blockchain technology. 

 

III. Proposed Flight Object Solution Based on 

Blockchain Technology 

A. What is Blockchain? 

 A full explanation of blockchain concepts is 

beyond the scope of this paper; we provide only a 

brief introduction for readers who may not be 

familiar with the technology. It can be thought of as a 

technology for distributing information with strong 

guarantees of integrity. The term “blockchain” refers 

to the way that information is organized into blocks, 

each of which contains the secure hash of the 

previous block. The hashes link the blocks into a 

chain in such a way that any changes to any block 

can be easily detected and rejected. The other 

essential element of any blockchain solution is a 

distributed consensus protocol that allows a set of 

participants to come to agreement on the content of 

the blocks. The information contained in the 

blockchain is referred to as the “distributed ledger.” 

In the original blockchain application, Bitcoin [14], 

the digital ledger tracks the transfer of virtual “coins” 

from one owner to another. Following the success of 

Bitcoin, other digital currencies and other 

applications were introduced, built on variations of 

the blockchain technology used in Bitcoin. 

 

B. Why Blockchain for the Flight Object? 

 While distributed consensus algorithms are 

well studied, they are complex and difficult to 

implement correctly. Implementing these algorithms 

for any given application in a way that is robust and 

performs well in the real world has in the past been a 

daunting task. However, this situation has changed 

with the emergence of blockchain. As stated earlier in 

this paper, at the heart of every blockchain is a 

distributed consensus protocol, which maintains a 
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distributed ledger without requiring any central store. 

Multiple blockchain implementations are now 

available as open source software, and these 

implementations are designed to be extensible for 

different applications. This provides robust and well-

tested solutions that can be applied wherever a 

distributed ledger is needed. For international flight 

information sharing, the distributed ledger can be a 

set of flight objects, and the blockchain can provide 

all stakeholders with a strong guarantee that they 

have complete and consistent access to this 

information. With blockchain, this can be done 

without the need for any central store or trusted 

administrator, and without the need for each 

stakeholder to trust that every other stakeholder will 

always act correctly. Blockchain also includes strong 

integrity guarantees, which provides assurance that 

critical flight object information has not been 

corrupted or tampered with. Thus, blockchain 

provides a base of technology that can be easily 

applied and is very well suited to solving the flight 

object problem. 

C. Flight Object Sharing Capability 

 Figure 5 illustrates the FOSC concept. The 

FOSC is not a single entity; rather, it is a distributed 

capability achieved by multiple instances. Each 

instance contains a state machine that maintains a set 

of flight objects containing FIXM-structured 

information. The state machines process transactions 

that represent creation, deletion, and updates of the 

flight objects. The transactions are communicated 

among all instances using a blockchain-based 

distributed consensus protocol, which ensures that 

every state machine receives exactly the same set of 

transactions, in the same order. Note that the 

illustration shows a JavaScript object notation 

(JSON) representation of FIXM rather than the more 

usual XML representation. The choice of JSON 

versus XML will be discussed in the following. 

 

 

 

 

Fig. 5  Flight Object Sharing Capability (FOSC) Concept 



 

 

In this concept, each instance of the FOSC provides 

an API that supports one or more stakeholder 

automation systems. The stakeholders might include 

flight operations centers; flight crew; ASPs providing 

air traffic control and flow management functions; 

entities performing space launch, monitoring, and 

recovery operations; and military entities performing 

air defense functions. 

 

D. Proof of Concept Prototype 

As part of a mission-oriented research activity, a 

MITRE team set out to create a prototype to test the 

feasibility of the FOSC concept. The first step in 

implementing the prototype was to select blockchain 

software on which to build. We selected Tendermint 

[15] because it has the following characteristics: 

1.  It is based on a private, permissioned model, 

in which blockchain nodes have known 

identities and can enforce rules that 

determine which end users can update the 

flight object. 

2. It contains a Byzantine fault tolerant (BFT) 

consensus protocol, which is robust in the 

face of network failures, node crashes or 

errors, or malicious attempts to subvert the 

network (no single point of failure). 

3. It provides high performance and is scalable, 

making it suitable for a rapid rate of flight 

object transactions. 

4.  The software is open source and extensible, 

allowing flight object logic to be 

implemented separate from the internal 

blockchain logic. 

Having selected a blockchain implementation, 

we extended it to allow end user applications to 

submit flight object transactions (creation, 

updates, and deletion) to the blockchain and to 

maintain the flight object state within the 

blockchain nodes.  

Figure 6 illustrates the major components 

that form our prototype. 

 

 

Fig. 6  Proof-of-Concept Implementation 



 

 

The items and text in green indicate existing 

open source software and interfaces. The items and 

text in gold and blue indicate new software that we 

wrote and new interfaces that we designed. An 

instance of the FOSC includes the core blockchain 

functionality that implements the distributed 

consensus protocol provided by the Tendermint core. 

The application blockchain interface (ABCI) server is 

an open source component that allows Tendermint to 

be extended with application-specific functionality. 

In our case, the application-specific functionality is 

the flight object state machine (FOSM), which 

maintains the flight object state. End user 

applications use an API provided by the flight object 

client module to submit transactions to create, update, 

or delete flight objects. The API also supports a 

subscription filter that will cause the end system to be 

notified whenever flights of interest to the application 

change. This “notification push” model means end 

systems do not need to continually poll to determine 

when new information is available. Rather, the end 

systems can register their interest in flights using 

subscription filters specified in terms of FIXM 

elements like the operator of the flight, departure and 

destination airport, aircraft identifier, and so on. The 

API also allows the application to query the 

Tendermint node for flight object information. 

The FOSM maintains the flight objects’ 

state by processing transactions received from the 

end user applications via the Tendermint consensus 

protocol. In doing so, the FOSM enforces rules 

determining which end user transactions can make 

changes. The BFT consensus protocol ensures that 

every node makes an identical decision on each 

transaction, and thereby ensures state information 

consistency. For our prototype, the rules are 

relatively simple. We required that: every transaction  

must be signed by a known end system with an 

appropriate role (e.g., an airline or ASP); only the 

airline operating a flight can update the flight 

information; only an ASP can update the ASP’s 

“agreement” status information within the flight 

object; and other rules as appropriate for testing. 

For our prototype, we wrote the transaction 

processing rules into the state machine code. 

However, this approach is not what we would 

recommend for a production solution. A more 

extensible implementation would allow users to load 

rules into the state machine using a machine-

processable access control language like the 

eXtensible Access Control Markup Language 

(XACML).††  

Blockchain uses cryptographic hashes to 

provide strong integrity guarantees. A block of flight 

object transactions commits to the chain at a nominal 

rate of once per second. Then the FOSM computes a 

hash of the application state using a Merkle tree 

containing the serialized form of all flight objects in 

the state store. The application state hash becomes 

part of the block header, and the block header itself is 

then hashed and linked to the next block. The 

Tendermint-distributed consensus protocol ensures 

that all instances compute the same block header, 

which guarantees that all instances have the same 

application state. End systems also can check block 

hashes to validate the integrity of data received from 

an FOSM instance or from an archive. These strong 

integrity guarantees could be extremely valuable, for 

example, when conducting an incident analysis based 

on archived data. 

One of the interesting design choices we 

faced in creating the prototype was the format to use 

for serializing the flight objects for storage, 

transmission, and encryption functions. FIXM is an 
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abstract model for the flight object information 

content, which is defined in universal markup 

language (UML). The FF-ICE prototypes and other 

implementations that have used the FIXM have used 

a standard XML representation of the FIXM UML 

model. Our prototype used a JSON representation of 

the FIXM. We wrote the end user application as a 

browser-based graphical user interface (GUI), which 

made JavaScript the natural choice of programming 

language for the GUI since it is supported within the 

browser. We also used JavaScript (running in 

Node.js) for the FOSM to maximize code reuse 

between the GUI and the FOSM. Having chosen 

JavaScript as a programming language, JSON 

became the natural choice for representing FIXM. 

We considered efficient serialization formats such as 

Apache Avro and Google protocol buffers 

(protobufs) (which is used internally within 

Tendermint) but chose a simple JSON serialization of 

our JavaScript flight object data structures for 

prototyping expediency. We did use an open source 

library that provides a deterministic JSON 

representation, which is important in order to ensure 

that the hash values used within the blockchain are 

deterministic. For a production environment, an 

XML representation would be more consistent with 

the way the FIXM is being used in FF-ICE. More 

research into an optimized serialization format for the 

flight object would be valuable. 

 

IV. Demonstration and End User Applications 

 To demonstrate the FOSC functionality for 

international aviation, we created a demonstration 

based on FF-ICE concepts. The demonstration shows 

an airline planning an international flight (we 

assumed a flight from San Francisco to Singapore). 

The airline FOC uses the FOSC to provide early-

intent flight route information to ASPs along the 

route, receives feedback from the ASPs regarding 

constraints that might impact the flight, and adjusts 

the route accordingly. 

Figure 7 illustrates the demonstration 

scenario. It begins with the FOC creating a flight 

object containing the desired route. The ASP, having 

registered a subscription indicating interest in flights 

that match a certain filter (e.g., flights that are 

destined for its international airports), is notified of 

the new flight; and it then queries the API for the 

flight object data. The ASP then uses the API to 

update the flight object to indicate that the route is 

acceptable. However, as the scenario develops, a 

constraint emerges (e.g., congestion, severe weather, 

military activity, etc.) that would affect the flight. 

The ASP updates the flight object with this 

information, triggering the FOC to adjust the desired 

route. This scenario ends with the AOC deciding to 

file the flight plan. However, we could easily extend 

the scenario to demonstrate the FOSC being used to 

share flight information throughout the life of the 

flight, enabling some of the more complex scenarios 

envisioned for future FF-ICE versions. 
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Fig. 7  Demonstration Scenario 

 Note that, while Fig. 7 shows only one 

(logical) flight object being shared by the FOC and 

the ASP, our demonstration has multiple instances, 

which are kept consistent by the Tendermint 

blockchain distributed consensus protocol. 

To conduct the demonstration, we created an 

application called the Flight Manager with different 

modes allowing it to represent the automation 

systems used by ASPs and FOCs. The Flight 

Manager is not intended to realistically emulate the 

functionality of FOC or ASP automation. It is a 

simply a demonstration tool to provide a graphical 

user interface and enough functionality to allow an 

operator to perform some notional flight management 

functions using the flight object client API to access 

the FOSC. The screen capture in Fig. 8 shows the 

Flight Manager GUI at the point in the scenario at 

which the FOC has selected a new route to avoid the 

constraint, and the Singapore ASP has indicated its 

agreement with the route. 

 

 

 



 

 

 

Fig. 8  Flight Manager GUI 

 

In Fig. 8, the blue lines indicate flight 

objects for other flights that have been filed. The 

green and red line shows the route of the flight being 

planned. (The route is green in Singapore airspace 

and red elsewhere because, at this point in the 

demonstration scenario, Singapore has agreed to the 

route, but other ASPs have not.) 

 

V. Performance 

A. Performance Testing Overview 

Published test performance on the 

underlying Tendermint software [15] indicates that 

the core software can support high update rates 

(thousands of transactions per second) on dozens of 

nodes. However, blockchain application performance 

depends on the application specifics, and so we ran 

tests to measure the performance of our prototype 

FOSC. 

Our performance testing measured flight object 

update latency as a function of the number of 

blockchain nodes and the rate of flight object 

transactions. Update latency is the elapsed time from 

when one node initiates a flight object transaction 

(create, update, or delete) to the time that another 

node receives a notification that the flight has been 

updated and retrieves the new data. 

We made the measurements using the test 

framework illustrated in Fig. 9. The test framework 

includes a test control application and a variable 

number of test nodes. The test nodes receive 

commands and configuration data from the test 

control application via a message broker, and they 

report test results (measured flight object update 

latency) via the same broker. Each test node 

generates flight object transactions, and each 
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transaction is disseminated via Tendermint and 

received by every other node. 

 

Fig. 9  Performance Test Framework 

 

Each test node includes: 1) a flight object 

writer application that creates, updates, and deletes 

flight objects at a configurable rate‡‡; 2) a flight 

object reader application that receives notifications 

that flight objects have been updated, retrieves the 

updated flight object data, and computes and reports 

the end-to-end latency§§; 3) a test control agent that 

configures and controls the node; and 4) a FOSM 

blockchain instance, built on the Tendermint core, 

that disseminates the transactions via the blockchain.  

Each test node runs in a Docker container, 

allowing easy instantiation of many nodes, limited by 

the computing power of the underlying infrastructure 

available. 

 

 

 

 

 

B. Performance as a Function of the Number of 

Blockchain Nodes 

Figure 10 shows the average latency 

measured as the number of nodes was varied. 

 

 

Fig. 10  Latency vs. Number of Nodes 

 

These tests were run with flight object 

transactions being generated at a rate of 26 per 
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minute, including 12 flight object creates, two 

updates, and 12 deletes each minute. These 

parameters were chosen as follows: 

1. Statistics from the International Air 

Transport Association (IATA) and the U.S. 

Department of Transportation provide a 

rough estimate of 16,295 international 

flights per day, or roughly 12 flights per 

minute. 

2. Each flight that occurs causes a flight object 

to be created, and ultimately deleted, 

resulting in 12 creates/minute and 12 

deletes/minute. 

3.  The number of updates for each flight in 

operation will depend on how the flight 

object is being used and what types of 

changes would require an update to be 

distributed. Since about one-sixth of the 

flights in the United States are delayed, we 

used two updates per minute for this test to 

represent the FOSC being used for preflight 

planning, with an update being generated 

each time a flight was delayed. Higher 

update transaction rates would occur if the 

flight object was being used for in-flight 

negotiations for more complex trajectory-

based operations. (Testing with higher 

update rates is described in the following.) 

The results in Fig. 10 show that the latency 

grows roughly linearly as the number of nodes 

increase, with good performance (6 s latency) at 100 

nodes. 

There are currently just under 200 ICAO 

member states. Since each node can support many 

end users, it is possible that 100 nodes (operated 

regionally by the more technologically advanced 

ICAO states or by regional service providers) could 

support the entire international aviation community. 

On the other hand, every ICAO state may wish to 

operate their own node, and air carriers and other 

entities may also want to operate nodes. This could 

result in a need to support many hundreds, or even 

thousands, of nodes worldwide. We stopped our 

testing at 100 blockchain nodes, simply due to the 

limitations of our test environment. Large-scale 

performance testing (for example, by leveraging the 

resources of a public cloud environment) would be 

needed to determine the upper limit, if one exists. 

 

C. Performance as a Function of the Transaction 

Rate 

Figure 11 shows latency measured as the 

flight object update rate was increased for a fixed 

number of nodes (50 nodes). 

 

Fig.11  Latency vs. Transaction Rate 

Latency increases smoothly as the create, 

update, and delete (CUD) transaction rate increases 

until a point somewhere above 400 transactions per 

minute. Above this point, latency increases 

dramatically, indicating that the software or network 

is becoming overloaded. This is likely due to 

limitations in our prototype implementation since 

other experiments with Tendermint [15] have 

demonstrated much higher transaction rates, with an 

upper limit around 10,000 transactions per second. 
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More work would be needed to identify and remove 

the bottleneck in our prototype. However, even 400 

transactions per minute may be adequate to support 

international flight object sharing. If we estimate 

1600 international flights airborne at a time, 400 

transactions per minute would allow each flight 

object to be updated, on average, once every 4 min. 

Since updates would only occur when a trajectory 

needs to be renegotiated, this rate would appear to be 

more than adequate to support global TBO concepts. 

D. Network Considerations 

Our performance tests were run using 

virtualized networks in a local area network 

environment. We did not attempt to assess the impact 

of the available underlying network bandwidth and 

delay on the results. However, we did measure the 

bandwidth being consumed by each node. For the 

tests shown in Fig. 10, at 26 transactions/min, the 

total receive and transmit bandwidth consumed at 

each node ranged from approximately 205 kb/s for 

five nodes to approximately 532 kb/s for 100 nodes. 

For the tests shown in Fig. 11, with 50 nodes, the 

total receive and transmit bandwidth consumed at 

each node ranged from 205 kb/s at 13 

transactions/min to 1228 kb/s at 416 

transactions/min. 

E. Performance Results Conclusion 

These performance results were achieved 

with a rapid proof-of-concept prototype code that was 

written in JavaScript and running in Node.js, using 

JSON serialization for hashing and transactions, 

running on nodes with very moderate CPU and 

memory resources, and not profiled or optimized for 

performance. Significantly better performance could 

certainly be achieved by an optimized production 

implementation written in a compiled language, with 

a more efficient and compact serialization, and 

running on higher performance servers. 

The performance measurement results allow 

us to begin to evaluate the ability of a blockchain-

based solution to scale up to support real-world 

global aviation operations. Further study and more 

detailed operational concept and scenario 

development would be needed to determine exactly 

what scale and performance levels are required. 

Nevertheless, the results obtained with the rapid 

prototype provide a preliminary indication that 

suitable performance can be obtained at the scale 

needed for global aviation operations using a 

production quality implementation. 

VI. Path to Real-World Operations 

A. Model for Operations and Governance 

Figure 12 provides one model for how a 

blockchain-based flight object solution might be 

deployed for operational use. This model envisions 

FOSC blockchain nodes being deployed and operated 

by stakeholders or service providers (which could be 

commercial entities) and used by various user 

application end systems. In the figure, ellipsoids 

depict FOSC blockchain nodes, and rectangles depict 

applications. The blockchain nodes and applications 

could be deployed on cloud computing environments 

or run on dedicated systems: any combination is 

possible. The only requirement is the components can 

communicate over an internet protocol network. 



 

 

 

Fig. 12  One Possible Deployment Model 

 

The deployment model depicted in Fig. 12 envisions 

different types of participants. At the bottom of the 

figure, in blue, are blockchain nodes controlled by 

the ASPs. These could be run by the ASPs 

themselves or by service providers acting on behalf 

of the ASPs. Since ASPs are recognized as 

authoritative entities in international aviation, it 

makes sense to designate the ASP-controlled nodes 

as the “validator nodes” that have voting power in the 

consensus algorithm. Restricting voting nodes to 

ASPs means that Tendermint’s BFT consensus 

algorithm ensures that only transactions accepted as 

valid by a two-thirds majority of ASPs are used to 

update flight objects. ASP automation systems (the 

blue blocks) would connect to the ASP blockchain 

nodes to access the information in the flight objects, 

using the flight object client API. At the next level, in 

black, are the blockchain nodes serving active FOSC 

participants, which could include FOCs, general 

aviation users, military and law enforcement, and 

other airspace users. A sophisticated user like a large 

airline that is willing to invest in FOC automation 

could choose to operate their own blockchain node. 

Other users may choose to access the flight objects 

via blockchain nodes operated by service providers, 

perhaps in the form of cloud-based flight object 

services. These active flight object users would have 

known identities and roles that allow them to submit 

appropriate transactions to create, update, and delete 

flight objects, subject to the FOSM access control 

rules. At the next level, shown in yellow, are passive 

participants such as research and development 

(R&D) organizations and flight information service 

providers that do not need to create or update flight 

information but need to receive it for safety or 

performance analysis, or to provide functions such as 
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flight status and tracking. These passive nodes could 

be supported by “light” blockchain nodes. 

In addition to different active and passive 

participants, the entire ecosystem needs one more 

type of element: a governance entity, depicted in red 

in Fig. 12. This entity’s job would be to issue or 

authenticate “governance material,” comprising end 

system and FOSC blockchain node identities (IDs), 

roles, keys, and rules. This would allow the validator 

nodes to ensure that the flight object is modified only 

in authorized ways by authorized users. To allow the 

flight object blockchain to grow and evolve over 

time, adding new users and even new information 

and FOSM processing, we propose that the 

governance material should be disseminated in the 

form of transactions submitted by a governance 

application to the blockchain. This also solves the 

problem of coordinating the change across all nodes. 

Tendermint will ensure all nodes receive these 

governance update transactions in the same order. 

The governance update results should also be 

included in the application state hash to guarantee 

that all nodes process the governance update in the 

same way. 

B. Standardization 

Stakeholders could create a FOSC with 

limited participants. For example, a single ASP and 

airspace users could create and operate a FOSC and 

use it to support collaborative planning among that 

ASP and its users. This might make sense as an initial 

trial to test the technology in real-world operations or 

as an operational solution for a single country or 

region. The long-term goal would be a single global 

solution to allow flight information to be available 

wherever it is needed. Standardization would prevent 

stakeholders from having to support multiple non-

interoperable implementations in different regions. 

The ICAO is aware of the limitations of 

existing flight infor-mation exchange methods (point-

to-point text-based messages) and is promoting FF-

ICE and FIXM as improvements. ICAO global 

SWIM concepts envision replacing legacy point-to-

point message transmissions and supporting 

publish/subscribe message exchange patterns. These 

improvements will allow more flight information to 

be exchanged, but they do not fully realize the flight 

object concept and cannot guarantee that complete 

and consistent flight information is available to every 

concerned entity. ICAO may wish to consider a 

blockchain-based FOSC like the one demonstrated 

here, in addition to global SWIM, as a means of 

providing the information technology infrastructure 

to support future FF-ICE versions. 

The MITRE team developed its FOSC 

prototype using Tendermint, an open source software 

package available under the Apache license, as well 

as other open source packages available under 

Apache or similar licenses. Subject to corporate 

approval, the MITRE FOSC prototype software could 

be made available under license or as open source as 

a basis for further concept exploration or as a starting 

point for a production service. 

VII. Conclusions 

The proof-of-concept prototype has shown 

that FF-ICE scenarios can be conducted by having 

each participant post updates to a shared flight object 

and receive notifications when the shared flight 

object changes, rather than by passing messages. The 

prototype’s flight object structure is based on FIXM, 

and the demonstration’s scenarios use FF-ICE 

concepts. Therefore, the prototype’s success provides 
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confidence that a blockchain-based FOSC could be a 

viable basis for future FF-ICE versions. This would 

provide a more robust, secure, and general solution 

than the solutions currently being pursued. Note that, 

in the current design, the end user application is 

completely isolated from all the message-passing and 

consensus logic; it simply uses the flight object client 

to update the flight object and receive notifications 

when the flight object has changed. The separation of 

operational flight negotiation business logic from the 

flight information sharing mechanisms is another key 

advantage making a blockchain-based FOSC a good 

platform upon which to build future aviation 

applications. 

M. J. KochenderferAssociate Editor 

** CDM refers to collaborative decision making.  

††  eXtensible Access Control Markup Language 

(XACML), Version 3.0, OASIS Standard, 22 January 

2013, http://docs.oasis-open.org/xacml/3.0/xacml-

3.0-core-spec-os-en.html. 

‡‡ Intervals between updates are randomized to result 

in the configured average rate. 

§§ Transactions are time tagged when they are 

initiated, and clocks are synchronized in our test 

environment, allowing end-to-end latency to be 

computed upon receipt. 

http://docs.oasis-open.org/xacml/3.0/xacml- 3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml- 3.0-core-spec-os-en.html
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