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Knowledge Base Population: An 
Orchestrated Path from Content to Insight 
Abstract   
Unstructured content, especially text, contains important facts about entities of interest, but given 

the infeasible prospect of manually reviewing all available content for these facts, a viable 

solution is to employ automatic extraction to a knowledge base. This process involves 

recognizing, collecting, and adapting the important content into a machine-readable format, 

which, in turn, can be queried and explored to answer questions about entities, their properties 

and relationships, and what inferences can be drawn from them. Applying such techniques 

introduces certain challenges of organization, consistency, flexibility, and extensibility to new 

technologies or different domains.  

The Knowledge Base Population (KBP) work addresses this through a top-down system design 

able to integrate established or cutting-edge tools and technologies to support each of its stages 

of workflow, while aiming at developing a repeatable approach and reusable architectural design 

that will serve many different domains. This initial work suggests a core workflow supporting 

the most fundamental activities and lays out potential extensions once the baseline has been 

engineered. 

Acknowledgements 
The authors would like to acknowledge the considerable insight and guidance provided by our 

peer reviewers, Stacey Bailey, Michael Smith, and Chuck Howell. 

Introduction 
Making informed decisions and discovering important facts are perennially important activities. 

Moreover, many organizations have access to more content than ever before. The downside to 

this excess of documents, images, and other files is that there are far too many of them than can 

be read manually. This limitation poses the problem of how do we examine these sources to 

learn what facts they contain and also persist them in a manner that makes them readily 

accessible? 

A viable and powerful solution is to engage in automated reading of the content, promising the 

ability to scale to a rate far beyond a purely manual process and also creating output that can be 

readily represented in a machine-interpretable format. Analytics underpinned by artificial 

intelligence (AI) and often specifically machine learning (ML) can be applied to different stages 

of analysis to convert unstructured content into the valuable knowledge it contains. The 

structured and aggregate knowledge that results is also conducive to machine and manual 

analysis that would reveal connections and realizations that might never emerge otherwise when 

document sources are looked at independently or ignored because of their enormous size. Yet 

using such an approach introduces new problems. 
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Figure 1: Data Refinement Model and Stack Architecture 
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There are several challenges that should be solved for this type of knowledge extraction system. 

First, such a system tends to be complex, and therefore an organized solution is required. 

Second, while analytics are powerful, they are also brittle and subject to certain known 

shortcomings, which levies assurance requirements on the system and how it will perform. Third, 

because these analytics can be overtaken by new state-of-the-art techniques, a technology refresh 

will be required regularly. Thus, an intuitive and flexible solution is needed that can handle 

different use case questions, support ease-of-integration plug-and-play analytics, and exhibit a 

low barrier to use by domain experts. To the previous point, some consistency of representation 

is required to allow for stability of solutions during each refresh. Fourth, the domain where such 

a system can be employed may vary or change over time, which suggests a generalizable 

approach is required for a successful solution. Finally, the content and knowledge in the content 

may be denser and richer than either analytics or a knowledge representation can capture, so 

there is value in the solution also efficiently encoding meaning of the documents in a way that 

can aid in downstream discovery. Further, the system should be extensible to support new 

supplemental workflows. This document describes a knowledge base population approach that 

will address all the problems listed above with the solutions suggested. 

System Architecture Overview 
The creation of intelligence from data through automated or semi-automated means assumes a 

considerable underlying amount of raw data that undergoes refinement and extraction toward 

information, knowledge, and ultimately intelligence, as depicted in Figure 1, which illustrates 

this process as both a model of data refinement layers (left) and a stack architecture diagram 

(right). For either perspective, the Data Mesh Layer is responsible for storing, indexing, and 

ultimately refining the data. The Information Layer identifies the information held in this mix of 

structured, semi-structured, and unstructured content. This information is used to inform the 

creation of facts that are represented in a knowledge base in the Knowledge Layer, which is in 

turn accessed to inform intelligence. The Executive is the sequence of code that orchestrates the 

workflow from the query against the data mesh all the way to the decision processes of what 

candidates are offered for delivery to downstream knowledge repositories. 

The proposed high-level system architecture for the KBP effort is depicted in Figure 2, which 

represents an orchestrated ensemble of multiple, independent, potentially individually developed 

systems working together toward a larger goal, or a “system of systems.” This system draws on a 

sizeable data lake of largely unstructured content, its files principally intended for human 

consumption (e.g., text, video, images). While there may be useful structured content as well, 

such as previously refined data from trusted sources, the unstructured content1 poses a greater 

challenge given that it is beyond the scope of manual assessment and requires automated 

information extraction to capture the knowledge it contains relevant to a specific use case. This 

content-to-knowledge activity suggests five marked stages that progress across three layers.

 
1 The unstructured content may include embedded structured or semi-structured content, such as tables appearing 

between paragraphs. 
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The first stage is the Selection Process (1), which draws on the unstructured content held in the 

Data Mesh Layer. A subset of the data lakes’ content is triaged and chosen to be ingested into the 

Information Layer, possibly after being identified as relevant either through an examination of its 

sources, metadata, or indices.  

The second stage, the Decomposition Process (2), will reduce complex documents ingested in 

the Information Layer into constituent parts that can undergo extraction (e.g., pulling the plain 

text content from a PDF, zoning) if needed.  

The third stage, the Extraction Process (3), is devoted to identifying and structuring the 

important facts found in the content to populate the Information Layer. These facts can be 

mentions of entities of interest (co-referenced as appropriate), relationships among the entities, 

the events that represent the wider contexts, and other elements like times that bound when 

statements hold or topics relevant to a specific domain or use case. Tools in this extraction 

process are likely to rely on AI/ML solutions expressly trained to discover different kinds of 

knowledge in unstructured or semi-structured content.  

The fourth stage ensures the extracted content from the Information Layer is properly added to 

the Candidate Knowledge Store in the Knowledge Layer, which holds the accumulated candidate 

knowledge. In this Interpretation Process (4), extracted results are adapted to fit the meaning 

and organization of a consistent model that defines the candidate knowledge store, the entities 

that appear in the results are linked to entities already in the store if such determinations can be 

made, and the metadata that describes these results (e.g., provenance, uncertainty) is preserved. 

The primary operating assumption of this stage is that the content would arrive only from the 

Information Layer, even though it is feasible that knowledge from downstream repositories 

might also be passed into the Candidate Knowledge Store. 

The last stage is the Candidate Down Selection Process (5). This can occur asynchronously, 

taking elements from the candidate knowledge and advancing these to storage in downstream 

knowledge repositories once the elements become available after the Interpretation Process. 

These repositories may contain different subsets of overall knowledge or different 

representational structures. These downstream knowledge repositories are grounded in specific 

missions, so this general workflow cannot consistently articulate how they ingest the knowledge 

sent to them. 

Data Mesh Layer 
The KBP workflow will first operate on the Data Mesh Layer as called out in Figure 3. At a high 

level, the data lakes, of which there may be more than one, are central to this activity. New data 

will periodically be added and indexed in them, and the downstream processes will query them 

to produce relevant document subsets to serve as input to downstream knowledge generation 

processes. Data triage is this activity of reducing the size of data down to a relevant set to 

process through the entire system. 
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Figure 3: KBP Workflow ▲, the Data Mesh Layer 
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Figure 4 depicts a more detailed view of the processes that can leverage the data lake(s) to select 

documents to send downstream. It illustrates how the data lakes would be periodically refreshed 

with new data that is ingested (A), normalized (B), and indexed (C) for storage in a given data 

lake. The Ingest Process will bring the data in from any number of other sources. The Normalize 

Process will ensure that if the data needs to be in the same format, all data moving forward will 

be given that standard format; this is not always necessary. The Index Process will automatically 

examine the metadata, header data, and/or the content of the data to find searchable tags.2 The 

Selection Process (1) can query the data lakes through a Fetch Process (G) to gather subsets of 

documents to submit to instances of the downstream workflow that will convert their content into 

knowledge. The basis for this activity can arise from analyst queries, queries submitted on behalf 

of a mission, or automated housekeeping that refreshes the knowledge base.  

As a supplement to the data lakes, where data is retrievable by indices and metadata, a vector 

store provides a different query capability. Ingesting the same content indexed for the data lakes 

in the Ingest Process (D), the vector store (e.g., Weaviate3) will convert the data’s content into 

vector embeddings in the Vectorization Process (E) (e.g., for text this could be through a process 

like text2vec4). In the Query Process (F), unstructured queries of differing size and specificity 

(e.g., text, images) can then be converted to vectors and used to find data that occupies a close 

position in that same high-dimensional vector space, where proximity of points in that space is 

indicative of semantic similarity between the content. This provides an alternative way to 

discover relevant data entries based on the similarity of the content without exclusively relying 

on knowing the correct indices, metadata, or keywords.  

In some cases, a cold start of the system may be necessary. A cold start [1, 2, 3] is when there is 

not yet any content populating the knowledge base. A more detailed discussion of the cold start 

process appears later in this document. The initial seed for the cold start can emerge through the 

process described above and be selected by a variety of means. A baseline method for choosing 

what informs the cold start can be finding relevant documents in the data lakes based on indices. 

Other alternatives include selecting all documents received between certain dates or selecting all 

documents timestamped with certain dates. 

Drawing on the vector store provides another means to cold start the knowledge base. In this 

technique, a summary or textual definition of what is wanted in the knowledge base can be the 

prompt that elicits similar documents from the searchable vector store. These queries (F) can be 

performed as a question-and-answer activity against the vector store or using text descriptions 

drawn from taxonomic classes as a search query that finds semantically similar data instances to 

populate an initial knowledge base centered around specific entities of interest. If the vector store 

contains incomplete text for a document (e.g., an abstract), the full document can be retrieved 

from the data lakes.

 
2 An alternate information extraction process may also occur up-front (C’) if the workflow requires all documents 

undergo information extraction. This aligns to the processes described in the Information Layer section. 
3 https://weaviate.io/, however many other companies provide a similar capability such as Pinecone 

(https://www.pinecone.io/) and qdrant (https://qdrant.tech/). 
4 Such as is used in Weaviate, although there are a host of “*_2vec” alternatives. 

https://weaviate.io/
https://www.pinecone.io/
https://qdrant.tech/
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Figure 4: KBP Workflow ▲, Blow-up 
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Information Layer 
Documents and data fetched by the Selection Process (1) next undergo processing in the 

Information Layer as highlighted in Figure 5. The center of activity is the Information Extraction 

Store, which acts as a repository for both the subset of documents from the Selection Process and 

interim results of important content in that data rendered in a structured format. Within this layer, 

the main activities can be coarsely characterized as a Decomposition Process (2) and an 

Extraction Process (3). 

Decomposition Process 

The Decomposition Process always follows the Selection Process. It ensures that content that is 

in a complex state is transformed to a form that conforms to the input expectations of the 

downstream Extraction Process. For example, the incoming data might be in a Microsoft 

PowerPoint file with unstructured text, charts, images, or embedded video or audio, which might 

be suitable for extraction using tools like Apache Tika [4]. Or it could be images of documents 

that require text be recognized optically, which could be accomplished with software like 

Tesseract [5].  

The Decomposition Process ensures the plain text is made available for downstream analysis to 

extract the relevant entities, features, and relationships. In most current natural language 

processing toolchains that are fed by upstream complex documents (e.g., PDF, PowerPoint), this 

Decomposition Process is relatively simple: it produces a single text document stream, without 

respecting the structured relationships between the different text streams within the source 

document (e.g., footers, image captions). Such a process is inadequate, but addressing its 

shortcomings is likely an architecture task of its own, requiring crucial changes both to 1) the 

interaction between the Decomposition Process and its downstream steps and 2) the core 

operation of the individual components within the downstream Extraction Process. This effort is 

properly outside the scope of the current project, and accordingly, this architecture assumes this 

simple Decomposition Process for the time being. 

Document zoning is also part of the Decomposition Process. This activity classifies sequences of 

text within a document into zones fitting certain categories and can be used to establish different 

portions of the document that distinguish content or types of content from metadata. This may 

influence which downstream analysis is applied against zones of text based on their category. 

In general, the workflow described below assumes that plain text is the output of this process that 

continues forward. This is to simplify the knowledge base population activity to accommodate 

the most frequent source of knowledge (that is, what is rendered in human-readable textual 

language), but it does not preclude additional activities that work natively against other 

unstructured content such as images, figures, or video. Some additional restrictions for early 

implementations of this pipeline are described and justified below. 
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Figure 5: KBP Workflow ■, the Information Layer 
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Extraction Process: Text 

The Extraction Process will frequently follow the Decomposition Process, although the specific 

activities it performs will vary with the input and the use cases driving the extraction. Its purpose 

is to find and isolate facts that are useful in the content, structuring them so they can be machine 

readable and suitable for becoming a part of the knowledge base. Examples of workflow through 

the Extraction Process are expanded in a set of blow-up figures depicted later. This section also 

provides a theory representing what is extracted from the text. This representation is distinct 

from the knowledge representation that occurs downstream, and it is instead intended to provide 

a flexible and analytic-agnostic means to preserve what is produced and consumed by extraction 

analytics.  

In this section, we specifically consider extraction against textual content. This invites some 

restrictions on the scope, principally that the Decomposition Process has ensured that plain text 

or some semi-structured formats (e.g., free text fields in CSV files) are provided to the Extraction 

Process.5 It also suggests a few architectural expectations, which include the following: 

• The Extraction Process is not monolithic but instead consists of many interdependent 

analytic components. These cover activities such as entity mention extraction, time 

extraction, coreference resolution (within document), relation extraction, and event 

extraction. While these could all be folded into a single solution, the expectation is that 

arbitrary components from different sources should be allowed to interoperate to ensure 

that the best-of-breed choices can be made for any given step. This is especially 

important as the pipeline dependency means that errors in one stage will propagate 

forward and lead to larger errors in later stages.  

• The executive component of the system has direct control over these components as 

opposed to treating them as a black box. This is because such components exhibit 

substantial cost differences, suggesting considerable value in allowing for load-balancing 

across the components. 

• Because of the eclectic nature of analytic components, to ensure they have a consistent 

interaction, the architecture assumes the use of adapters, or wrappers for information 

extraction components that mediate what they provide the executive and submit to the 

Information Extraction Store. Adapters should be as simple as possible. 

• The Extraction Process is not expected to access the downstream knowledge repository. 

This is an assumption to aim for a greater simplicity of design and computation, but it is 

not a requirement. That said, any design that uses the knowledge base as an input to its 

decisions should have a strong justification for incurring the added complexity. 

• Components are applied to input in sequence, not in parallel. As with the above, this is a 

simplifying assumption. Any parallelization should happen at the document level. 

• Documents may be reprocessed by later workflow instances, especially as capabilities 

evolve or improve.  

 
5 Early implementations also assumed a focus on English as the only represented language, although what is 

described in this section is extensible to foreign language and the downstream processes are language agnostic. 
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• Not everything that a given component produces in the Extraction Process will advance 

to the knowledge base. Some information may not be relevant to the knowledge base and 

only assists components in this process that have a dependency on it. Some information 

may not be possible to resolve against the knowledge base’s model. In principle, we aim 

to minimize the amount of standardization to what is domain-independent, language-

independent, and necessary to retain. Nevertheless, a considerable measure of 

standardization is expected on these results to ensure that a common scheme and 

semantics reaches the knowledge base. This means that adapters for components will 

output: 

o An opaque serialization of the component’s raw output, which is to say what the 

component produces if operating independent of the architecture. 

o A standardized representation that the adapter has created or augmented from the 

raw analytic output. 

With these expectations in mind, the Extraction Process leverages a theory put forth in this 

document of representing what is extracted from text, including coverage of entities and events, 

relations and features, and metadata (e.g., provenance), in the same generic structure to allow 

disparate analytics to contribute to the Information Extraction Store. This theory can be 

expressed in five distinct elements: 1) a set of instances, 2) a set of equivalence classes, 3) a set 

of groups, 4) a set of event relations, and 5) a log. Figure 6 illustrates an example of the first of 

these elements, the instances. 

 

Figure 6: Example Instances Conforming to Extraction Process Theory 

Instances are distinct things that are asserted to exist and have the potential for an identified 

temporal component. Importantly, this theory means that instances will include entities, events, 

and relations, all given a shared structure for consistency in the Extraction Process, which must 

be able to accommodate results from a variety of extraction software. 
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An instance (as depicted in Figure 6) will have a unique ID (obligatory) and optionally contain 

fields for  

a) a label,  

b) a name,  

c) a set of features,  

d) a sequence of (optionally named) arguments, and  

e) a normalization.  

The label (a) most closely maps to the idea of a semantic, taxonomic type, essentially describing 

what this instance “is,” but it is not obligated to align to an ontology used downstream in the 

knowledge base. The label should however be a namespaced token, composed of a namespace 

(e.g., the adapter that produced it, the annotation guideline it fits) and an arbitrary string. 

Notably, because of the label flexibility, some labels may not map to semantic types and will not 

become part of the downstream knowledge. The name (b) consists of the string and offsets (that 

is, Unicode character indices where the string starts and ends) drawn from the text source. 

Morphological features (c) are of the sort that might matter where a given instance is an interim 

result to be processed further; these can distinguish proper names, nominal phrases, and 

pronouns but also could include number, gender, person, tense, polarity, etc. The arguments (d) 

are of chief relevance in relations or events captured in instances and connect to other instances’ 

IDs, which creates a consistent and robust way to reference any other instance. The 

normalizations (e) are namespaced fields that contain any JSON-serializable object and can hold 

other interpretations of an instance (e.g., TIMEX2 encodings, DBPedia IDs); there is no 

restricted list of what normalizations could be used.  

The equivalence classes are a set of unique IDs for instances that are asserted to refer to the 

same instance (i.e., be equivalent to one another). This capability is in service of within-

document coreference and aligning text mentions found by two different adapters in the same 

document. 

The groups (shown in Figure 7) contain a set of members (also indicated by unique IDs that 

refer to instances), which can accommodate explicit plurals where the members of the group are 

known but may be referred to collectively in other fields.  
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Figure 7: Group example 

The set of event relations encompasses a small number of relations intended to bridge events 

and times, but which themselves do not need to be reified. This includes such timestamping 

connections that covers concepts such as before, after, holds within, holds throughout, overlaps, 

starts at, or ends at. Event relation consist of a relation name (a namespaced token that might 

semantically map to one of the example concepts listed) and a sequence of arguments 

(containing the unique IDs of other instances). What they lack is an ID of their own, as these do 

not require reference in the theory and do not need to be reified as other relationships are. 

The log covers both a list of the relevant events that have gone into the creation of the theory and 

a store that captures the component uncertainty that arises in the creation. The list covers the 

provenance of IE components executed and the creation and adjustments of each instance, 

covering each of the elements that appear in the theory. The uncertainty expressed in the log 

arises from the uncertainty expressed by the analytics that produced a given instance or other 

element and nothing else. That distinction is made because the landscape of what amounts to 

“uncertainty” can be quite broad (uncertainty arising from errors in extraction, linguistic doubt 

and vagueness, source reliability, etc.), but distinguishing and accounting for these is carried out 

in the knowledge layer.  

A selection of typical processes that will produce the elements of the theory are depicted in 

Figures 8 through 11. These examples represent common workflows that the system will 

undergo, and they are not mutually exclusive. A given document may experience more than one 

such workflow. They also indicate what must happen for a given workflow, even if they do not 

exhaustively show everything that can happen. 

In a typical relation extraction workflow (Figure 8), after a document is decomposed (H) and its 

text is isolated, entity mentions (i.e., the extents of text that represent specific entities that would 

be assigned a label) are extracted (I) as a set of instances. These are in turn coreferenced (J) so 

that textual extents that represent the same entity are indicated as such in the equivalence classes. 

Following this, relations for the entities are extracted (K), capturing labeled connections with 

arguments aligned to text extent IDs that represent the entities participating in the relationship. 
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This relationship, in turn, becomes an instance. At this point, the results of each process are 

retained in the Information Extraction Store. This specific workflow does not preclude other 

methods of extracting relations, but serves as a commonly used example. 

In a typical domain entity workflow (Figure 9), the document decomposition process (H) 

precedes an extraction process that identifies textual extents directly related to a specific domain 

of interest (L). These are more likely to be topics or concepts rather than entities that are likely to 

be coreferenced, but they will become instances included in the Information Extraction Store. 

In a typical event workflow (Figure 10), the processing captures complex instances that 

represent events, which have participating entities and may be timestamped. After decomposition 

(H), a named entity (M) and coreference (N) activity will find and establish equivalences 

between textual mentions. Alongside this, textual extents representing time are extracted (P) 

from the documents and represented as instances, and resolved to a global timeline (Q) to reduce 

the ambiguity and allow for understanding temporal ordering. Both processes will be used as 

input to the event recognition process (O), which indicates what an event is by its label, what 

entities participate by its arguments, and how it is properly timestamped by event relations. Each 

of these instances is preserved in the Information Extraction Store. 

In a bypass workflow (Figure 11), all normal analytic processes that produce results are 

bypassed. This happens when the ingest already includes the kind of structured information that 

analytics would extract from raw content to put in the Information Extraction Store. This does 

not eliminate the need to translate the content so that it conforms to the consistent theory of how 

results should be represented in the Information Extraction Store; this simply does not involve 

further analytic work. 

Each of these workflows operates in service of the possibility that their results may be sent 

downstream to the Candidate Knowledge Store. 

Before being sent to the Candidate Knowledge Store, each workflow will have some measure of 

interaction with the Information Extraction Store. This store ensures that many different 

workflows can be composed without requiring a direct dependency on the previous analytic. It 

holds documents and their interim results, where each of these instances consist of a unique ID, a 

Unicode character sequence representing the document’s content, and an ordered sequence of 

information extraction processing records, which is to say a record of the application of adapters 

(i.e., information extraction components wrapped to produce content conforming to the theory 

described). In turn, each information extraction processing record contains the name of the 

adapter, a timestamp for the adapter’s completed processing, the current state of the information 

extraction process theory derived from the document, an optional information extraction 

component cache (essentially, the raw output of the component wrapped by the adapter, which is 

not intended to be interpretable by our system), and a timestamped list of all adapters previously 

executed on the document.  
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Figure 8: Relation Extraction Workflow 
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Figure 9: Domain Entity Workflow 
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Figure 10: Event Workflow 
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Figure 11: Bypass Workflow 
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Figure 12: KBP Workflow ●, the Knowledge Layer 
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Extraction Process: Other Media 

What has been described in the context of principally text-based documents can be expanded to 

include other media (e.g., images, audio, video). There is also the potential to convert some of 

these to text or extract plain text from them which can go through the information extraction 

pipeline for text. However, the emphasis of this pipeline in its current form is text, so these are 

excluded for simplicity, although they will likely appear and receive a similar treatment in future 

iterations of this document. 

Knowledge Layer 
After the workflow has passed through decomposition (2) and extraction (3) from unstructured 

content into structured information, it continues to the Knowledge Layer, as shown in Figure 12. 

This knowledge typically has a graph structure, meaning it consists of assertions that describe 

nodes and edges (representing entities and their relationships and properties). This allows for 

vast interconnections to develop between entities based on the sources while preserving the 

important descriptive semantics describing them and how they relate. Moreover, such knowledge 

graphs in this context rely on an ontology of consistent types and relationships, which are 

defined, and potentially rules for inference over them. 

Interpretation Process 

The first step in the Knowledge Layer is to convert this structured information into assertions 

that can be stored consistently in a knowledge base. This occurs in the Interpretation Process (4), 

which entails a) mapping, or ensuring the structure of what emerges from the interpretation 

conforms to a consistent representation and semantics, and b) entity resolution, or ensuring the 

entities retained after interpretation are linked to existing entities already present in the 

knowledge as appropriate. Incoming candidate knowledge will be held in the Candidate 

Knowledge Store but will undergo several stages of processing to reach a retained representation. 

Recall that while the theory described to support the Extraction Process has a consistent language 

for representing extracted content, there is no assumption of semantic consistency between what 

any two analytics will produce. For example, analytic A might label people as “A:Human” while 

analytic B might label them as “B:Person” instead. However, once these entities are passed to the 

Knowledge Layer, such differences in labels need to be resolved to a common meaning that also 

aligns with the ontology of what the Knowledge Store uses to describe the universe. Therefore, 

namespaced labels in the Information Extraction Store instances must be mapped to the 

appropriate ontological classes defined in the Knowledge Layer. Any complex inferencing 

required for changing entity classes would be reserved to occur downstream. This would cover 

cases such as when an analytic has over- or underspecified a class or made an error that other 

evidence exposes. 

Further, the flexible structure defined for extraction information from multiple analytics in the 

Extraction Process may not conform to how information is organized in the Knowledge Layer. 

For example, while the theory in the Information Layer reifies relationships as instances, these 

may be represented as object properties (i.e., a link connecting two entities) in the Knowledge 

Layer. Likewise, features with literals (e.g., strings, integers) may become data properties (i.e., 
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links connecting an entity subject to a literal). The instances’ normalizations (that is, the 

interpretations or encodings that enrich an instance with external reference information) will also 

need to be normalized to the ontology if they are to be preserved. 

Note the Extraction Process is where the principal analysis work of the text occurs; the 

Interpretation Process (R), as seen in Figure 13, that maps the extraction results to the 

Knowledge Layer’s ontology is simpler. Interpretation is based on a set of rules that are intended 

to minimize the loss of translating from one semantics to another, making the process thoroughly 

explainable. Importantly, it is not the case that everything in the Information Layer will advance 

to the Knowledge Layer. Rather, only what is relevant to a given use case downstream will go 

through, leaving some of what analytics may produce unconverted. This is reasonable for 

analytic results that are primarily intended as input to other analytics versus intended to produce 

entities and relationships to capture long-term. 

As part of interpretation, entity resolution is undertaken to merge the entities. This assumes the 

common case where the Candidate Knowledge Store retains entities found in content processed 

earlier or already defined before processing. Some of these entities may represent the same 

individuals found elsewhere in the mapping process. Entity resolution recognizes when 

equivalent entities exist, merging the entities (and their properties) when they do. This entity 

resolution can be based on a variety of criteria including matching names and properties. It relies 

on reaching a sufficient threshold of match between the features describing extracted instances 

and existing entries. If a match is determined, features and evidence of the newly extracted 

knowledge are merged into the existing entry in the candidate knowledge. Otherwise, a new 

entry is created in the candidate knowledge for what was just extracted. During the entity 

resolution, it may be prudent to revisit certain assertions to refresh whether the decision to merge 

or keep distinct is still correct as more knowledge is created. It is not a trivial process or one that 

can be performed with a guarantee of no error. 

Following the interpretation, a validation (S) step helps ensure that the structure produced by the 

interpretation matches the expected schema and does not create any violations where the entities 

or properties are misused.6 Following this filtering (T) will follow criteria for removing certain 

assertions that should not propagate forward to the Candidate Knowledge Store (e.g., clearly 

duplicate statements).  

Ontology 

The Interpretation Process also assumes that the Knowledge Layer has a predesigned knowledge 

model, or ontology. This can be derived from or extended from an existing upper-level ontology, 

such as Basic Formal Ontology (BFO) [6] or the Suggested Upper Merged Ontology (SUMO) 

[7], possibly using mid-level extensions (such as CCO for BFO and MILO for SUMO), which 

are useful in helping to express the utility of the upper layer whose purpose can sometimes be 

mystifying when viewed in isolation. Further extensions can be made toward specific domains of 

interest (e.g., nuclear chemistry), specified as self-consistent domain-related hierarchies (i.e., 

 
6 For example, in RDF, SHACL (https://en.wikipedia.org/wiki/SHACL#Validation) is a language that could enable 

such validation. 
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“microtheories”) that are children of the upper and mid layers. With that in mind, the approach to 

the ontology supporting the Knowledge Layer seeks to achieve the following goals: 

1. Stable and consistent upper-level ontology. 

An ontology represents knowledge as a hierarchical set of possible primitive entities with their 

properties and relationships to other entities. At the upper level of the hierarchy, these entities 

and properties should be universal regardless of the application of the entire ontology. Key to 

achieving something this universal is that it be stable, which is to say it will remain fixed once 

established, and consistent, which is to say it does not exhibit any conflict between terms or their 

definitions. Using a well-vetted ontology that has proven stable as a reference is generally a best 

practice where possible. 

2. Capacity for microtheory extensions for any domain’s use cases. 

The upper-level ontology is insufficient to cover even a small portion of how a full ontology will 

be applied. A microtheory represents a supplementary set of entities and properties that is self-

consistent and covers a specific topic area, or domain. Moreover, it will be able to model any 

content or structure of knowledge that is needed to fit a use case, which is a set of questions 

applied against the knowledge model that it should be able to address. Finally, the microtheory 

should extend from the upper-level or mid-level ontology, namely the highest elements in a 

microtheory’s hierarchy should be children of elements in the upper-level or mid-level ontology. 

3. Brisk comprehensibility of the ontology. 

A complete ontology that covers a domain’s use cases presents a challenge in that it may exhibit 

a level of detail that creates a barrier to entry for using a knowledge model properly. Thus, 

aiming for a brisk comprehensibility of the ontology means that users should be able to add to 

and query it without devoting themselves to becoming as expert on the entire ontology as its 

designers. Documentation of the notable classes and properties in an ontology can indicate which 

are the worthiest of attention without artificially sacrificing the greater structure. 

4. Flexibility in defining or employing microtheories. 

While the upper-level ontology should be fixed, domain details and supported use cases may 

change with sufficient frequency that the microtheories need to be flexibly swapped, configured, 

and tailored, which is to say able to accommodate the domain or use cases changes. This 

flexibility can either be in how the microtheories are defined (i.e., the specific hierarchy of 

allowed entities, relations, and properties) or employed (i.e., swapping one microtheory for 

another with updates). 
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Figure 13: KBP Workflow ●, Blow-up 
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Candidate Down Selection Process 

The Candidate Down Selection Process (as marked in Figure 12) is where statements contained 

in the Candidate Knowledge Store are reduced to a subset that will be sent to another knowledge 

store within the KBP system (described in the overview below) or to one or more Knowledge 

Repositories external to the KBP system. This can be initiated by an ad hoc request (e.g., a query 

for entities meeting certain criteria), or it can follow a regular schedule where certain entities by 

type or features are submitted to the store(s) to which they are relevant. This process also relies 

on an assessment of the quality of the statements to be submitted. Confidence is the general term 

we use here to indicate a measure of how much trust should be placed in an assertion being 

accurate, but the nature of assessing confidence is complex. It is a significant challenge to arrive 

at a consistent metric for confidence that may account for vagueness of the original content, 

overtly stated uncertainty in the original content, trustworthiness of the source, and analytic 

accuracy. Specifics of confidence are beyond the scope of this paper. 

 

 

Figure 14: Knowledge Layer Stack 
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Figure 15: General Approach to a Comprehensive Workflow of Knowledge Stores
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Overview of Knowledge Stores 

Various types of knowledge stores can serve different needs downstream of the processes 

described above. These reflect the different ways such knowledge stores are used, and the 

requirements levied against them. This section delineates several notable knowledge store types, 

describing their distinctive features and how they fit into the pipeline. A stack diagram in Figure 

14 shows the knowledge layer that builds atop the results provided by the execution of 

information extraction. These stores break down into the Candidate Knowledge Store, the 

Mission Knowledge Store(s), the Volatile Knowledge Store(s), the Personal Knowledge Store(s), 

and the external Knowledge Repositories. A workflow encompassing each of these different 

knowledge stores in context is provided in Figure 15. 

Candidate Knowledge Store 

The Candidate Knowledge Store can be considered the hub of the activities within the KBP 

system; extracted information will flow into it, and selected elements of it may be submitted to 

external Knowledge Repositories. The relationship between the Candidate Knowledge Store and 

downstream recipients suggests there are useful ways to expand from the Candidate Knowledge 

Store into multiple knowledge stores with different expectations and use cases. While the default 

scenario anticipates a single Candidate Knowledge Store, it is also possible that a given 

application of this platform will require multiple such stores. 

Implicit throughout the document is that the Candidate Knowledge Store is specifically a 

repository for knowledge graphs produced by the information extraction store (iteratively or in a 

batch) and that its contents may be assessed for accuracy and relevance before a transfer 

downstream. It arises principally from what is extracted from unstructured content, but can also 

take structured sources, provided they also undergo the interpretation to align them to the 

Candidate Knowledge Store’s model. As noted above, a key concern is that many sources of 

error and uncertainty will inevitably be a part of its make-up, which adds one motivation to the 

list of reasons for why rollback (i.e., elimination of statements) may be required if the Candidate 

Knowledge Store is maintained for an extended period of time; other reasons might include the 

retention time is exceeded or information is not deemed current. 

An important consideration of the Candidate Knowledge Store is that because it is likely quite 

sizable, it may not be feasible to implement it with a graph database (e.g., Neo4J). Instead, it 

may be best structured in a more scalable solution that nevertheless preserves the content that 

makes it conform to a knowledge graph and allows for search of relevant content that can be 

submitted to downstream graph databases. 

Mission Knowledge Stores 

While a Candidate Knowledge Store is comprehensive (i.e., contains any and all data that is fed 

into the KBP system at the earliest stage), downstream of this are one or more Mission 

Knowledge Stores aimed toward addressing specific topics relevant to a mission need. Unlike the 

Candidate Knowledge Store, the Mission Knowledge Stores should be graph databases with a 

rich ability to query and pose questions to produce subgraphs to answer questions tied to the core 

competencies of the system. 
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Methods for determining what content in a Candidate Knowledge Store should feed a given 

Mission Knowledge Store are not uniform. This may be based on neighborhoods around a given 

entity, subgraphs with content exhibiting certain keywords, or subgraphs that arise from specific 

sources deemed relevant.  

Volatile Knowledge Stores 

While the Mission Knowledge Stores intend to reflect the knowledge extracted from input 

content relevant to a given mission, they can also serve as a basis for individuals or small teams 

to explore subgraphs that interest them for a given mission or use case question. In addition to a 

greater focus, this sort of exploration may also require a provision for less certain—or 

speculative—facts to allow for different scenarios that the evidence does not widely support, but 

which a specific user or team wishes to entertain. This would give the ability to create subgraphs 

that reflect states that follow from trusted, extracted, and possible facts, which are the outcomes 

of questions that include conditions of “what if X holds?” One does not want the overall Mission 

Knowledge Stores to be flooded with facts that exist only to create proposed possibility, so a 

model is required to allow for such statements to have a limited scope to a scenario visible to 

only the individual or team asking the question. Moreover, an individual would not necessarily 

want every subgraph to be affected by facts associated with a specific “what if” question, so 

being able to maintain these as separate contexts is necessary. This ability to fork off contexts 

that encompass the relevant assertions from a Mission Knowledge Store and less certain 

assertions intended to aid in answering the question is captured by the Volatile Knowledge 

Stores. These are characterized as “volatile” because they are impermanent and may only live 

while a question is being asked unless they are archived on completion. Elevating the content 

unique to the Volatile Knowledge Store back to a given Mission Knowledge Store, for instance, 

should be done with manual oversight. As conceived, the Volatile Knowledge Stores will consist 

of assertions that are only visible to an individual or small team. Importantly, the Volatile 

Knowledge Stores are modifiable by users,7 even though they also leverage or draw on assertions 

captured in the Mission Knowledge Store. 

Personal Knowledge Stores 

Like Volatile Knowledge Stores, the Personal Knowledge Stores are also user-driven, but 

specifically aimed to take content from Mission Knowledge Stores and Volatile Knowledge 

Stores to organize the information that is directly intended to inform an analyst product. A key 

value of a Volatile Knowledge Store is to ensure that the Mission Knowledge Store content is 

more accessible and useful. Some of the graph expectations here may be softened for ease of use 

by analysts.  

The approach taken here is to allow more user modification and input to increase engagement 

and the ability to tailor a graph to a relevant subgraph and allow it to lean on additional facts to 

arrive at an answer. These represent a step beyond even the Volatile Knowledge Stores to further 

bridge the knowledge stores and any downstream products that can be generated using them. For 

example, Mission Knowledge Stores and Volatile Knowledge Stores both assume some facility 

on the part of the user to query, modify, and interpret the graph to arrive at something personally 

 
7 Underscoring their “volatility” as compared to Mission Knowledge Stores. 
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relevant. Being able to reduce the complexity of this interaction and increase the power of a user 

to alter or inject content into a personally-scoped subgraph should be considered when trying to 

close the divide between the graphs and the ultimate analytic artifacts they inform. There is a 

potential for interim representations somewhere between the graph and a report based on 

analysis that may exhibit some qualities of both graphs and also human-readable material. This is 

still an area of active study and consideration. 

Knowledge Repositories 

Strict assumptions about downstream Knowledge Repositories are avoided in the architecture 

presented here, other than accepting they are external or beyond the scope of the control of the 

KBP system and are likely to have greater permanence (hence the distinction between stores and 

repositories). However, there are notable subclasses of such repositories that are expected to 

exist which can have distinctive relationships to the system beyond being target recipients. A key 

example is a Trusted Knowledge Store, which is characterized by human curation, containing 

highly credible assertions, and usually a scope that is comprehensive with respect to the needs of 

a given organization. As such, a Trusted Knowledge Store might receive results selected from a 

Candidate Knowledge Store, but the path to addition to its graph may not be trivial as it would 

rely on human assessment of the selected candidate assertions to determine which, if any, are 

included as credible and relevant, an activity outside the control of the KBP system. Moreover, a 

Trusted Knowledge Store is a potential source of assertions that would be relevant to the 

Candidate Knowledge Store to allow for additional context and facilitate inference within the 

Candidate Knowledge Store. This is a much less prohibitive activity as the system can ingest the 

Trusted Knowledge Store’s assertions that are relevant through its pipeline, bypassing 

information extraction and undergoing the interpretation, to add the input to the Candidate 

Knowledge Store’s graph. 

Knowledge Store System Case Studies 

In this section, we describe two different applications of KBP and, at a high level, how they take 

the general approach and apply it to a specific implementation for knowledge stores. 

Case Study 1: General Knowledge at Scale 

The first case study aims to describe a comprehensive scope, where the upstream data-to-

knowledge pipeline is intended to serve a category of data that is not limited to a single domain, 

but instead intends to capture all streams of data available into a single interconnected graph that 

represents the totality of knowledge. This single graph is held in a single Candidate Knowledge 

Store, and because of its size and scope, it is likely not a traditional graph store capable of robust 

inference. Instead, this store is more likely mapping its knowledge to a scalable cloud database 

solution, even if its entries reflect the structure of a graph store. Downstream of this are 

individual mission stores that are graph stores, although they are scoped to represent only 

relevant subgraphs of the Candidate Knowledge Store. These in turn can inform any number of 

Volatile Knowledge Stores, Personal Knowledge Stores, or downstream Knowledge 

Repositories. This variation is depicted in Figure 16; the principal difference between this and 

the comprehensive workflow is there being a single Candidate Knowledge Store. 
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Case Study 2: Science & Technology Intelligence Support 

An alternate use case for knowledge base population is in support of Science and Technology 

Intelligence (S&TI), which is required to scale with the tremendous influx of available and 

relevant, structured and unstructured data characterizing technology and the real-world landscape 

of research, funding, development, engineering, and commerce. While narrower than the general 

knowledge use case, it also anticipates a considerable effort in automatically populating 

knowledge graphs with this content. The Candidate Knowledge Store is not needed in this case, 

as the queries around specific science and technology disciplines and topics are used to directly 

populate the Mission Knowledge Stores with the documents and entities related to them. Use 

cases for this activity typically are not driven by the creation of a master landscape of 

technological concepts and real-world entities related to them (e.g., documents, authors, funding 

organizations). Instead, it is a pattern that is typically repeated for specific technology areas, each 

representing a different mission. Because of this, mission knowledge bases focused on specific 

technologies are populated independently to allow for analysts to examine the history and 

dynamics around a given technology independently. In the specific existing implementations so 

far engineered to support this use case, there has not been a need for Volatile Knowledge Stores, 

although several downstream applications with built-in visualizations serve in the capacity of ad 

hoc Personal Knowledge Stores. Moreover, this has been engineered to be shareable with 

downstream Knowledge Repositories. A high-level depiction of this implementation is provided 

in Figure 17. 

Command and Control of Knowledge 

The Selection Process allows for the transfer of knowledge upstream or downstream through the 

Knowledge Layer. There are two main patterns reflected here and depicted in Figure 18.  

The first is the results advancement pattern, which takes a query that collects a relevant portion 

of a given mission subgraph to be transitioned downstream to one or more Knowledge 

Repositories. Notably, this content is likely to be gated, that is to say curated or quality checked 

before it is ingested.  

The second is the reference collection pattern, which is almost the reverse. This queries a 

downstream Knowledge Repository for trusted subgraphs which are then sent through the 

Interpretation Process Pipeline’s activities, although bypassing the Candidate Knowledge Store 

(by way of the dashed lines into R and out of T), to be aligned with and then placed in a specific 

Mission Knowledge Store. This is expected to be resolved against existing entities in the store, 

but it can also serve as a “cold start” of such a store if the store begins empty. The typical cold 

start for KBP is described in the next section.
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Figure 16: General Knowledge at Scale Implementation 



35 

 

 

Figure 17: Science & Technology at Scale Knowledge Implementation
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Figure 18: Command and Control of Knowledge 
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Cold Start 
Often there is an implicit assumption that the KBP process will always be used to augment an 

existing knowledge base and is already underway in its operation. Nevertheless, it is important to 

consider what is required when approaching a cold start of the system toward a knowledge base 

that is not populated or where there is not yet the connectivity that such a knowledge graph 

requires to be useful [1, 2, 3]. This section presents the expected phases for a cold start, 

augmented by a specific example that fits a use case we previously described.  

Issues with the cold start span the different layers of the architecture. One plausible scenario 

begins before even what constitutes the appropriate data is identified. For example, consider the 

situation described in the case study described previously on support to science and technology 

intelligence, where one may have an interest in a specific topic but little more to go on beyond 

that and perhaps some keywords and definitions that would be deemed relevant. If one has no 

more than this, how does one arrive as a seed graph that should be the initial knowledge base? 

The following diagrams walk through the KBP system with a method to answer this question. A 

high-level view of the cold start from initialization to a populated knowledge base is presented in 

Figure 19, and subsequent figures break this high-level diagram into its constituent phases.  

Phase One (Figure 20) consists of the Data Mesh Layer activity executes such that content 

ingested either document-by-document or in bulk into the data lake (consisting of unstructured 

data and captured metadata) is also vectorized against a language model to be held in a vector 

store where the vectors represent the embeddings of that document, allowing them to be 

searchable by a mathematical distance from similarly vectorized queries. The vector store 

conforms to a schema that indicates what portions of a document and its metadata are used in the 

embeddings. 

Through that phase, the process executes against all available data. When a request is made for a 

cold start based on a topic (or a set of topics) the Phase Two (Figure 21) activity initiates a run, 

which involves a selection process that requires an initial set of seed terms. To expand the 

capability past keywords to allow close alignment of the semantics of what a user actually seeks, 

the terms are mapped against the taxonomy (and importantly the taxonomy’s explicit human-

readable definitions), which are retrieved and compiled into a complete query that covers 

detailed descriptions of what is relevant.  

Using the text gathered in Phase Two, Phase Three (Figure 22) submits the semantic query to the 

vector store as a vector embedding. Content in the vector store that is within a certain Euclidean 

distance to the vector is retrieved as query results. These results capture both the pertinent 

metadata captured in the semantic store and a relevant chunk of the content that was deemed 

similar to the query. It is in Phase Four (Figure 23) that the complete documents referred to in 

the semantic store that the query identified are fetched to undergo extraction and population of 

the knowledge base. Phase Five (Figure 24) depicts the movement of the documents retrieved 

through the Information Layer and into the Knowledge Layer as described in the earlier sections. 

Ultimately, a given document becomes a graph of the relevant entities (country, person, 
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document, and organization examples illustrated in the figure) which are further connected to 

topics derived from the query.  

Once these graphs are provided, the cold start also must consider how to best populate the 

knowledge graph, a consideration that bears on entity resolution. The entities with the least 

ambiguous identifiers could, for instance, be the initial entities as they are most apt to be 

resolved based on their identifiers. Entities with a greater chance of overlapping identifiers (e.g., 

persons who might share the same name) should be downstream as they could use affiliations 

with other more uniquely identifiable entities to further resolve them (e.g., national citizenship, 

employing organization, educational institution).  

When the cold start is accomplished, the artifacts it produced can give the insights needed to 

discover what is missing from the graph to allow for iteration on the process to pull in more 

documents to undergo extraction and mapping to the knowledge store. This additional iteration 

can also be spurred by something interesting that was discovered in the graph (as opposed to the 

absence of something the expected or required for the graph) in which case content describing 

the discovered information can dictate the query that brings in more documents to expand the 

knowledge in a direction dictated by those who curate the knowledge store.
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Figure 19: Cold Start State Diagram 



40 

 

 

Figure 20: Cold Start, Phase One
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Figure 21: Cold Start, Phase Two 
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Figure 22: Cold Start, Phase Three
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Figure 23: Cold Start, Phase Four
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Figure 24: Cold Start, Phase Five
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Conclusion 
The amount of unstructured content far outstrips a manual ability to read and capture all the 

knowledge it contains. This is true across many domains, meaning that the automated solution 

that KBP offers has wide applicability. Many issues that inform KBP remain active areas of 

research (e.g., uncertainty, entity resolution) that can be further enabled by having this 

architecture as an apparatus on which to study the problems and eventually arrive at ever more 

efficient and accurate solutions on how to arrive at timely, impactful, and informed decisions 

based on copious data. 

Glossary 
Adapter: wrappers for information extraction components that mediate what they provide the 

Executive and submit to the Information Extraction Store. 

Candidate Down Selection Process: activity in the workflow that determines which proposed 

assertions in the candidate knowledge store should be transferred to one or more downstream 

knowledge repositories used in practice.  

Candidate Knowledge Store: a repository for knowledge content produced by the information 

extraction store, the contents of which may be assessed for accuracy and relevance before 

transfer to downstream knowledge repositories that require them.  

Component: a generalized term for any distinct analytic application operating in the Extraction 

Process with the purpose of extracting one or more results from data or that data augmented by a 

previous component’s execution.  

Cold Start: in the context of a Knowledge Base Population System, this occurs when document 

processing is started with an empty Knowledge Store; that is, there are no assertions about 

entities, relations, or events in the knowledge graph from which the system can expand and 

interpret incoming document information. 

Data Mesh Layer: phase of workflow that encompasses access, query, and triage of multiple 

data lakes to produce input documents for information extraction.  

Data Lake: a scalable repository that allows you to store, index, and query documents 

(structured and unstructured).  

Data Property: a named link in the Knowledge Layer that bridges an entity subject to a literal 

object. 

Data Triage: the phase that ensures the correct and necessary data is retrieved from the data 

lake(s) and made available to a given instance of a workflow through the system.  

Decomposition Process: activity in the workflow that breaks complex documents (e.g., PDF, 

Office) into metadata and plaintext content that will undergo extraction.  

Entity: a thing extracted from content and ultimately represented as a typed individual in the 

Knowledge Layer, which acts as a node argument of object and data properties. 
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Equivalence Class: a set of unique identifiers for instances that are asserted to refer to the same 

instance. 

Executive: code that orchestrates the workflow from the query against the data lake to the 

decision processes of what candidates are offered for delivery to downstream knowledge 

repositories.  

Extraction Process: activity in the workflow that performs extraction of entities, relationships, 

and other content (e.g., topics); this will also include the coreference of mentions of entities 

within a document.  

Fetched Documents: a subset of documents in the data lake that a query has selected to pass to 

information extraction.  

Group: a set of members (instances) that can accommodate explicit plurals in the Information 

Layer. 

Information Extraction Component Cache: the “raw” output of a component wrapped by an 

adapter. 

Information Layer: phase of workflow that encompasses extraction and resolution.  

Extraction Processing Record: a record of the application of adapters to the document. 

Information Extraction Store: a repository for both the subset of documents fetched for 

information extraction and the interim results of the extraction process on that subset.  

Instance: a distinct thing in the Information Layer, asserted to exist and inclusive of entities, 

events, and relationships. 

Interpretation Process: activity in the workflow that includes 1) mapping entities to the 

semantics and structure of the candidate knowledge store, 2) linking entities discovered by way 

of information extraction to the entities extant in the candidate knowledge store, and 3) 

preserving the provenance and uncertainty metadata from the source.   

Knowledge Layer: phase of workflow that encompasses activities on the candidate knowledge 

store, including the selection of assertions to send to other knowledge repositories.  

Knowledge Repositories: any number of repositories outside the direct control of the workflow 

but which are the ultimate recipient of assertions discovered by the overarching process 

executing on the data.  

Knowledge Staging: the phase that ensures the correct knowledge assertions are selected for 

sending to other knowledge repositories.  

Log: list of the relevant events that go into the creation of an instance in the Information 

Extraction Store. 

Mapping: the process of converting an Information Extraction Store instance into a 

representation compatible structurally and semantically with the Knowledge Layer’s ontology. 
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Microtheory: a set of entities and properties that supplements a more comprehensive upper-level 

ontology, is self-consistent, and elaborates on a specific topic area. 

Mission Knowledge Store: a mission-focused graph database intended to support specific use 

case questions. 

Namespaced Token: a string that contains a namespace (a contextual string) and an arbitrary 

string (representing a description). 

New Data: any data, structured or unstructured, being provided to the data lake.  

Object Property: a named link in the Knowledge Layer that bridges one entity to another. 

Ontology: a model for knowledge consisting of a taxonomy of entity and property labels as well 

as rules for proper structure and inference. 

Personal Knowledge Store: user-driven knowledge store, specifically aimed to take content 

from Mission Knowledge Stores and Volatile Knowledge Stores to organize the information that 

is directly intended to inform an analyst product; graph expectations here may be softened for 

ease of use. 

Query: a request for data placed against the data lake to fetch documents that will undergo 

information extraction.  

Raw Output: the results a component will produce before any mediation from an adapter. 

Selection Process: activity in the workflow that performs queries on the data lake to fetch a 

subset of documents to undergo information extraction.  

Upper-level Ontology: an ontology where the entities and properties are largely universal and 

applicable to any domain or use case. 

Trusted Knowledge Store: a knowledge store by human curation, containing highly credible 

assertions, and usually a scope that is comprehensive with respect to the needs of a given 

organization. 

Volatile Knowledge Store: a knowledge store intended to explore both known facts pulled from 

the Mission Knowledge Store and speculative “what-if” assertions; intended for use by small 

teams or individuals and disappear after use unless archived. 
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Appendix A. AI Assurance 

The architecture this document describes largely assumes it will be driven by analytic 

components informed by AI or ML. These can provide capabilities that exceed what is possible 

manually, but they also incur certain risks that require an approach that bears in mind a variety of 

assurance concerns that go beyond just performance in the best case or average case scenarios, 

especially when it will be deployed, monitored, and sustained.  

Core considerations of AI assurance aim to ensure systems enabled by AI be 1) reliable, as in 

performing their behaviors consistently, 2) robust, as in being able to adapt and recover after 

being fielded, 3) secure, as in being resistant to being subverted, tampered with, or stolen, 4) 

interpretable, as in having actions and outcomes that can be explained and held to account, 5) 

safe, as in not causing cause unintended harm, and 6) equitable, as in fair and not exhibiting 

bias. 

Toward a government context, the Department of Defense in 2021 released a memo8 that 

described distinct AI ethical principles that overlap the above assurance considerations. These 

principles (expressed verbatim from the memo) include being:  

• Responsible: DoD personnel will exercise appropriate levels of judgment and care, while 

remaining responsible for the development, deployment, and use of AI capabilities. 

• Equitable: The Department will take deliberate steps to minimize unintended bias in AI 

capabilities. 

• Traceable: The Department’s AI capabilities will be developed and deployed such that 

relevant personnel possess an appropriate understanding of technology, development 

processes, and operational methods applicable to AI capabilities, including transparent 

and auditable methodologies, data sources, and design procedure and documentation. 

• Reliable: The Department’s AI capabilities will have explicit, well-defined uses, and the 

safety, security, and effectiveness of such capabilities will be subject to testing and 

assurance within those defined uses across Al capabilities’ entire life-cycle. 

• Governable: The Department will design and engineer AI capabilities to fulfill their 

intended functions while possessing the ability to detect and avoid unintended 

consequences, and the ability to disengage or deactivate deployed systems that 

demonstrate unintended behavior. 

It is our intent to apply AI technology in a way that strives to meet the principles expressed here. 

 

  

 
8 https://media.defense.gov/2021/May/27/2002730593/-1/-1/0/IMPLEMENTING-RESPONSIBLE-ARTIFICIAL-

INTELLIGENCE-IN-THE-DEPARTMENT-OF-DEFENSE.PDF  

https://media.defense.gov/2021/May/27/2002730593/-1/-1/0/IMPLEMENTING-RESPONSIBLE-ARTIFICIAL-INTELLIGENCE-IN-THE-DEPARTMENT-OF-DEFENSE.PDF
https://media.defense.gov/2021/May/27/2002730593/-1/-1/0/IMPLEMENTING-RESPONSIBLE-ARTIFICIAL-INTELLIGENCE-IN-THE-DEPARTMENT-OF-DEFENSE.PDF


49 

 

 

Works Cited 

[1]  B. Lika, K. Kolmvatsos and S. Hadjiefthymiades, "Facing the cold start problem in 

recommender systems," Expert Systems with Applications, vol. 41, no. 4, pp. 2065-2073, 

2014.  

[2]  J. Bobadilla, F. Ortega, A. Hernando and J. Bernal, "A collaborative filtering approach to 

mitigate the new user cold start problem," Knowledge-Based Systems, vol. 26, pp. 225-238, 

2012.  

[3]  J. B. Schafer, D. Frankowski, J. Herlocker and S. Sen, "Collaborative Filtering 

Recommender System," The Adaptive Web, pp. 291-324, 2007.  

[4]  ASF, "Apache Tika," The Apache Software Foundation, [Online]. Available: 

https://tika.apache.org/. [Accessed 2022]. 

[5]  "Tesseract Documentation," 2022. [Online]. Available: https://tesseract-ocr.github.io/. 

[6]  R. Arp, B. Smith and A. Spear, Building Ontologies With Basic Formal Ontology, MIT 

Press, 2015.  

[7]  I. Niles and A. Pease, "Towards a Standard Upper Ontology," in Proceedings of the 2nd 

International Conference on Formal Ontology in Information Systems, Ogunquit, Maine, 

2001.  

[8]  E. Tabassi, K. Burns, M. Hadjimichael, A. Molina-Markham and J. Sexton, "NISTIR 

8269," October 2019. [Online]. Available: 

https://csrc.nist.gov/publications/detail/nistir/8269/draft. 

[9]  R. Winder, J. Jubinski, C. Giannella and M. Jones, "ODYSSEY: A SYSTEMS 

APPROACH TO MACHINE LEARNING SECURITY," April 2021. [Online]. Available: 

https://www.mitre.org/publications/technical-papers/odyssey-a-systems-approach-to-

machine-learning-security. 

[10]  MITRE, "MITRE Atlas," [Online]. Available: https://atlas.mitre.org/ . [Accessed 2022]. 

 

 

 

 


	Abstract
	Acknowledgements
	Introduction
	System Architecture Overview
	Data Mesh Layer
	Information Layer
	Decomposition Process
	Extraction Process: Text
	Extraction Process: Other Media

	Knowledge Layer
	Interpretation Process
	Ontology
	Candidate Down Selection Process
	Overview of Knowledge Stores
	Candidate Knowledge Store
	Mission Knowledge Stores
	Volatile Knowledge Stores
	Personal Knowledge Stores
	Knowledge Repositories

	Knowledge Store System Case Studies
	Case Study 1: General Knowledge at Scale
	Case Study 2: Science & Technology Intelligence Support

	Command and Control of Knowledge

	Cold Start
	Conclusion
	Glossary
	Appendix A. AI Assurance

