
NAME OF DOCUMENT 

Source: MITRE 

Software Engineering 
With Generative Artificial 
Intelligence Tools 
MITRE FINDINGS AND RECOMMENDATIONS – FALL 2023 
By Rock Sabetto, Sujay Kandwal, and Devesh Agarwal 

© 2023 MITRE. Approved for Public Release; Distribution Unlimited. Public Release #23-3832 



SOFTWARE ENGINEERING WITH GENERATIVE AI TOOLS 

GENERATIVE ARTIFICIAL 
INTELLIGENCE TOOLS AND 
SOFTWARE ENGINEERING 
The rapid rise of Generative Artificial 
Intelligence (AI) tools is altering the 
software engineering profession. These tools 
interpret user requests, referred to as 
prompts, and analyze them against large 
volumes of training data to generate 
responses. Software engineers are using 
Generative AI tools today to support work 
across the lifecycle, for tasks such as 
requirements generation, software 
development, and test planning. MITRE 
understands the growing power of these 
tools and believes that they are an important 
part of the future. 
It is incumbent upon software engineers to 
learn how to use Generative AI tools 
effectively and safely. In July 2023, the 
MITRE Software Engineering Innovation 
Center released a Technical Advisory 
detailing the risks associated with these 
tools.1 This paper contains initial findings 
and recommendations from a series of 
Generative AI software development tests 
MITRE conducted in the Fall of 2023. 

TEST OVERVIEW 
MITRE software engineers tested three 
Generative AI tools: OpenAI ChatGPT, 
Google Bard, and Microsoft BingAI.2 

1 MITRE Technical Advisory “On the use of 
ChatGPT, GitHub Copilot, and other Generative 
Large Language Models for AI Assisted 
Software Engineering”, July 2023. Case 23-
2798. Digital copy available upon request. 
2 Tool versions used for testing: ChatGPT (Used 
MITRE ChatGPT, an internal, secure Generative 
AI interface based upon OpenAI ChatGPT, 
Version 4); Google Bard (Public Version, 
updated 07/13/2023); BingAI (Public Version, 
updated 03/14/2023), which leverages the GPT 
Version 4 model. 

Tests included a combination of MITRE 
Software Engineer interview questions3 and 
a problem sourced from the LeetCode4 
developer learning platform. 

MITRE TESTED GENERATIVE AI 
TOOLS AGAINST A HUMAN 

SOFTWARE ENGINEER 
Tests varied in complexity, and included 
basic questions on software engineering 
fundamentals, simple Python and Java 
functions, and more intricate C++ code 
development.5 MITRE evalutated tool 
performance by measuring speed and 
accuracy of the developer and the generative 
AI tool to complete the task. To measure 
speed, MITRE captured wall-clock time-to-
complete for the human software developer 
and each AI tool. To measure accuracy, 
MITRE used a combination of vetted 
problem solutions from the team’s GitLab 
repository, code testing in Python and Java, 
and C++ testing in the LeetCode Integrated 
Development Environment (IDE). 
These test results provide a preliminary 
basis that informed the findings and 
recommendations presented in this paper 
and can inspire more rigorous testing. 
MITRE plans to conduct future testing using 
code completion tools (e.g., GitHub 
Copilot). 

3 MITRE, Software Engineering Interview 
Repository, https://gitlab.mitre.org/t853. 
Accessed September 2023. 
4 LeetCode, “Strong Password Checker”, 
https://leetcode.com/problems/strong-password-
checker/. Accessed September 2023. 
5 MITRE executed four test cases: 1) Python 3-
part test, 2) Java Fibonacci Sequence, 3) 
Software Engineering Knowledge Check and 4) 
LeetCode Strong Password Checker. The 
volume of tests is not sufficient to draw 
widespread conclusions or statistically 
significant findings but provides insights for 
future evaluations. 

©2023 The MITRE Corporation. All Rights Reserved. 
Approved for Public Release; Distribution Unlimited. Case 23-3832. 

1 

https://gitlab.mitre.org/t853
https://leetcode.com/problems/strong-password-checker/
https://leetcode.com/problems/strong-password-checker/


SOFTWARE ENGINEERING WITH GENERATIVE AI TOOLS 

FINDINGS 
The capabilities of Generative AI tools to 
support software developers are by no 
means perfect, but they do offer the potential 
to assist developers and reduce time to 
complete for some development activities. 
MITRE’s testing shows that in some cases, 
Generative AI tools can solve low and 
medium complexity software problems 
faster than a professional software engineer. 
While these results are exciting, they are 
based upon a small sample of tests and 
reflect the capabilities of Generative AI 
tools as of Fall 2023. Results will vary based 
upon developer skill level and rapidly 
evolving Generative AI tool capabilities. 

Finding One: Generative AI Tools Vary. 
The tools tested in this report did not 
perform equally. Generally, OpenAI’s 
ChatGPT and Microsoft’s BingAI 
performed well in tests using both Python 
and C++. Google’s Bard was able to 
perform simple Python tasks but when 
prompted to create C++ code did not 
generate accurate responses. Additionally, in 
multiple cases with each tool, responses to 
identical prompts varied, sometimes 
significantly. Given the limited scope of 
testing and continuous tool evolution, 
MITRE is unable to definitively recommend 
specific tools. 
Tool creators. MITRE-observed variance in 
tool capability that may reflect differences in 
model training focus by OpenAI, Microsoft, 
and Google. Microsoft and OpenAI operate 
a partnership to develop solutions 
collaboratively, but commercialize them 
independently.6 

Tool architecture. In a general sense, the 
Generative AI tools use a similar large 
language model (LLM) architecture 

6 OpenAI, “OpenAI and Microsoft Extend 
Partnership”. https://openai.com/blog/openai-

underpinned by a huge corpus of data. 
However, beyond this generalization it is 
difficult to assess not only the data sources 
(only BingAI provides citations natively for 
each prompt), but also the inner workings of 
the tools. When coupled with the fact that 
the models are updated at varying rates, 
developers should evaluate the utility of 
each tool for the immediate task at hand. 
Tool code translation. Bard lacked the 
ability to create a C++ solution for the 
LeetCode Password Checker test case. For 
example, when prompted multiple times for 
a C++ solution, Bard responses ranged from 
code that would not compile to statements 
that Bard was unable to create C++ code. 
Conversely, BingAI cited a Python solution 
when it provided the C++ Password Checker 
code response. When MITRE developers 
researched the citation, they discovered the 
BingAI C++ solution used virtually identical 
function names and code structures as those 
in the Python solution. This suggests BingAI 
can identify solutions in one programming 
language and translate them to another. 

Finding Two: Increasing Problem 
Complexity Decreases Solution 
Accuracy. 

©2023 The MITRE Corporation. All Rights Reserved. 
Approved for Public Release; Distribution Unlimited. Case 23-3832. 

Generative AI tool performance decreases as 
problem complexity increases. 
Decomposition works. For more complex 
challenges, decomposing the problem 
enables the creation of discrete building 
blocks that can be tested individually and 
then assembled into a complete solution. 
Prompt quality matters. In general, the 
more precise the prompt, the more accurate 
the tool response. Using carefully crafted 
pseudocode, MITRE evaluators were able to 
create prompts that enabled the tools to 
create accurate solutions to the LeetCode 
problem. In this case, MITRE created an 

and-microsoft-extend-partnership. Accessed 
September 2023. 

2 

https://openai.com/blog/openai-and-microsoft-extend-partnership
https://openai.com/blog/openai-and-microsoft-extend-partnership


SOFTWARE ENGINEERING WITH GENERATIVE AI TOOLS 

©2023 The MITRE Corporation. All Rights Reserved. 
Approved for Public Release; Distribution Unlimited. Case 23-3832. 

3 

800 word block of pseudocode and split it 
into five discrete subtasks. Only after careful 
review was it fed to the Generative AI tools. 
This aligns with the systems engineering 
principle of writing clear requirements. 

Decomposition and debugging. Another 
benefit of creating discrete subtasks is that 
the resulting code blocks are generally 
shorter and easier to troubleshoot. When 
contrasted with the effort required to 
manually debug a much larger block of code 
containing a high number of dependencies, 
development time, which included prompt 
development, was cut by approximately 
50% when compared with a human-only 
development effort. 

Finding Three: Generative AI Tools 
Lack Creativity. 
MITRE testing shows that in their current 
state, Generative AI tools struggle to 
produce innovative solutions. 
Model source limitations. While these tools 
are capable of leveraging patterns in existing 
information to create new information, they 
do not currently show the ability to create 
novel software solutions. In the case of 
BingAI, the tool explicitly cites the sources 
it is using to create responses. 

The innovation is in the prompt. While 
this is likely to evolve in the coming 
months, MITRE believes that the best 
method to get innovative results from the 

Generative AI tools is to build innovative 
thought into prompts. For example, if 
developers create truly unique pseudocode, a 
tool may be able to leverage its neural 
network to create code that implements the 
pseudocode and produces a truly new 
solution. For now, the software engineer 
remains the primary source for innovation. 

RECOMMENDATIONS 
While MITRE testing found variance in 
capability across well-known tools, there is 
little argument that they are here to stay, and 
that they offer potential benefits in terms of 
accuracy and speed. The following 
recommendations are based upon the 
experiences gained during MITRE testing. 

Recommendation One: Use Generative 
AI Tools as Assistants. 
Software engineers should use Generative 
AI tools to help reduce the time required to 
solve problems, exercising diligence to 
ensure safe and secure use. 
Syntax can be a strength. Generative AI 
tools can quickly provide syntactically 
accurate code in a variety of languages. In 
cases where a developer has a complete 
understanding of the problem and creates 
pseudocode, Generative AI tools may be 
able to quickly convert the pseudocode into 
properly formatted code. For simpler, 
discrete coding problems, the tools may be 
able to provide accurate solutions in 
seconds, where developers may take several 
minutes to craft accurate code. When scaled 
over time and across teams, significant 
productivity gains may be realized. 
Verify everything. As of this writing, it is 
evident that the human must remain in the 
loop in the software development process. 
Efforts are underway at all of the major AI 
development organizations to create 
automated interfaces, but the underpinnings 
of the tools are not of sufficient quality to be 
programmatically trusted without human 

Source: MITRE 



SOFTWARE ENGINEERING WITH GENERATIVE AI TOOLS 

verification. Developers may turn to 
Generative AI tools to create test cases, but 
the tools are not of sufficient maturity to be 
used as a complete replacement for large 
portions of any development pipeline linked 
to production operations. 
Comparing Generative AI tools to junior 
developers. New software engineers coming 
directly from university computer science 
programs have current and relevant 
knowledge and skills. These new 
professionals can produce outstanding work, 
but the content must often be checked by 
seasoned developers. The junior developer 
often needs additional problem context to 
create software that can be used a 
production setting. The Generative AI tool, 
like the new hire, must be treated with 
patience and provided with feedback. When 
work is inaccurate, the experienced 
developer should take the time to explain 
(via prompt) why the work is inaccurate to 
facilitate learning and growth. 

Recommendation Two: Reduce 
Complexity to Increase Accuracy. 
To solve problems of higher complexity, 
simply feeding the problem statement to the 
Generative AI tool is unlikely to work. 
Much like human software engineers, the 
tools perform more effectively when 
problems are decomposed into discrete 
elements. 
Use a decomposition process to handle 
complexity. MITRE used a basic problem-
solving approach for complex problems, 
decomposing the challenge and creating a 
series of prompts. 
Don’t wait to break it down. With 
Generative AI tools, it can be tempting to 
simply paste the entire problem into a 
prompt and hope for the best. While there is 
little harm in trying this at the outset, this 
method should be used with caution as it can 
lead to a lengthy cycle of bug fixes. 

Developers should recognize this situation 
and begin to break the problem down. 
Create pseudocode to increase accuracy. 
MITRE found that the creation of 
pseudocode is beneficial to the Generative 
AI tool and leads to higher quality 
responses. MITRE found that the tools, in 
most cases, were able to rapidly convert 
pseudocode into working software. This 
forces the developer to focus on the logic 
needed to solve the problem. Finally, 
pseudocode provides an easy to understand 
description of the working solution that can 
be used in many ways: to create 
documentation, as a basis for software 
language conversion, and as a way to share 
the solution concept with other developers. 

Recommendation Three: Use 
Generative AI Tools to Reduce Search 
Time. 
The tools leverage a large corpus of training 
data to perform their work, which 
theoretically is “beyond search.” While the 
solution is imperfect, these tools can reduce 
time spent searching using traditional 
engines (e.g., Google, Bing). 

Generate initial ideas. Developers can 
spawn innovative thinking by prompting 
Generative AI tools for solution concepts 
when starting a new task. Initial concepts 
help the software engineer avoid the “cold 
start problem” when beginning the work. As 
stated earlier, the tools in the current state 

Source: MITRE 

©2023 The MITRE Corporation. All Rights Reserved. 
Approved for Public Release; Distribution Unlimited. Case 23-3832. 

4 



SOFTWARE ENGINEERING WITH GENERATIVE AI TOOLS 

are not innovative, but software engineers 
can use them in innovative ways. 
Create draft explanations. Asking 
Generative AI tools to explain complex 
concepts using simple language can help 
reduce time to create supporting 
documentation and can help increase the 
overall quality of the documentation. In this 
way, Generative AI tools provide an 
advantage over many developers, who may 
struggle to write effective documentation or 
may despise the time required to create 
written descriptions of software. 
Users must verify accuracy prior to using 
results. In some cases, tools do not provide 
citations to source information. In others, 
citations are incorrect. Users cannot blindly 
trust Generative AI tool outputs. 

Recommendation Four: Create Overall 
Time Savings by Writing Clear Prompts 
and Selecting the Best Generative AI 
Tool for Your Project. 
MITRE demonstrated through a small set of 
tests what has been shown via multiple 
industry studies and surveys: Generative AI 
tools offer time saving potential. 
Take time to create prompts. MITRE 
developers were able to cut the time 
required to solve the LeetCode Password 
Checker test in half by decomposing the 
problem and investing time in prompt 
creation. Attempt to achieve similar 
improvements through prompt engineering. 
Our findings show that the clarity and 
accuracy of the prompt generally correlates 
to tool output accuracy. 
Use multiple tools. Software developers 
must actively maintain an understanding of 
the strengths of various Generative AI tools. 
MITRE testing represents a snapshot in time 
with a limited sample size. Results may vary 
using larger test volumes. Developers should 

7 MITRE Technical Advisory, see Note 1. 

explore emergent Generative AI tools and 
revisit tools periodically given the speed of 
tool modernization. More generally, a 
comprehensivse assessment of Generative 
AI software engineering capabilities will 
benefit the community and should be 
performed in the near future. 

Recommendation Five: Safety Must be 
Considered. 
MITRE believes in the potential of 
Generative AI tools for software 
engineering, but risks cannot be ignored. 
The professional software engineer is 
responsible for the safe use of the tool. 
Readers should review MITRE’s Software 
Engineering Innovation Center Technical 
Advisory7 to understand the risks associated 
with use of Generative AI tools for software 
engineering. The advisory provides 
developers with clear advice on the safe use 
of Generative AI tools. 

CONCLUSION 
This paper presents preliminary findings and 
recommendations from a limited set of test 
cases executed in Fall 2023. MITRE 
believes that software engineers can save 
time and improve accuracy by using 
Generative AI tools as assistants. In their 
current state, the tools require developers to 
completely understand problems, 
decompose complex problems, write clear 
prompts, and diligently review tool-
generated code. 
The tools offer clear benefits but require 
human expertise and oversight to safely 
develop production quality software. 

©2023 The MITRE Corporation. All Rights Reserved. 
Approved for Public Release; Distribution Unlimited. Case 23-3832. 

5 




