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1	 Executive	Summary
This study explores the use of Vehicle Miles Traveled (VMT) data in evaluating the effectiveness of Advanced Driver 
Assistance Systems (ADAS). Leveraging a large dataset pooled from multiple vehicle manufacturers participating in 
a collaboration between government and industry, this study provides more comprehensive coverage than other 
sources, demonstrating the feasibility of conducting robust safety analyses using vehicle-level mileage data to 
control for exposure. 

VMT data included a combination of telemetry-based and dealer-visit based collection methods. Despite variability 
in manufacturer reporting practices and changes over time, the pooled VMT data produced ADAS effectiveness 
results consistent with previous studies, demonstrating its potential value to traffic safety research. The findings 
underscore the importance of establishing standardized reporting protocols to enhance the utility of pooled 
datasets. Cumulative measures, such as year-end mileage, offer significant advantages by simplifying data 
management and mitigating issues like corrupted or missing data. 

The study also reveals that while more frequent data reporting improves accuracy, estimates remain reliable 
even with time gaps of several months. Aggregated measures, such as annual or monthly mileage per vehicle, are 
sufficient for certain types of safety analyses, offering a balance between efficiency and data quality. This approach 
avoids the complexity and volume of sensitive trip-level data while maintaining analytical effectiveness. 

A key contribution of this research is the validation of Quasi-Induced Exposure (QIE) for conducting ADAS 
effectiveness analyses. Using VMT as an exposure metric, rear-end struck vehicle crash rates were assessed for 
vehicles with and without Automatic Emergency Braking (AEB) equipment. The findings suggest that AEB equipage is 
associated with reduced or neutral rear-end struck rates, supporting the use of QIE in analyzing ADAS effectiveness. 

In conclusion, this study demonstrates the potential of pooled VMT data to advance traffic safety research. The 
insights gained here can guide future efforts to standardize reporting practices, optimize data aggregation methods, 
and leverage telematic data sources for more effective safety analyses and interventions.

2	 Introduction
ADAS hold significant promise for enhancing road safety by 
reducing crashes, preventing serious injuries, and potentially 
saving thousands of lives annually. The Partnership for 
Analytics Research in Traffic Safety (PARTS), depicted 
in Figure 1, was established in 2018 as a public-private 
partnership between several automobile manufacturers 
and the National Highway Traffic Safety Administration 
(NHTSA), and operated by The MITRE Corporation (MITRE) 
as an independent third party. The goal of PARTS is to 
advance traffic safety through the collaborative analysis of 
automotive safety, with partners voluntarily sharing data for 
joint analyses. 

PARTS has successfully leveraged shared data to measure 
real-world effectiveness of ADAS technologies [1] [2]. Prior 
PARTS studies and similar work by others [1] [2] [3] rely 
on QIE methods to account for vehicle exposure, a critical 
factor in quantifying vehicle safety performance. This study 
aims to validate these methods. PARTS undertook an effort 
to integrate VMT data from dealer visits and telematics 
sources with vehicle equipage information, all provided 

Governance
Board

Figure	1.	PARTS	Participation
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by automakers, and police-reported crash data, provided by NHTSA. This enriched dataset offers a comprehensive 
and diverse perspective on the relationship between miles traveled and crash occurrences—insights that would be 
challenging to achieve without a collaborative effort like PARTS. This study also demonstrates the potential of using 
pooled telematics data to explore critical safety factors, such as the usage and activation rates of ADAS, thereby 
contributing to more informed and effective traffic safety strategies.

This ADAS crash rate study serves as a proof of concept for applying vehicle-specific exposure data to the study of 
ADAS effectiveness, specifically VMT. In addition to illustrating the potential for future work in this space, the goal of 
the study was to validate prior findings from QIE analyses performed by the PARTS partnership.

Study Overview 
VMT is commonly understood, relatively straightforward to calculate, and serves as a valuable exposure measure in 
traffic safety research. Use of field-based VMT has not been widely cited in the literature, and availability of vehicle-
level VMT varies across research groups. 

The study began with a limited set of vehicle models and allowed for data collection from either telematics or 
dealer visit sources to facilitate initial progress. The data collection phase demonstrated the feasibility of sharing 
limited sets of raw telematics data, which is vehicle-based data collected through telecommunication services 
during operation of the vehicle, stored in databases and managed by the automaker. The process of ingesting and 
standardizing data provided valuable insights into the variety of data formats, data completeness, and data quality. 
For example, gaps in data reporting across vehicles resulted in eliminating a number of Vehicle Identification 
Numbers (VIN) that had no VMT reported. While future studies may consider augmenting data through mileage 
estimation, in the current effort the partnership opted to sacrifice some vehicles to improve accuracy. For this study, 
partner-provided data were used to estimate each vehicle’s VMT at the end of each calendar year. This approach 
allowed for a consistent temporal framework for analysis. The team then calculated crash rates using this VMT 
exposure metric and compared the results to those obtained from a QIE analysis conducted as part of this study. 

3 Literature Review
As ADAS features have become widespread in U.S. vehicles over the past 10 years [4], there has been increased 
interest in measuring their effect on traffic safety. Researchers attempting to fill the gap in understanding ADAS 
effectiveness have leveraged a variety of methods and data sources. A common concern in such studies is how to 
properly account for exposure. In this section, we describe a number of approaches used and highlight how they 
relate to the current PARTS analysis.

Vehicle Mileage and Crash Rates
Cicchino’s 2024 study examines crash rates in vehicles with ADAS [5]. Utilizing aggregate VMT data from Carfax, 
Cicchino compares crash rates across various ADAS features, including AEB, Forward Collision Warning (FCW), 
Adaptive Cruise Control (ACC), Lane Keeping Assistance (LKA), and Lane Departure Warning (LDW). While Cicchino’s 
study provides useful insights, it uses average VMT by category rather than VIN-specific mileage. The dataset from 
the PARTS data-sharing partnership, with its large set of VIN-specific VMT data, enables more granular investigations 
into how specific ADAS features influence crash rates.

Elvik’s 2023 synthesis of driver mileage and accident involvement highlights the limited number of studies examining 
the relationship between mileage and crash involvement [6]. Elvik points out the inaccuracies of self-reported 
data and the need for high-quality data to control for variable factors such as sex and driving environment. The 
synthesis suggests crash involvement is not a linear function of annual miles driven, underscoring the value of 
vehicle-specific mileage information. Such detailed data facilitate the development of models that can better assess 
the safety impacts of ADAS. Elvik’s concerns about self-reported data are addressed in PARTS through the use of a 
large, automatically recorded dataset with vehicle-specific information, but it does lack information on confounding 
factors such as driver age and sex associated with mileage accumulation.
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Naturalistic Driving Studies and Crash Data
Flannagan et al.’s 2023 study on establishing a crash rate benchmark using large-scale naturalistic human ride-
hail data provides insights into crash rates in urban environments [3]. Conducted in San Francisco with a fleet of 
fewer than 1,500 vehicles, the study reports a crash rate of 64.9 crashes per million Operational Design Domain 
(ODD) miles. ODD miles are related to VMT, but restricted to a defined subset of driving, so crash rates are not 
directly comparable. This research underscores the importance of understanding driving context when measuring 
real-world crash rates, including driver-, trip-, and geography-related factors. In this case, the vehicles were 
operated largely by young male rideshare drivers. While this type of data collection has the potential to provide 
a very detailed analysis of many aspects of driving, it requires expensive data collection, reduction, and analysis 
that is inaccessible to most researchers and often involves limited fleets of volunteer drivers. Kusano et al.’s 2024 
comparison of Waymo rider-only crash data to human benchmarks offers an analysis of Automated Driving System 
(ADS) crash data [7]. Using NHTSA’s Standing General Order reporting and adjusting for underreporting biases, 
the study provides a comparison of ADS and human-driven crash rates. The research highlights the challenges 
of working with public crash and VMT data, emphasizing the need for accurate datasets to evaluate the safety 
performance of ADS, especially when ADS vehicles have limited ODDs and crash reporting thresholds differ from 
typical human-driven vehicles. Although the PARTS dataset does not currently include ADS, future analyses of 
systems with disparate ODDs will face similar challenges. 

4	 Data	Sources	and	Preparation

Data Overview 
This PARTS study used three primary data sources:
• Vehicle VMT data: collected at dealer visits and/or via telematics
• Vehicle equipage data
• Crash data.

The nine PARTS auto manufacturer partners contributed VIN-specific VMT data for 8.6 million vehicles, yielding 
a substantially larger vehicle set than used by any of the related studies identified in the literature review. Data 
were collected in two ways: during dealer visits and via telematics. Dealer-based VMT records provided odometer 
readings reported during visits for vehicle service, as well as information on the service date and the state where the 
visit occurred. Telematics records included odometer readings reported by the vehicle in response to an established 
trigger or at some regular interval determined by the manufacturer as well as the date reported. Two manufacturers 
provided both telematics and dealer-based data, three provided telematics only, and four provided dealer visit data 
only. Each partner provided mileage data for two U.S.-sold models, one from the small Sport Utility Vehicle (SUV) 
segment and one pickup truck, for model years 2018 to 2023. All records included model, model year, timestamp, 
VMT, and in some cases state.

Vehicle equipage data came from the 2025 PARTS ADAS Effectiveness Study [1]. Auto manufacturer partners 
provided VIN-specific vehicle equipment data for approximately 98 million passenger vehicles sold in the United 
States, including 168 vehicle models from model years 2015–2023 and covering 10 vehicle segments (see Figure 2). 
This vehicle equipment data enabled the identification of the following ADAS features present on the vehicle at the 
time of manufacture¹: AEB, pedestrian AEB, LDW, LKA, and Lane Centering Assistance (LCA).

¹ The availability or activation of ADAS features at the time of crash was not considered for this study. 
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The 2025 PARTS study also used police-reported crash data from 16 states. Data from 15 of these states was 
provided by NHTSA through its Consolidated State Crash (CSC) database, which consolidates police-reported crashes 
received from states through the Electronic Data Transfer (EDT) process. In addition to the CSC data, Michigan crash 
data were provided by the University of Michigan Transportation Research Institute (UMTRI) with permission from 
the Michigan State Police. The data used in each case was a census of all police-reported crashes in those states. 
Data were limited by what was available in the original state-level crash report, and specific fields and data elements 
varied by state. This study focused on crashes that occurred prior to September 2023, with some variation of data 
availability across the 16 states included in the analysis. The crash data encompassed a total of 21.2 million crashes 
involving 36.8 million vehicles.

MITRE linked VMT and vehicle equipage with police-reported crash data, resulting in 279,993 crash-involved 
vehicles with associated VMT data. These nearly 300,000 vehicles have VMT data, equipage information, and crash 
data, which allowed for this study of VMT as an exposure metric for ADAS effectiveness.

Data Preparation
In conducting this study, a rigorous data processing protocol for manufacturer VMT records ensured data 
quality, consistency, and usability. The steps described below also ensured the integrity and confidentiality of 
the vehicle data. 

Data files were first assessed for completeness and accuracy. Minimum required fields included Model, Model Year, 
VIN, Mileage Read Date, and Vehicle Mileage. Each manufacturer’s data adhered to its own reporting conventions, 
which meant field names, data formats, and mileage read intervals varied. Some manufacturers provided event-
driven mileage readings, while others reported data at regular intervals. Each manufacturer’s raw files were 
consolidated into a single file, verifying consistency between raw files and facilitating further processing.

VINs were masked and replaced with unique and persistent identifiers across all datasets as linking values. Records 
with invalid VINs were excluded during this step to maintain data integrity.

A source field identified records as coming from telematics or dealer visit data.

Data fields were standardized to ensure consistency across manufacturers. This included renaming fields to 
common names, ensuring uniform data types (e.g., numeric, date-time), converting distance units (e.g., kilometers 
to miles), and standardizing date formats. Basic filters were also applied to exclude invalid or extreme data points, 
ensuring mileage values were non-negative, monotonically increasing, and within a reasonable range.

Next, VMT records were linked with PARTS vehicle build data using the masked vehicle identifiers. This step added 
key vehicle attributes, particularly information about ADAS features, and served to exclude any non-U.S. VMT 
records received. Additionally, customer state or state of sale was added from the build data in cases where it was 
not available from the VMT data. The state field was used when merging VMT data with crash data to infer which 
vehicles were operating in states with available crash data.

The analysis used each vehicle’s mileage at the end of each calendar year during the study period. Some 
manufacturers provided VMT on these dates, but most did not. Therefore, VMT on those key dates required 
estimation. To be eligible for VMT estimation, vehicles were required to have at least one valid VMT record 30 
days or more after sale and to be associated with one of the states with PARTS crash data: Arkansas, Connecticut, 
Florida, Indiana, Iowa, Kansas, Maryland, Michigan, Minnesota, Nevada, Ohio, Tennessee, Texas, Utah, Virginia, and 
Wisconsin.

For each combination of vehicle and key date, mileage was estimated using one of the following three methods (in 
descending order preference):
• Interpolate Pre/Post: Required a VMT update both prior to and within two years after the key date. Key date 

VMT was estimated using linear interpolation between these reported dates.
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• Interpolate Post: If a VMT update was available only within two years after the key date, the customer 
delivery date was treated as a proxy report with zero mileage, and linear interpolation was performed on 
that basis.

• Extrapolate: If a VMT report was available only before the key date, average miles per day since customer 
delivery was computed and used to extrapolate to the key date. This method involves higher estimation error 
than interpolation. As a partial mitigation, VMT reports greater than one year prior to the key date were 
excluded.

If none of these methods could be applied, no VMT was estimated. Once mileage estimates at key dates were 
complete, VIN coverage was assessed across original equipment manufacturers (OEM), vehicle models, and model 
years to ensure reasonable representation. This included a review of differences in data reporting among OEMs and 
an examination of how reporting practices evolved over time. Notably, we observed variation in update frequency 
and vehicle coverage, with a recent shift from dealer-based data to telematics data for those who provided both. 
Readers are cautioned to bear this variation in mind while interpreting results. Finally, we assessed the estimation 
error associated with each method, considering the data time interval, and derived insights into the optimal update 
frequency for maintaining data accuracy.

Descriptive Statistics of the VMT Dataset
The 8.6 million VINs with VMT data accounted for 71% of vehicles with the target models/model years based on 
PARTS equipage data. Figure 3 shows the counts of crash-involved vehicles with and without VMT data for each 
model year. Overall counts are greater for earlier model years, largely reflecting greater exposure. The proportion of 
crash-involved vehicles is greater for more recent model years.

Figure	3.	VMT	VIN	Coverage	by	Model	Year

In terms of data sources, 38% of VINs with VMT were based on telematics data and 68% on dealer visit data; the 
sum is greater than 100% because some VINs had data from both sources. Most manufacturers provided a sample 
of observations rather than a complete set of VMT records. 
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Figure	4	Distribution	of	VMT	Updates	per	Vehicle

As Figure 4 illustrates, most VINs had between one and 15 VMT updates provided. The frequency of both dealer 
visits and telematics updates drops as vehicles age; a review of the data indicated the drop-off is gradual.

There were 632,497 crash-involved vehicles from the selected models, model years, and states with associated 
equipage data. Of these, 279,993 vehicles—or 44.4% of the total—had usable VMT data.

As a validation check, a naïve crash rate was computed from the quotient of crash-involved vehicles with VMT 
divided by total estimated VMT and compared to NHTSA national crash statistics. The naïve crashed vehicles 
rate was 2.17 crashed vehicles per million vehicle miles versus 3.46 crashed vehicles per million miles, which was 
calculated based on NHTSA crash statistics from 2021 [8]. The difference in rates could be related to inaccuracies in 
aggregate data or other factors that affect mileage driven such as driver demographics, vehicle type, or vehicle age.

Estimation errors are likely higher when there is a larger time gap between recorded and estimated VMT. We 
assessed estimation error using VINs having at least three VMT updates by excluding a known VMT date, estimating 
the VMT using each of the methods, and calculating the resulting estimation errors.
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Methodology Overview 
To study the use of VMT as an exposure metric for ADAS effectiveness, we considered system-relevant crash rates. 
Specifically, we studied the effectiveness of AEB on front-to-rear crashes and Active Lateral (LDW + LKA or LDW + LKA 
+ LCA) systems on Single Vehicle Road Departure (SVRD) crashes. For AEB, we studied two cases: first, where a PARTS 
vehicle was the striking vehicle; and second, where a PARTS vehicle was the struck vehicle. The latter case serves to 
inform about any influence those crashes may have on estimated effectiveness when used as a control crash in QIE. 

Below are some properties of the provided VMT exposure that influenced analysis and should be considered when 
interpreting results:

1.   91% of vehicles with VMT estimates (from states with available crash data) did not have an associated crash 
of any kind (and a higher percentage did not have an associated system-relevant crash).

2.   VMT was not available by the state in which the miles were driven, so proxy rules were developed to 
estimate VMT by state.

3.   Many factors (e.g., driver age, driver sex, wet roads versus dry roads) that have previously been shown to 
influence crash rates could not be associated with VMT.

4.   The estimated VMT by calendar year provides good accuracy in aggregate but shows a wide range of 
accuracy levels for individual vehicles, as shown in Figure 5. 

5.   Quality assurance rules filtered out vehicles and/or VMT estimates for specific calendar years. The impact of 
these filters was unequal across OEMs and model years.

Results for each of the three methods are shown in Figure 5. The dark central line is the median error, and the 
gray bands capture the Inter-Quartile Range (IQR). Errors are much larger for extrapolation than interpolation; 
extrapolation mileage is also biased on the high side. Based on these patterns, the maximum allowable time gap for 
estimating VMT was set as two years for interpolation and one year for extrapolation. The irregular pattern of errors 
from interpolation reflects heterogenous reporting from different partners as well as changing reporting practices 
over time. 

The error patterns suggest recording vehicle mileage at low frequencies, such as quarterly or yearly, may be 
adequate for many types of analysis. Interpolation errors increase slowly as a function of time gap and are 
generally less than 500 miles even with a two-year gap, equivalent to less than 5% of typical annual mileage.

Figure	5.	Estimation	Error	vs.	Estimation	Type
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Crash data were linked to equipage and VMT based on masked VINs. The vehicle population with VMT was 
nationwide, so had to be filtered to enable approximate VMT for the states in which crash data were available. 
Proxy rules included vehicles sold in those states and, if the sale state was not available, included vehicles with VMT 
recording in the state.

A Poisson regression was performed, using the Generalized Linear Models (GLM) function from “stats” package 
in R, to investigate the effect ADAS feature equipage had on system relevant crash rates. The Poisson regression 
was selected due to the data presenting as a rate of events per interval. The response variable was the number 
of crashes, and VMT was included as an offset. ADAS feature equipage was included as an explanatory variable. 
Additionally, covariates of model year, state, whether the vehicle was fleet or not, and calendar year were included 
to control for their influence on crash rates. Other factors exist that are known to affect crash rates (e.g., driver age, 
driver sex, wet roads versus dry roads) but were not associated with miles traveled and thus could not be included. A 
dispersion parameter was fit in the Poisson regression through the quasi-Poisson error distribution.

The number of crashes and VMT were aggregated for equipped and unequipped vehicles for each possible 
combination of levels of the set of covariates and entered into the Poisson regression. However, a Poisson regression 
including individual vehicles was also run, and notable observations about differences between the aggregated and 
individual vehicle runs are discussed below.

The Poisson regression using either aggregated data or individual data will always produce equal center estimates for 
effectiveness of equipped versus unequipped. The standard error and confidence intervals would also match if the 
data strictly followed a Poisson distribution. However, when fitting a dispersion parameter, the standard errors and 
confidence intervals can differ between aggregated and individual vehicle Poisson regressions. The individual vehicle 
Poisson regression had a larger dispersion parameter estimate and associated standard error, which resulted in a 
wider confidence interval. This is likely due to variance introduced by the following issues:

1.   The number of zeros (i.e., vehicles with no crashes in particular calendar years) present in the data did not 
match well to the assumption of a Poisson distribution.

2.   Inaccuracy of VMT estimates for individual vehicles likely produced heterogeneity in rates.

3.   The assumption that vehicles were independent across calendar years was likely inaccurate due to similar 
drivers, driver characteristics, and environmental conditions unaccounted for in the model.

4.   Missing covariates likely produced heterogeneity in rates.

A Zero-Inflated Poisson (ZIP) model was considered as a potential solution to modeling overdispersion caused 
by excess zeros. However, this approach was ultimately not pursued due to the lack of understanding of the 
mechanisms that would separate always zero observations from the Poisson generated observations, which would 
have made interpretation of the model results challenging and potentially unreliable. Given these considerations, 
the decision was made to focus on the Poisson regression with a dispersion parameter, applied to aggregated data, 
as this approach offered a pragmatic balance between model simplicity and the ability to account for overdispersion 
in the crash counts. This decision reflects a trade-off between addressing known limitations and maintaining 
interpretability and feasibility within the constraints of the available data and modeling framework. 

One of the purposes of using VMT as an exposure metric was to validate QIE results. There would not be statistical 
evidence of disagreement (i.e., would not reject null hypothesis of equality) if the confidence interval of the VMT 
Poisson regression covers the QIE estimate. If the narrower confidence interval produced by the Poisson regression 
on the aggregated data covers the QIE estimate, then the wider confidence interval (around the same center 
estimate) produced by the Poisson regression on the individual vehicle data would also cover the QIE estimate.

To compare VMT Poisson regression results with QIE results, QIE was carried out via a logistic regression for 
AEB on front-to-rear striking and active lateral systems on SVRD crashes using front-to-rear struck crashes as 
a control. Although the PARTS crash data has information on many more covariates and QIE would allow their 
inclusion, we chose to match the covariates in the QIE logistic regression to those that could be included in the 
VMT Poisson regression.



10©2025 MITRE   Approved for Public Release (Case Number: 25-1823)

5 Results 
The estimated effectiveness of AEB on front-to-rear striking crashes is presented in Table 1. We see good agreement 
between VMT and QIE. These results also agree with previously reported estimates of ADAS effectiveness by PARTS 
even though those studies included different model years, vehicle models and segments, and differing covariates in 
the statistical models.

Table	1.	Estimated	AEB	Effectiveness

Exposure Estimated	Crash	
Reduction 95% CI # Front to Rear Striking 

Crashes VMT	(million)

VMT 50% (47%, 53%) Equipped: 6,104 
Unequipped: 5,213

Equipped: 66,761 
Unequipped: 23,680

QIE 48% (44%, 51%) Equipped: 6,104 
Unequipped: 5,213

Table 2 presents the estimated effectiveness of Active Lateral Systems’ on SVRD crashes. Like AEB, we see good 
agreement between VMT and QIE estimates of effectiveness. In both cases the confidence intervals are quite wide 
due to a limited sample of crashes, in particular unequipped vehicles. The VMT confidence interval for Active Lateral 
Systems fully includes the QIE confidence interval, which would suggest minimal evidence of a difference. Unlike the 
QIE confidence interval, the VMT confidence interval covers zero, which would lead to different conclusions about 
rejecting a null hypothesis of no effectiveness between VMT and QIE.

Table	2.	Estimated	Lateral	System	Effectiveness

Exposure Estimated	Crash	
Reduction 95% CI # SVRD Crashes VMT	(million)

VMT 13% (-25%, 40%) Equipped: 2,352 
Unequipped: 773

Equipped: 60,683 
Unequipped: 14,789

QIE 15% (3%, 26%) Equipped: 2,352 
Unequipped: 773
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Finally, Table 3 presents the estimated effect AEB has on Front-to-Rear struck crashes. This was not done to see 
if AEB is effectively reducing the crashes, but rather to understand the effect front-to-rear struck crashes may 
have when used as control crashes in QIE. We expect AEB effectiveness to be close to zero for these crashes or at 
least have a confidence interval overlapping with zero. The confidence interval lies slightly above zero, showing 
a reduction in front-to-rear struck crashes for vehicles equipped with AEB. This indicates that QIE based models 
using front to rear struck rates as a control may underestimate² the effectiveness of ADAS equipped vehicles in 
reducing system relevant crashes.

Note that a larger confidence interval was produced (-3%, 14%) by the individual vehicle Poisson regression, 
overlapping with zero.

Table	3.	Estimated	Effect	of	AEB	on	Control

Exposure
Estimated	QIE	
Control Crash 

Effect
95% CI # Front to Rear Struck 

Crashes VMT	(million)

VMT 6% (1% , 10%) Equipped: 25,925 
Unequipped: 10,502

Equipped: 66,761 
Unequipped: 23,680 

² QIE looks at ratio of system relevant to control crashes. If the ratio of system relevant to control crashes is lower for equipped than 
unequipped that would indicate effectiveness. QIE assumes control crashes are system neutral. Using the conceptual framework of 
equal exposure between equipped and unequipped would imply equal number of control crashes (i.e., ratios of X/C for equipped 
compared to Y/C for unequipped). If AEB caused a reduction in control crashes, then for equal exposure that would result in less control 
crashes for equipped vehicles than unequipped. The ratio of system relevant to control would be artificially higher for equipped 
vehicles (i.e., equipped would be X/[C*[1-Reduction]] versus the assumed X/C) but would be unchanged for unequipped (Y/C), which 
would result in underestimation of effectiveness. 
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6 Discussion
The integration of pooled VMT data in this study resulted in a dataset whose size surpassed those typically found in 
the literature. This dataset enabled a proof-of-concept study on ADAS effectiveness leveraging vehicle-level mileage 
data to control for exposure.

Despite variability in reporting practices among manufacturers and significant changes over time, the pooled VMT 
data yielded results that are reasonably consistent with other studies. This consistency underscores the feasibility 
of conducting safety analyses based on pooled dealer visit and telematics data from multiple manufacturers, even 
in the face of reporting challenges. It suggests that, with careful management, pooled data can provide a reliable 
foundation for traffic safety research.

The findings from this study have important implications for best practices in manufacturer reporting. Establishing 
standardized reporting protocols could enhance the reliability and utility of pooled datasets. Cumulative measures 
over time, in particular, offer significant benefits. They are robust against issues such as dropped messages and 
eliminate the need to post-process totals across vast numbers of records, simplifying data management and analysis.

The current analysis indicates while data readings closer to the date of interest improve accuracy, estimates remain 
useful even with time gaps of several months. While we allowed up to two years between mileage readings and the 
estimated date, analysis found a higher frequency in readings is beneficial for detecting and excluding poor-quality 
data. This suggests periodic aggregates, such as annual mileage per VIN, may be adequate for certain types of safety 
analysis. Even if extended to monthly updates, the data volume would be significantly less than sensitive trip-level 
data, making this approach both efficient and effective.

The analysis of VMT-based crash rates in this study validates the QIE, with both producing similar results when the 
data inputs and covariates are matched. Additionally, the VMT-based exposure analysis results are similar to results 
previously produced by PARTS, with differing data inputs and covariates, reinforcing the reliability of these estimates.

A novel aspect of this research is the use of year-end mileage as an exposure measure. The combination of a large 
VIN-specific VMT dataset, ADAS equipage information, and police crash reports appears to be unique in the literature. 
This approach complements QIE by enabling an examination of rear-end struck vehicle rates with and without AEB. 
Such an analysis is not possible with QIE alone, as rear-end struck rates are typically used as an exposure metric. The 
results suggest AEB equipage is associated with reduced or neutral rear-end struck rates, thus supporting the efficacy 
of using rear-end struck rates with QIE to assess road safety. AEB being associated with a reduction in front-to-rear 
struck rates was also reported by [9] studying pickups using registered vehicle years as the exposure metric.

In conclusion, this study demonstrates the value of pooled VMT data and telematics in advancing traffic safety 
research. The lessons learned here can inform future efforts to harness these data sources for more effective safety 
analyses and interventions.

Study Limitations
While this study provided valuable insights into the safety effects of certain ADAS, several limitations must be 
acknowledged to contextualize the findings and guide future research.

First, the dataset is constrained by a limited set of vehicle models. This restriction may affect the generalizability of 
the results, as the findings may not fully represent the broader spectrum of vehicles on the road. The focus on specific 
models could introduce biases related to the unique characteristics of vehicle drivers or the ADAS technologies or 
executions of those vehicles, potentially skewing the analysis.

Additionally, the study is geographically limited to a subset of states. This geographic concentration may not capture 
the full diversity of vehicle population proportions, driving environments and conditions across the country, limiting 
the applicability of the results to regions with different traffic patterns, regulatory environments, or infrastructure 
characteristics.
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A significant limitation is the absence of demographic data. Without this information, it is challenging to account for 
potential factors that could influence driving behavior and crash risk, such as age, sex, or socioeconomic status. This 
gap restricts the ability to conduct a comprehensive analysis of how these factors might interact with ADAS features.

Moreover, the dataset lacks information about the driving domain, including road characteristics, weather conditions, 
and time of day. These contextual factors are crucial for understanding the circumstances under which crashes occur 
and how ADAS might mitigate risks. The absence of such data limits the depth of the analysis and the ability to draw 
conclusions about the effectiveness of ADAS in varying driving conditions.

The study also faces challenges related to incomplete reporting from vehicles, with high variability in reporting 
practices across manufacturers and a lack of accessible data related to the availability or activation of the ADAS at 
the time of a crash. This inconsistency can lead to gaps in the data, affecting the reliability and completeness of the 
analysis. Furthermore, there have been large changes in reporting over time, with more comprehensive data available 
from recent vehicle models. This temporal variability may introduce biases, as newer models with more advanced 
reporting capabilities could disproportionately influence the results.

Finally, VMT reporting from both telematics and dealer visit sources tends to decline as vehicles age. This drop-off 
in data availability for older vehicles can limit the ability to assess long-term trends and the sustained impact of 
ADAS over the vehicle lifecycle. It also poses challenges for evaluating the effectiveness of ADAS in older vehicle 
populations, which may differ from newer models in terms of technology integration and performance.

In summary, while this study offers important contributions to the understanding of ADAS and traffic safety, these 
limitations highlight areas for improvement in future research.

7 Conclusion and Future Work
The current VMT study has demonstrated the value of vehicle mileage and vehicle-based data to safety research, 
establishing a foundation for further exploration. Current findings validate the application of QIE methods for 
measuring AEB front-to-rear striking crash rates and provide complementary measures of AEB front-to-rear struck 
crash rates. Additionally, this study provides valuable insights into efficient and effective collection and reporting 
practices of VMT to support vehicle safety research.

The integration of telematics data represents a pivotal step in refining analytical methodologies and enabling the 
acquisition of vehicle-level data for more rapid and precise assessments of ADAS and other safety technologies. A 
key refinement would be to measure vehicle miles driven with ADAS features both available and actively engaged. 
This refinement is essential for accurately evaluating the effectiveness of systems such as lane keeping assistance, 
which are frequently deactivated by drivers or rendered unavailable due to environmental or operational conditions 
[10] [11]. Understanding the prevalence and context of such deactivations is crucial for evaluating the real-world 
performance of these systems.

As a data-sharing public-private partnership, PARTS is uniquely suited to enable novel research in this space. 
Additional avenues for future research include enhancing our understanding of relationships between the number 
and type of miles driven (e.g., when and where miles are accumulated), vehicle safety systems used, driving behaviors 
(e.g., following distance, speed, and aggressiveness of driving), and crash occurrence. Expanding telematics-
enabled exposure metrics will enable the development of novel analytical approaches and foster a more granular 
understanding of traffic safety. Ultimately, these advancements have the potential to inform more effective 
infrastructure design and technology enhancements, driving progress in vehicle safety and traffic management.
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Acronyms

Term Definition
ACC Adaptive Cruise Control
ADAS Advanced Driver Assistance Systems
ADS Automated Driving System
AEB Automatic Emergency Braking
CSC Consolidated State Crash
EDT Electronic Data Transfer
FCW Forward Collision Warning
GLM Generalized Linear Model
IQR Inter-Quartile Range
ITP Independent Third Party
LCA Lane Centering Assistance
LDW Lane Departure Warning
LKA Lane Keeping Assistance
MITRE The MITRE Corporation
NHTSA National Highway Traffic Safety Administration
ODD Operational Design Domain
OEM Original Equipment Manufacturer
PARTS Partnership for Analytics Research in Traffic Safety
QIE Quasi-Induced Exposure
SUV Sport Utility Vehicle
SVRD Single Vehicle Road Departure
UMTRI University of Michigan Transportation Research Institute
USDOT United States Department of Transportation
VIN Vehicle Identification Number
VMT Vehicle Miles Traveled
ZIP Zero-Inflated Poisson

14
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