
Sponsor: MITRE
Dept. No.: L527
Project No.: IRD100.23.C1.0DA

The views, opinions, and/or fndings
contained in this report are those of
The MITRE Corporation and should
not be construed as an ofcial
Government position, policy, or
decision, unless designated by other
documentation.

Approved for Public Release.
Distribution Unlimited. Public Release
Case Number 23-1651.

©2023 The MITRE Corporation.
All rights reserved.

Bedford, MA

MTR230165

MITRE TECHNICAL REPORT

A Coordination Model
for Attack Graphs

Author: Paul D. Rowe
Suresh K. Damodaran
Peter Malinovsky

May 2023

Abstract

Attack graphs have been proven to be useful for modeling multi-
stage attacks for vulnerability analysis, though their use in threat
emulation has been hindered by multiple challenges. In this paper, we
propose a new type of graph, Activation, Guard, and Efect (AGE)
graph to support emulation of multi-stage attacks. We describe the
abstract syntax and execution semantics of AGE graphs, and provide
examples that illustrate the ability of AGE graphs to model attacks
and enable attack execution automation.

This work was funded by MITRE’s Independent Research and De-
velopment Program.

1

Contents

1 Introduction 3

2 Motivating Example 4

3 AGE Graph Semantics 8
3.1 Abstract Syntax . 9
3.2 Semantics . 10

4 Examples and AGE Graph Simulator 15

5 Related Work 18

6 Conclusions 20

2

1 Introduction

An attack graph describes the actions an attacker can take on a target sys-
tem to induce an event or state, called a goal condition, desired by the
attacker. Attack graphs have been used to describe complex multi-stage
attacks in multiple domains [14, 26, 28, 10], and to describe defenses [17].
The primary application area of attack graphs has been for vulnerability
analysis [24, 11, 20, 17]. Applying attack graphs to automated emulation
of multi-stage attacks such as those with the tactics described in MITRE
ATT&CK [27] would be an attractive prospect. Threat emulation is use-
ful for simulated penetration testing [9], and for evaluating attacker strate-
gies [1]. However, there are a few challenges that must be addressed to enable
such an automator.

The frst challenge is that the attack graph execution will need to respect
the partial ordering and nondeterminism that arises from the dependencies
and logical conditions in the attack graph. The second challenge is that
during an attack the target system will likely undergo state changes due to
the attacker’s actions, the defender’s actions, or the actions of users of that
system. Therefore, prior to applying the attacker’s actions, also called efects
in this paper, the automator must always reevaluate the system state before
applying an action, both to understand the success of the previous action and
to ensure the preconditions of the action are met. Consequently, the attack
representation must allow for state changes in the target system that are not
predicted at the beginning of the attack by the attacker. The third challenge
is that while attack graph representations such as [14, 26] represent attack
plans, they only contain preconditions for the actions, and do not contain
the attacker’s mission requirements such as time or other mission constraints
to conduct attacker’s actions. The fourth challenge is that sometimes the
attack efect may not terminate, or the efect may be feeting and leaves
no permanent trace. The ffth challenge is that the attack representation
must be machine readable. This issue has been addressed for the purpose
of vulnerability analysis by tools such as MulVal [20], and other ontological
techniques for scalability [18].

We are not aware of any general-purpose attack graph representation with
precise execution semantics that can be used for automated execution and
addresses the challenges above. This paper describes a coordination model,
using the novel Activation, Guard, Efect (AGE) graph-based representation,
for attack graph automation that addresses these challenges, inspired by

3

coordination models such as the PTIDES model [31]. This paper focuses
primarily on how AGE graphs address the frst four challenges described
above.

Our contributions are: (1) the defnition of the AGE graph and its exe-
cution semantics, the frst coordination model for attack graphs, and (2) the
development of a simulator for attack graph execution based on AGE graphs,
along with examples of attack graphs and their execution sequences.

The rest of the paper is organized as follows. An example of a sample
attack graph from literature is presented along with an alternate graph more
suitable for graph execution in Section 2. Section 3 defines AGE
graphs and their execution semantics. We discuss the AGE graph
simulator and some examples in Section 4. Background and related work
are discussed in Section 5; and we conclude in Section 6.

2 Motivating Example

To motivate the definition of AGE graphs in the next section, we will use the
multi-stage attack graph from Zeng et al. [30], reproduced in Figure 1. The
target system network topology consists of the Internet; DMZ (demilitarized
zone) that has a DNS Server (DS), and a Web Server (WS); and the trusted
subnetwork that contains an FTP Server (FS), a SQL Server (SQLS), and an
Administrative Server (AS). The attacker exploits some of the vulnerabili-
ties in these servers described in the Common Vulnerabilities and Exposures
(CVE) [22] database. We refer to each stage in the attack in Figure 1 as
an attack step.

As shown in Figure 1, the attacker exploits WS using the
vulnerability CVE-2015-1635 that allows remote attackers to execute
arbitrary code via crafted malicious HTTP requests. To ascertain the
existence of this vulnera-bility in WS, the attacker would have scanned the
WS, shown in Figure 1 as the node labeled CVE-2015-1635. Once the
attacker gets the ability to exe-cute arbitrary code in the Web Server, the
attacker simultaneously scans FS for CVE-2012-2526 & CVE-2013-4465, and
SQLS for CVE-2014-1466. These parallel activities will form a split in the
attack graph. Only one of the two parallel paths attacking FS needs to
succeed, represented as an OR condition in the attack graph. The attack
step that results in the OR condition being true and the successful
exploitation of CVE-2014-1466 of the SQLS are both needed for the
attacker to succeed. This fact becomes an AND condition,

4

Figure 1: Sample Attack Graph from [30]

though not explicitly marked in Figure 1. We now make some
observations on this graph, related to the challenges discussed in Section 1.

There is a partial order of execution in the attack graph. Without the
successful exploitation of the Web Server, exploitation of the FS or SQLS
cannot take place. Therefore, prior to executing the FS or SQLS exploitation,
the attack graph automator must look for an indication of success, or fring
of the WS exploitation. The target system state may have changed in a
way unpredictable by the attacker prior to applying an exploitation to WS
or FS. Therefore, a guard condition must be evaluated prior to applying an
exploitation to ascertain that the right preconditions for its application exist
in the target system. However, there is a need to guarantee that the WS
exploitation succeeded prior to activating the next stage of FS and SQLS
exploitations. For the attacker, this guarantee may be just waiting for a
certain period of time for the exploitation to succeed, or verifying from system
logs that the exploitation code did indeed succeed in gaining the desired
access to FS and SQLS. To satisfy a mission requirement, an attacker may
even decide to wait for several days. Therefore, the activation of the next
step of an attack is a decision that the attacker may make based on the attack
mission needs, and target system state. In contrast, the guard condition is a

5

a2 OR a3

@0230 && (code execution
privilege on FTPS)

a4 AND a5

@0100 && (begin
scan WS)

CVE-2015-1635
detected in WS

Malicious HTTP-
Request

@0130 && (code execution
privilege on WS)

CVE-2012-2526
detected in FTPS

Access and delete
objects

@0140 && (code execution
privilege on WS)

CVE-2013-4465
detected in FTPS

Upload executable
file

@0300 && (code execution
privilege on FTPS & SQLS) T null

@0200 && (code execution
privilege on WS)

CVE-2014-1466
detected in SQLS SQL Injection

A2:

A3:

A1:

A4:

A5:

A6:

G4:

e6:

G3:

G6:

G2:

G1:

e2:

e1:

e3:

e4:

T null
G5: e5:

a1

a2

a3

a4

a5

a6

l1

l2

Figure 2: Revised Attack Graph

purely technical precondition, to fnd the suitable state of the target to apply
an efect.

Another important consideration is that while doing threat emulation,
it is not possible to guarantee that an attacker efect such as a malware
execution will always terminate, and therefore waiting to activate the next
stage of attack until a previously applied efect completes is not always a
feasible graph execution strategy. Indeed, in most cases, the target system
does not send out an alert that the exploitation is successful. Further, if
the proof of completion of a time sensitive attack efect disappears before
activating the next attack step, once again, waiting to activate the next
stage of attack until a previously applied efect completes execution can be
problematic. Also note that as the attacker waits, the target system may
change and a desired precondition for the next attack step may occur with
no efort from the attacker. Therefore, we need a graph representation that
addresses these timing issues.

Consider Figure 2, which is an alternate representation of the same
attack. Each node representing an attack step in this graph has three
rectangles. We refer to the first rectangle in each attack step as an
activation node. This node incorporates the activation condition, such as
timing requirements, or indicators for completion of the previous attack step
by evaluating the target

6

system state. For example, the activation node a2, has the activation condi-
tion A2, that indicates the time to start this attack step is at time 0130, if
the code execution privilege existed on the Web Server. The activation node
addresses the third challenge described in Section 1 on incorporating mission
requirements in the attack graph. Many of the second rectangles in
each node in Figure 2 are readily recognized from the labels in Figure 1.
These nodes are the guard conditions. The guard conditions evaluate the
state of the target system, typically with scans or logs, prior to applying
an effect. The last rectangle in each attack step is the effect, such as making
a malicious HTTP request, for node a1. The second and third rectangles
are grouped together and named a guarded effect node, since this node
incorporates both the precondition of the effect, and the effect itself.

As discussed earlier, there is a need to evaluate conditional logic of OR
and AND to evaluate the fring of the previous attack step. Such conditional
logic is represented using an explicit conditional logic node. The evaluation
of the logic can be subject to timing issues such as the time taken to detect
an activation condition, or signal delays from the fring of the previous attack
step, and cause nondeterministic execution of the efects. Another way an
attack graph exhibits nondeterminism is through the OR logic. For example,
it is sufcient to have either of the FS exploits to succeed to reach the next
attack step, and therefore, either or both efects may be applied, and some-
times one of the efects may be applied much later. These are situations that
occur in practice. The attack graph shows concurrency and synchronization
in the execution - the SQLS and FS exploitation may concurrently occur,
and the AND condition allows for synchronization. A split is a mechanism
in an attack graph to indicate concurrent paths of execution. Also note that
as the attack proceeds, some of the guard conditions in previous steps may
succeed, and therefore the application of multiple efects can occur in the
target system. Therefore, the activation conditions must be chosen carefully
to allow for only the efects that are needed at the right time.

In summary, an executable attack graph representation must be capable
of depicting the partial order of execution, respect the conditional logic of
activations, and allow for concurrency in activating multiple paths of
next attack step actions. Figure 2 preserves the partial order of execution,
concur-rency, and conditional logic in Figure 1, while also allowing for
representing nondeterminism.

Depending on the time scale of an attack and the target system attributes,
evaluations of activation conditions or guard conditions may use streaming

7

analytics on the data streams of logs from the target system [13, 5], or other
analytics approaches. Such an evaluation may even be with vulnerability
scanning tools such as Nessus [29]. Generically, we refer to these evaluations
as watchpoints in this paper. The overall purpose of using the watchpoint
is to ensure that the target system state or its environment is in the right
condition at the right time, prior to applying an efect.

The attack graph representation in the sample example graph has only
one starting node and one goal node. However, in reality, there can be mul-
tiple start nodes through which an attacker may enter, and there may be
multiple goal states, any of which satisfes a successful outcome for an at-
tacker. Such attack graph representations must have precise abstract syntax
and semantics to enable machine automation with clearly understood rules,
which is the topic of the next section.

3 AGE Graph Semantics

In this section, we present the abstract syntax of AGE graphs and introduce
an execution semantics. Before diving into the details of AGE graphs, we
note that the material below is parametric with respect to watchpoints and
efects. That is, we treat watchpoints and efects as abstract elements of
two separate syntactic classes Ω and E and create a well-defned execution
semantics around these abstract notions. Nevertheless, it will be helpful for
the reader to keep some concrete examples in mind.

Defnition 1. A watchpoint generates a signal that is sent to (an execution
engine of) a graph when corresponding conditions about the target system
(and/or its surrounding environment) are met. When the conditions for a
watchpoint signal to be sent are met, we say the watchpoint is triggered. The
syntactic class of watchpoints is denoted Ω and we often use ω or ωi to denote
an arbitrary watchpoint.

Following the example from the previous section, when the time is past
0130 and the attacker has code execution privileges on WS, a watchpoint
would be triggered and sent to the AGE graph. We assume the watchpoints
are distinguishable from each other so the AGE graph knows which conditions
have been met. The actual mechanism for verifying that the conditions
have been met is outside the scope of the current paper, however for time

8

sensitive attack graphs, analytics detection engines such as those described
in [2, 6, 13, 5] could be used.

Defnition 2. An efect is a sequence of actions that alter the target system
or its environment is some way. The syntactic class of efects is denoted E
and we often use e or ei to denote an arbitrary efect.

The efects are the actions that are being coordinated by an AGE graph.
As seen in the example from last section, this may be as simple as a single
command to upload an executable fle, or it could be some set of steps to
access and delete a subset of fles. By only executing efects once certain pre-
conditions have been met (as represented by watchpoints) we aim to enable
fned-grained control of when to initiate and when to delay the execution of
efects.

3.1 Abstract Syntax

We consider labeled, directed graphs G = (N, E, ℓ) where N is a fnite set
of nodes, E ⊆ N × N is a (fnite) edge relation among nodes of N , and
ℓ : N → L is a labeling function into some set of labels L. We begin by
describing the abstract syntax of AGE graphs.

We assume that elements of N have one of the following three forms: ai,
gi or bi for some natural number i. The set of labels L will also come in 3
types. Nodes ai will be labeled with activation watchpoints ω that embody
the activation conditions discussed in Section 2. Nodes gi will be labeled with
guarded effects which are pairs (ω, e) where ω is a watchpoint, embodying
the guard condition discussed in Section 2, and e is an effect. And nodes bi
will be labeled with Boolean expressions built out of the Boolean connectives
∧ and ∨ and identifers ai. Nodes of the frst type are called activation nodes,
nodes of the second type are called guarded efect nodes, and nodes of the
third type are called logic nodes. We only consider acyclic graphs, and we
impose some extra constraints on the in- and out-degree of nodes according
to their labels.

Defnition 3. A graph G is an Activation, Guard, Efect (or AGE) graph
if G is acyclic and satisfes the following conditions:

1. Every activation node has exactly one guarded efect node as a succes-
sor.

9

2. Guarded efect nodes have in-degree 1 and out-degree 0. (By item (1),
the unique predecessor of a guarded efect node must be an activation
node.)

3. The immediate predecessors of a logic node are exactly those nodes ap-
pearing in its label.

4. G has no edges between logic nodes. That is, for all i and j, (bi, bj) ̸∈ E.

The graph in Fig. 2 is an AGE graph. In that representation we
have grouped activation nodes and guarded effect nodes into triples (with the
two parts of the label of a guarded effect node each having its own rectangle).
We have suppressed the edges between activation nodes and the unique
guarded effect nodes associated with them.

When a logic node has in-degree 0, its label will be ⊤, the always true
condition. Condition 4 of Def. 3 is convenient to ensure compact representa-
tions, and it eases aspects of the presentation, but is not essential. We could
just as easily decompose a single logic node into a subgraph that exhibits the
parse-tree structure of the label.

To a graph G = (N, E, ℓ), we also associate a set of start nodes I ⊆ N .
While a natural default choice for I is the set of nodes with in-degree 0, we
actually let I be any set of nodes. In particular, it may contain nodes that
are not at the start of the graph, which allows us to begin graph execution
at arbitrary points. Similarly, we don’t always assume that every node with
in-degree 0 is a start node. This allows us to explore the consequences of
relying on only a portion of the attack.

We additionally identify a set of goal nodes. These are activation nodes
with out-degree 1, and hence, by the above conditions, their only child is a
guarded efect node. Typically, a goal node will be an activation node whose
watchpoint verifies that some goal condition has been reached in the target
system. Thus, as in Fig. 2, the guarded effect node will often have label (⊤,
Null) that acts as a no-op. We allow graphs with several goal nodes, in which
case reaching any of them will be considered a success.

3.2 Semantics

A key goal we have with AGE graphs is to provide a well-defned execution
semantics. Before jumping into the formal details, we start with an informal
description of how it works. At any stage in an execution, some of the nodes

10

Inactive Active Fired

Figure 3: The activation stages of AGE nodes.

of the graph may be activated, others will not yet be activated, and the rest
will have already fred (or executed). We start with a graph in which the
start nodes are activated. When an activation node or guarded efect node is
activated, it will fre when the watchpoint in its label is triggered. Guarded
efect nodes will also execute their efects when they are fred. All logic nodes
start out as activated. An activated logic node can fre whenever the Boolean
condition in its label is satisfed. Each node will fre at most one time, so
once a node has fred it will never be activated again. As nodes fre, we
emit information about the node (such as its watchpoint) into a trace. Logic
nodes fre silently, emitting nothing into the trace.

In this way, the conditions that hold in the target system and the envi-
ronment propel the nodes through stages of being inactive, then active, then
fired (see Fig. 3). The sequence of activations is constrained (but not
deter-mined) by the partial order implicit in the graph structure modulo
the use of disjunction in logic nodes. That is, nodes will not be activated
until all their predecessors fire with the exception provided by logic nodes
using dis-junction that allow certain subsets of predecessors to fire before
progressing. The effects that are executed in guarded effect nodes will
typically alter the target system creating a feedback loop that, while
constrained by the partial order, will not be entirely predictable.

We now proceed to a more formal treatment of this semantics. The
semantics of AGE graphs is given by a labeled state transition system in
which the states are triples (B, A, F) as defned below.

Defnition 4. A graph state of a graph G = (N, E, ℓ) is a triple S =
(B, A, F) where B ⊆ N represents the subset of logic nodes that have not
yet fred, A ⊆ N represents the set of activated guarded efect and activation
nodes, and F ⊆ N represents the set of fred guarded efect and activation
nodes.

A graph state is almost a partition of the nodes of the graph, but not quite.
Activation nodes and guarded efect nodes that have not yet been activated
are not represented. Also, logic nodes that have fred are not represented.
An alternative defnition of graph state could account for these nodes, but it

11

would unnecessarily complicate the semantics. Our labeled state transition
system will guarantee that B, A, and F remain disjoint throughout any ex-
ecution.

Auxiliary functions. To defne the execution semantics, we rely on a few
auxiliary “access” functions which we defne next. ω if ℓ(n) = ω

wpG (n) := 
ω if ℓ(n) = (ω, e) efG (n) :=

(
e if ℓ(n) = (ω, e)

⊥ otherwise
(1)

⊥ otherwise

We start with the function wpG that returns the watchpoint (if any) asso-
ciated with a node. Similarly, the function efG returns the efect (if any)
associated with a node.

Activation nodes and guarded efect nodes will fre when they are acti-
vated and their watchpoint is triggered. Logic nodes can fre only if their
logical condition (i.e., their label) is satisfed. The logical condition is viewed
as representing which combinations of activation nodes must have fred for
the logic node to fre. Thus, the logical conditions are evaluated against the
set F of fred nodes as follows.

F |= ⊤

F |= a if a ∈ F

F |= φ1 ∧ φ2 if F |= φ1 and F |= φ2
(2)

F |= φ1 ∨ φ2 if F |= φ1 or F |= φ2

The frst line says that when the label of a logic node is ⊤, it is satisfed
by any fred set F . The second line says that F satisfes a exactly when a
has been fred (and hence is in the fred set). The next two lines defne the
meaning of conjunction and disjunction in the usual way.

For a given node n ∈ N , we defne the following sets.

AG
ω := {n ∈ A | wpG (n) = ω} (3)

nextG (n) := {n ′ ∈ N | (n, n ′) ∈ E and n ′ is not a logic node} (4)

The frst one is all the nodes in A whose watchpoint is ω. The second is the
set of all children of a given node that are not logic nodes (that is they are
activation nodes or guarded efect nodes) and that have not already fred. It

12

is the use of nextG (n) to determine which nodes will be activated when n fres
that ensures our semantics will be constrained by the partial order implicit
in the graph. We extend functions to sets in the usual way. Namely, for any

l

set X, and any function f we let f(X) = {f(n) | n ∈ X}. This allows us to
apply wpG and efG to sets of nodes.

Transition system. Using these notions just defned, we are ready to defne
the execution semantics of AGE graphs. As mentioned above, the semantics

Gwhen watchpoint ω is triggered and Acan occur a ω

is given as a labeled transition system on graph states (B, A, F). There are
two types of transitions: external transitions that execute when a watchpoint
is triggered, and internal transitions that require no external trigger.

An external transition will fre one or more active nodes when their watch-
point is triggered. If the watchpoint triggered is the guard watchpoint of an
activated guarded efect node ℓ(gi) = (ω, e), then its associated efect e, will

−→ (B ′ , A ′ , F also execute. Then an external, labeled transition (B, A, F) ′)
is not empty. The tran-

sition satisfes

G G∪ \(A (A)) (Anext= G ωω

Gef l (ω, (A= ω

G∪F A= ω

B ′ = B
(5)

))

A ′ ∪ F)
′ F .

ε

This says that when ω is triggered, any activated nodes with watchpoint
ω will fre, being moved from the set of activated nodes to the set of fred
nodes, and replaced by any children that are not logic nodes. The label l
emits into a trace which watchpoint was triggered and any efects that are
executed as a result of the transition.

An internal transition will fre a single logic node. For a graph state
= ℓ(n), then the internal transition (B, A, F) −→ (B ′ , A ′ , F (B, A, F), if n ∈ B and F |

is possible where

′)

B ′ = B \ {n}
A ′ = (A ∪ nextG (n)) \ F (6)

F ′ = F.

This says that, when logic nodes fre they are removed from the set of
unfired logic nodes, and all successor nodes are activated, provided they have
not already fired. (By the conditions in Def. 3, such nodes will not be logic

13

AG = ∅ω
(7)

(ω,ef(AG
ω))(B, A, F) −−−−−−→ (B, (A ∪ nextG (Aω

G)) \ (AG
ω ∪ F), F ∪ AG

ω)

n ∈ B F |= ℓ(n)
ε (8)

(B, A, F) −→ (B \ {n}, (A ∪ nextG (n)) \ F, F)

̸

Figure 4: Transition rules for AGE graphs.

nodes.) The logic nodes are not added to the set of fired nodes when they
execute, so F remains unchanged.1 This transition is labeled by ε indicating
a silent transition.

These two rules characterize all the possible transitions of graph
states. We can summarize this as the two inference rules depicted in Fig. 4.

Traces. The initial graph state of a graph G = (N, E, ℓ) is (B, I, ∅), where
B ⊆ N is the set of all logic nodes of G, and I is the set of start nodes.

l0 l1 ln−1
An execution of a graph G is a sequence S0 −→ S1 −→ · · · −−→ Sn for n ≥ 0,

li
such that S0 is the initial graph state, and for all i < n, Si −→ Si+1 is a valid
transition. If several transitions are enabled, the execution chooses among
them nondeterministically. We can focus on various aspects of an execution
by extracting diferent portions. A verbose trace of a graph G is any sequence
⟨l0, l1, . . . , ln−1⟩ such that there exists an execution with those labels. Verbose
traces also list all the “silent” label ε. A trace is the projection of a verbose
trace onto the non-silent transitions. The triggering sequence of a trace is
the projection onto the frst components of the trace. Thus a triggering
sequence is a sequence of watchpoints that cause state transitions in the
graph. An efects trace is the projection of a trace onto the non-empty
second components. Efects traces record only the sequence of efects that
execute, but not the order of activations. From a trace, we can extract a
fring sequence that contains the sequence of node frings. Specifcally, if we
let Fi be the set of fred nodes in state Si, the activation fring sequence
will be ⟨(F1 \ F0), (F2 \ F1), . . . , (Fn \ Fn−1)⟩. As internal transitions will
cause Fi \ Fi−1 to be empty, we will typically remove the empty sets from the

1This aspect of the semantics assumes Condition 4 of Def. 3 is in effect. If we allow

logic nodes to have other logic nodes as predecessors, we must add fred logic nodes to F .

14

sequence. In the following section, we further remove guarded efect nodes
from this sequence to focus on the activation node fring sequence.

4 Examples and AGE Graph Simulator

The target system behavior may change when a watchpoint generates an
alert, in either activation nodes, or guarded efect nodes. This behavior can
result in zero or more traces of execution of an AGE graph. The discussion in
the previous section did not consider timing delays in watchpoint triggering
due to target system behavior, or the infuence of implementation policy in
the automation of an attack graph.

An AGE graph simulator that implements the transition rules
described in Section 3 to generate all execution traces that reach the
elements of a goal node set from the start node set will be helpful in
seeing the result of these delays. The input to the simulator is a machine-
readable description of an AGE graph, and the output is a set of execution
traces. The simulator can be used to explore reachability from an element
of the start node set to an element of the goal node set. The simulator
can also be used to see all the unique traces that an AGE graph allows to
identify any unexpected or undesirable traces. In this section, we explore
some of the applications of the simulator.

By applying the simulator to Fig. 2, we determined that it will permit 22
unique activation node fring sequences, assuming all activation nodes fre,
depending on the time taken for fring the watchpoints A2, A3, A4, and A5
in the activation nodes, a2, a3, a4, and a5, respectively. In the real world,
the number of fring sequences will be much smaller because the fring of
some activation nodes may require the successful execution of efects in the
previous attack step. Further, some of the watchpoints may never fre, and
the attack may not succeed. Therefore, there could be many more fring
sequences, but any such sequence will form a prefix of these 22. For
brevity, we examine a few of the interesting sequences in Table 1 below.
Sequence 1 in Table 1 shows a case in which triggering of watchpoint A3
is delayed compared to A2, and therefore, a5 gets activated prior to A3
triggering, resulting in the activation firing sequence shown. In sequence
2, A3 only triggers after the goal node a6 is triggered. In sequence 3, A3
triggers before A2, and results in the sequence shown. These sequences do
not yet account for the relative delays in firing of the guard conditions in
effect nodes. Since

15

Table 1: Triggering and Activation Sequences for Fig. 2.

Item Triggering Sequence Activation Firing Sequence
1
2
3

[A1, A2, A5, A4, A3, A6]
[A1, A4, A2, A5, A6, A3]
[A1, A3, A2, A4, A5, A6]

[{a1}, {a2}, {a5}, {a4}, {a3}, {a6}]
[{a1}, {a4}, {a2}, {a5}, {a6}, {a3}]
[{a1}, {a3}, {a2}, {a4}, {a5}, {a6}]

fring of the guard node as a result of the triggering of the guard condition is
a prerequisite for applying the efect in an efect node, the number of unique
efect traces that can occur is higher than 22. To reduce the efects traces,
the watchpoints in activation nodes could include additional conditions that
verify the application of previously enabled efects.

One application of the simulator is to
fag race conditions in the fring sequences.
Having race conditions in the fring sequence
is a side-efect of nondeterminism in attack
graphs, and therefore it would be useful for
the attacker to be aware of their existence.
Race conditions in activation fring and ef-
fects execution can occur due to the relative
delays in fring activation or guard condi-

lays or automation policy.
We will use the notation activation node

a0
A0: G0: e0:

A1: G1: e1: A2: G2: e2:
a1 a2

A3: G3: e3: A3: G4: e4:
a3 a4

a2 AND a2 a1 OR a2

a3 AND a4

l1 l2

A5: G5: e5:

tions. Fig. 5 contains some examples of race

conditions that can result from relative de-l3

a5

fired (causing watchpoint triggered) to ex-
Figure 5: Attack Graph with plain sequences in Table 2. In sequence

1, Race Conditions the watchpoint triggering sequence shown
in Table 2 causes the following activation fir-

ing sequence: a0(A0) → a1(A1) → l2 →
a4(A3) → a2(A2) → l1 → a3(A3) → a5(A5), because both a3 and a4 reg-
istered the same watchpoint A3, though watchpoint A3 is registered for a3,
only after a4 is fred. In comparison, sequence 2 is: a0(A0) → a1(A1) →
a2(A2) → l1 → {a3(A3), a4(A3) } → a5(A5), because the same watchpoint
A3 is registered by both a3 and a4. Therefore, when A3 is triggered both a3
and a4 fre. Either a3 or a4 could have fred frst. Sequence 5 and sequence 4
have identical watchpoint triggering sequences but diferent activation fring

16

Table 2: Triggering and Activation Sequences for Fig. 5.

Item Triggering Sequence Activation Firing Sequence
1
2
3
4
5

[A0, A1, A3, A2, A3, A5]
[A0, A1, A2, A3, A5]
[A0, A2, A1, A3, A5]
[A0, A1, A2, A3, A3, A5]
[A0, A1, A2, A3, A3, A5]

[{a0}, {a1}, {a4}, {a2}, {a3}, {a5}]
[{a0}, {a1}, {a2}, {a3, a4}, {a5}]
[{a0}, {a2}, {a1}, {a3, a4}, {a5}]
[{a0}, {a1}, {a2}, {a4}, {a3}, {a5}]
[{a0}, {a1}, {a2}, {a3}, {a4}, {a5}]

G1:
velocity == 0

A1:
velocity > 0 && save

velocity as v
e1: null

G1:
velocity == 0

A3: velocity == 0 &&
obstacle not persistent for 5

seconds

e3: restore
velocity to v

G1:
velocity == 0

A2: velocity == 0 &&
obstacle persistent

for 5 seconds

e2: save position as p
&& backup fixed

distance

G1:
velocity == 0

A4: velocity < 0
then velocity == 0
&& see obstacle

e4: disable bad
sensors, restore

velocity to v

G1:
velocity == 0

a5: velocity < 0 then
velocity == 0 && does

not see obstacle

e5: move back
to saved

position p

G6: T
A6: velocity == 0 &&
see obstacle in good

sensors
e6: null G7: TA7: velocity == 0 &&

see obstacle e7: null

a3 OR a5

a1

a5

a2
a3

a4

a6 a7

l1

Figure 6: Roomba Attack-Defense Tree

sequences due to the automation implementation picking either l1 or l2 frst
to fre. The sequence 4 occurs because only after a2(A2) → l2 → a4(A3),
does a3 register A3. In sequence 5, a2(A2) → l1 → a4(A3) occurs before
a4 registers A3. Fig. 6 is a simplified version of an attack-defense tree [17]
that shows how a consumer robot, such as Roomba iCreate2 [12], can be en-
hanced to defend against sensor attacks. In activation node a1, the velocity
of the Roomba is saved periodically until in a2 a stop is detected persistently
with an obstacle for 5 seconds. In e2, its position is saved, and the Roomba
moves backward for a fxed distance. If there is still an obstacle, then in e4,
it assumes the sensors are bad, and disables the bad sensors. If there is no
obstacle (in a5), the robot moves back in e5 to the previously saved position
in e2. The node a6 is the case when the Roomba detects an obstacle and
stops without using bad sensors, and a7 is the case when it stops with data
from all sensors. Another parallel path starts with a3, where the obstacle
is transient, and e3 restores the velocity saved earlier in a1. Note that this
graph has two activation nodes, a6 and a7, in its goal node set.

17

5 Related Work

The notion of an attack graph was proposed in 1998 by Phillips and Swiler [21].
Sheyner et al. [24] used attack graphs to model exploitation of vulnerabili-
ties in a system. They defne an attack graph as a data structure used to
represent all possible attacks on a network that can take a system from a
set of initial states to a set of goal states. Model checking was proposed
as a way to see whether an attacker can succeed in an attack. This repre-
sentation of attack graph was used to do vulnerability analysis by Ingols et
al. [11]. Sheyner and Wing discussed tools for automatic generation of attack
graphs [25]. Jajodia and Noel [14] describe generation of multi-stage attack
graphs.

Ou et al. described MulVAL, a scalable tool that is used to conduct net-
work security analysis across multi-hosts based on multi-stage attacks [20].
The uncertainty of attack success and the environment led to the use of par-
tially observable Markov decision process for attack modeling by Surraute et
al. [23]. Kordy et al. defned an attack-defense tree to represent the interac-
tions between the attack and defense [17]. A relatively recent taxonomy of
attack graph generation techniques is reported by Kaynar et al. [15]. While
the majority of attack graph research focused on enterprise network security,
recently, attack graphs have also been used to describe network protocol secu-
rity [26], and cyber-physical system attacks [10]. Recently approaches make
sure attack graphs are machine readable, such as [18]. Yet, these approaches
fall short of providing the execution semantics of the machine readable attack
graph as in our approach.

The idea of simulated penetration testing, to completely automate a pen-
etration test, was proposed by Hofmann [9]. The idea of threat emulation
to demonstrate and validate the efectiveness of attacks has been around for
a century [7]. Cyber-ranges [4] used for Testing and Evaluation of systems
can considerably beneft from automated threat emulation of attack scenar-
ios conducted by Applebaum et al. [1]. When a multi-stage attack scenario
is enacted on a system, the uncertainty of the system and environment re-
quires frequent reevaluation of the system state prior to application of the
subsequent stage. For this reason, our attack scenario enactment requires
reevaluation of the current target system state prior to applying the attack
efects or triggering the next stage.

Since an attack graph may be enacted over a period of time of the at-
tacker’s choosing, automated threat emulation of an attack graph may also

18

run into minutes, hours, or more. Since implementation of watchpoints that
produce alerts is essential for executing attack graphs, what techniques can
be used to generate alerts becomes a crucial question. One important as-
sumption the watchpoint based alerting makes is that the target system
does not change for the duration between the production of the logs that
caused the alerts, and the use of the alerts in the AGE graph for making a
fring decision. Therefore, the threat emulation process must decide based
on the target system attributes and threat emulation goals. The decision on
whether to use a batch analytics model implemented in cyber log analysis
tools such as Splunk [2], and ELK [6], or use streaming analytics systems
such as those described by Haruna et al. [13] depends on the latency needs
of threat emulation. The streaming analytics systems have the advantage
of lower latency and better accuracy of evaluation when sliding windows are
used, compared to batch analytic processing systems.

Gelernter and Carriero clarifed in 1992 that a programming language
specifes computation, while a coordination language acts as a glue that binds
separate activities in an ensemble [8]. A rich set of coordination languages
and models have emerged since then. The PTIDES model [31] related model
time to real time and used the natural partial order of tasks to achieve
deterministic concurrency in real-time applications. The recording of time
stamps based on physical clocks has been used to ensure consistency of real-
time behavior of Google Spanner, a very large, distributed database [3]. The
time-triggered programming language Giotto enforced the concept of logical
execution time (LET) as the worst-case execution time estimation for a task
excluding input and output times [16]. Recent languages such as Lingua
Franca built on the PTIDES model and Reactor model include multiple
timelines, again, to achieve deterministic concurrency [19]. While the ideas
of partial order of the attack graph nodes is highly relevant, and LET can
be a very useful, yet optional, technique in time-boxing attacker tactics, the
execution of an attack-graph need not exhibit deterministic concurrency. Our
coordination model for multi-stage attack modeling does not assume the need
for deterministic execution of the attacker tactics, especially in the face of
a dynamic environment where defenders and users could alter the system
state without the knowledge of the attacker. Our approach is closer to the
PTIDES approach [31] in that we do make use of the natural dependencies of
the actors to let the attack proceed, if necessary, through multiple concurrent
timelines.

19

6 Conclusions

This paper documents the frst use of a coordination model for multi-stage
attacks with the AGE graph and its precise semantics. Further, we showed
examples of AGE graphs, for attack and defense, created by ourselves or
published previously. We ran the AGE graphs through the simulator to
highlight some of the nondeterministic properties. An AGE graph may reach
one of the goal states of the attack graph only if the target system will permit
it. Therefore, it is impossible to claim deterministic concurrency [31, 3, 19]
for an AGE graph, though we believe it is possible to prove reachability
from a starting node set to an element of the goal set, either using the
simulator or through reachability analysis of the AGE graph based on the
fring states of the activation nodes or guarded efect nodes. This reachability
analysis remains a future research topic, so does automation of an AGE
graph. Another area of future research is the extension of AGE graphs with
cycles. Detecting the end of the threat emulation is tricky using AGE graphs.
Once an AGE graph node in a goal node is fred, there are multiple policy
choices for detecting attack termination. Researching these choices remains
a future research topic.

References

[1] Andy Applebaum, Doug Miller, Blake Strom, Henry Foster, and Cody
Thomas. Analysis of automated adversary emulation techniques. In
Proceedings of the Summer Simulation Multi-Conference, pages 1–12,
2017.

[2] Ledion Bitincka, Archana Ganapathi, Stephen Sorkin, Steve Zhang,
et al. Optimizing data analysis with a semi-structured time series
database. SLAML, 10:7–7, 2010.

[3] James C Corbett, Jefrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, Jefrey John Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, et al. Spanner: Google’s glob-
ally distributed database. ACM Transactions on Computer Systems
(TOCS), 31(3):1–22, 2013.

20

[4] Suresh K Damodaran and Jerry M Couretas. Cyber modeling & simula-
tion for cyber-range events. In Proceedings of the Conference on Summer
Computer Simulation, pages 1–8, 2015.

[5] Suresh K Damodaran and Joshua D Guttman. Systems and methods for
declarative specifcation, detection, and evaluation of happened-before
relationships, December 31 2019. US Patent 10,521,331.

[6] Elastic.co. Elasticsearch: The ofcial distributed search & analytics
engine. Accessed Jan. 29, 2022.

[7] Gregory Fontenot and Darrell L Combs. Fighting blue: Why frst class
threat emulation is critical to joint experimentation and combat devel-
opment. American Intelligence Journal, 26(1):24–30, 2008.

[8] David Gelernter and Nicholas Carriero. Coordination languages and
their signifcance. Communications of the ACM, 35(2):96, 1992.

[9] Jörg Hofmann. Simulated penetration testing: From “Dijkstra” to
“Turing test++”. In Twenty-Fifth International Conference on Auto-
mated Planning and Scheduling, 2015.

[10] Mariam Ibrahim, Qays Al-Hindawi, Ruba Elhafz, Ahmad Alsheikh, and
Omar Alquq. Attack graph implementation and visualization for cyber
physical systems. Processes, 8(1):12, 2020.

[11] Kyle Ingols, Richard Lippmann, and Keith Piwowarski. Practical attack
graph generation for network defense. In 2006 22nd Annual Computer
Security Applications Conference (ACSAC’06), pages 121–130. IEEE,
2006.

[12] iRobot. irobot create® 2 programmable robot. Accessed Jan. 30, 2022.

[13] Haruna Isah, Tariq Abughofa, Sazia Mahfuz, Dharmitha Ajerla,
Farhana Zulkernine, and Shahzad Khan. A survey of distributed data
stream processing frameworks. IEEE Access, 7:154300–154316, 2019.

[14] Sushil Jajodia and Steven Noel. Advanced cyber attack modeling analy-
sis and visualization. Technical report, GEORGE MASON UNIV FAIR-
FAX VA, 2010.

21

https://Elastic.co

[15] Kerem Kaynar. A taxonomy for attack graph generation and usage
in network security. Journal of Information Security and Applications,
29:27–56, 2016.

[16] Christoph M Kirsch and Ana Sokolova. The logical execution time
paradigm. In Advances in Real-Time Systems, pages 103–120. Springer,
2012.

[17] Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Patrick
Schweitzer. Attack–defense trees. Journal of Logic and Computation,
24(1):55–87, 2014.

[18] Jooyoung Lee, Daesung Moon, Ikkyun Kim, and Youngseok Lee. A se-
mantic approach to improving machine readability of a large-scale attack
graph. The Journal of Supercomputing, 75(6):3028–3045, 2019.

[19] Marten Lohstroh, Christian Menard, Alexander Schulz-Rosengarten,
Matthew Weber, Jeronimo Castrillon, and Edward A Lee. A language
for deterministic coordination across multiple timelines. In 2020 Forum
for Specifcation and Design Languages (FDL), pages 1–8. IEEE, 2020.

[20] Xinming Ou, Sudhakar Govindavajhala, Andrew W Appel, et al. Mul-
val: A logic-based network security analyzer. In USENIX security sym-
posium, volume 8, pages 113–128. Baltimore, MD, 2005.

[21] Cynthia Phillips and Laura Painton Swiler. A graph-based system for
network-vulnerability analysis. In Proceedings of the 1998 workshop on
New security paradigms, pages 71–79, 1998.

[22] CVE Program. Common vulnerabilities and exposures. Accessed Jan.
29, 2022.

[23] Carlos Sarraute, Olivier Bufet, and Jörg Hofmann. Pomdps make
better hackers: Accounting for uncertainty in penetration testing. In
Twenty-Sixth AAAI Conference on Artifcial Intelligence, 2012.

[24] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and
Jeannette M Wing. Automated generation and analysis of attack graphs.
In Proceedings 2002 IEEE Symposium on Security and Privacy, pages
273–284. IEEE, 2002.

22

[25] Oleg Sheyner and Jeannette Wing. Tools for generating and analyz-
ing attack graphs. In International symposium on formal methods for
components and objects, pages 344–371. Springer, 2003.

[26] Orly Stan, Ron Bitton, Michal Ezrets, Moran Dadon, Masaki Inokuchi,
Ohta Yoshinobu, Yagyu Tomohiko, Yuval Elovici, and Asaf Shabtai.
Extending attack graphs to represent cyber-attacks in communication
protocols and modern it networks. IEEE Transactions on Dependable
and Secure Computing, 2020.

[27] Blake E Strom, Andy Applebaum, Doug P Miller, Kathryn C Nickels,
Adam G Pennington, and Cody B Thomas. Mitre att&ck: Design and
philosophy. Mitre Product Mp, pages 18–0944, 2018.

[28] Travis L Swiatocha. Attack graphs for modeling and simulating so-
phisticated cyber attack. Technical report, Naval Postgraduate School,
2018.

[29] Tenable. Nessus. Accessed Jan. 30, 2022.

[30] Jianping Zeng, Shuang Wu, Yanyu Chen, Rui Zeng, and Chengrong
Wu. Survey of attack graph analysis methods from the perspective of
data and knowledge processing. Security and Communication Networks,
2019, 2019.

[31] Yang Zhao, Jie Liu, and Edward A Lee. A programming model for time-
synchronized distributed real-time systems. In 13th IEEE Real Time and
Embedded Technology and Applications Symposium (RTAS’07), pages
259–268. IEEE, 2007.

23

	Introduction
	Motivating Example
	AGE Graph Semantics
	Abstract Syntax
	Semantics

	Examples and AGE Graph Simulator
	Related Work
	Conclusions

