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Abstract  
Background 
The biological research literature is a major repository of knowledge. As the amount 
of literature increases, it will get harder to find the information of interest on a 
particular topic. There has an increasing amount of work on text mining this literature, 
but comparing this work is hard because of a lack of standards for making 
comparisons.  

Results 
We took part in running BioCreAtIvE (Critical Assessment for Information Extraction 
in Biology), an open common evaluation of systems on a number of biological text 
mining tasks. We report here on task 1A, which deals with finding mentions of genes 
and related entities in text. The task makes use data and evaluation software provided 
by the (US) National Center for Biotechnology Information (NCBI). 15 teams took 
part in task 1A. 

Conclusion 
A number of teams achieved scores over 80% F-measure (balanced precision and 
recall). This is good, but still somewhat lags the best scores achieved in some other 
domains such as newswire, due in part to the complexity and length of gene names, 
compared to person or organization names in newswire. “Finding mentions” is a basic 
task, which can be used as a building block for other text mining tasks, but the teams 
that tried to use their task 1A systems to help on other BioCreAtIvE tasks report 
mixed results. 

Background  
The biological research literature is a major repository of knowledge. Unfortunately, 
the amount of literature has gotten so large that it is often hard to find the information 
of interest on a particular topic. There has an increasing amount of work on text 
mining this literature, but currently, there is no way to compare the systems developed 
because they are run on different data sets to perform different tasks [Hirschman 
2002A]. Challenge evaluations have been successful in making such comparisons. 
Examples include the ongoing CASP evaluations (Critical Assessment of Techniques 
for Protein Structure Prediction) for protein structure prediction [CASP], the series of 
Message Understanding Conferences (MUCs) for information extraction on newswire 
text [Hirschman 1998], and the ongoing Text Retrieval Conferences (TREC) for 
information retrieval [TREC][Voorhees 2002]. Also, in 2002, we ran the first 
challenge evaluation of text mining for biology; this was an evaluation for classifying 
papers and genes with experimental evidence for gene products [Yeh 2003]. 
 
As mentioned in [Yeh 2003], the idea behind these series of open evaluations has 
been to attract teams to work on a problem by providing them with real (or realistic) 
training and test data, as well as objective evaluation metrics. These data sets are often 
hard to obtain, and the open evaluation makes it much easier for groups to build 
systems and compare performance on a common problem.  If many teams are 
involved, the results are a measure of the state-of-the-art for that task. In addition, 
when the teams share information about their approaches and the evaluations are 
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repeated over time, then the research community can demonstrate measurable forward 
progress in a field. 
 
To further the field of biological text mining, the “BioCreAtIvE” evaluation was run 
in 2003, with a workshop in March 2004 to discuss the results [BioCreAtIvE 2004]. 
The evaluation consisted of two tasks: Task 1 focused on extraction of gene names 
(Task 1A) and normalization of genes (Task 1B) from PubMed abstracts. Task 2 was 
a more advanced task focused on functional annotation, using full text information to 
classify a protein as to its molecular function, biological process and/or location 
within a cell. Task 1 consisted of two parts: This paper reports on task 1A, entity 
mention extraction. This extraction is a basic text mining operation.  Its output is the 
input text, annotated with the mentions of interest; this can be used as a building block 
for other tasks, such as task 1B and task 2. 
 
The gene mention task presents a number of difficulties.  One difficulty is that gene 
(or protein) mentions are often English common nouns (as opposed to proper nouns, 
which, in English, are the nouns normally associated with names) and are often 
descriptions.  In fact, many entities are named with ordinary words, for example some 
Drosophila (fruit fly) gene names are blistery, inflated, period, punt, vein, dorsal, 
kayak, canoe and midget. In addition, new entities are constantly being discovered 
and/or renamed with these common nouns. Also, many names originate as 
descriptions and can be quite complex, e.g., hereditary non-polyposis colorectal 
cancer (hnpcc) tumor suppressor genes. 

Task and data 
The data and evaluation software for task 1A were provided by W. John Wilbur and 
Lorraine Tanabe at the National Center for Biotechnology Information (NCBI). Every 
mention of interest is marked, so this task corresponds to the “named entity” task used 
in the natural language processing community.  The data is marked for mentions of 
“names” related to genes, including binding sites, motifs, domains, proteins, 
promoters, etc. The data comes with a particular tokenization (word segmentation), 
and this tokenization determines the boundaries of what is marked. A token is either 
entirely part of a markable or not. A token cannot be split between a marked part and 
an unmarked part. For testing, the systems take as input the tokenized unannotated 
sentences; the output is the list of gene names for each sentence, with the start and 
stop token offsets. For evaluation, the system output is then compared to the “gold 
standard” hand-annotated answer key. 
 
The data consists of sentences from Medline [Medline] abstracts that have been 
manually annotated for mentions of names of genes and related entities. Half of the 
sentences were chosen from abstracts likely to contain such names. The other half 
were chosen from abstracts likely not to contain such names. See [Tanabe 2004] (also 
in this volume) for further detail on the construction of the Task 1A data. The 
approximate sizes of the various data sets are given in Table 1. 
 
The (final) test set is also known as “round1”, and for the evaluation, its sentences 
were renumbered to give no indication of what Medline abstracts they came from. 
The original sentence numbers were derived in part from the Medline/Pubmed id 
number of the abstract from which the sentence was drawn. 
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There is no detailed, multi-page explicit set of guidelines describing what is markable. 
Instead, there is a description provided with the data that gives a page or two listing of 
the types of entities that are and are not markable. Examples of markables are mutants 
(e.g., p53 mutant) and words like codon, antibody, etc. when combined with a gene 
name. Examples of non-markables include generic terms (e.g., the term zinc finger by 
itself) and mutations (e.g., p53 mutations). 
 
Here are 2 excerpts from the training corpus (sentences 110312525757 and 
13393732909):  
 
The LMW FGF-2 up-regulated the PKC epsilon levels by 1.6 fold; by contrast the 
HMW isoform down-regulated the level…  
…a protein related to SNF1 protein kinase. 
 
The underlines indicate the markable entities. The italic boldface indicates what 
alternative mentions can substitute for a markable. Note that for “SNF1” and “protein 
kinase”, an allowed alternative is “SNF1 protein kinase”, which includes both of 
them.  
 
Correspondingly, the answer file contains the following mentions: “LMW FGF-2”, 
“PKC epsilon”, “HMW isoform”, “SNF1” and “protein kinase”. 
 
Stored in another file are the alternative mentions that can be tagged and still count as 
being correct. For the answers mentioned above, here are the allowed alternative 
mentions: “FGF-2”, “PKC”, “HMW”, and “SNF1 protein kinase”. 
 
When scoring, an exact match to an answer or an allowed alternative is needed to get 
credit for finding an answer. So for example, if for the answer LMW FGF-2, a system 
instead returns “The LMW FGF-2”, that system would get both a false negative (not 
matching the answer or its alternative) and also a false positive (the returned item 
does not match an answer or any alternative). 

Results  
15 teams entered submissions for this evaluation. Submissions were classified as 
either “open” or “closed”. 
 
Closed: The system producing the submission is only trained on the task 1A “train'' 
and “(development) test” (devtest) data sets, with no additional lexical resources 
 
Open: The system producing the submission can make use of external word lists, 
other data sets, etc. 
 
Most teams provided an “open/closed” classification for their submissions. If they did 
not, we made a classification based on a short system description that the teams 
provided. When we were not sure, we assumed “open”.  
 
Teams were allowed to send up to 4 submissions each, as long as they included a 
“closed” submission. Teams only sending “open” submissions were allowed to send 
up to 3 submissions. We received a total of 21 “closed” submissions (plus 2 more 
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received late and deemed “unofficial”) and 19 “open” submissions (also plus 2 more 
received late and deemed “unofficial”). 
 
The submissions were measured by their balanced F-score, recall and precision.  
• Balanced F-score is the harmonic mean between recall and precision.  

Balanced F-score = 2*Recall*Precision/(Recall + Precision) 
• Recall is the fraction or percentage of the answers in the answer key that were 

found by a submission. 
• Precision is the fraction or percentage of the answers returned by a submission 

that turn out to be correct. 

Scores achieved by the submissions 
Many of the high performing submissions achieved scores quite close together.  For 
example, with balanced F-score, the first and second highest teams were only 0.6% 
apart, and the second and third highest teams were even closer at 0.2% apart. This is 
close enough to be possibly affected by the disagreements in annotation that arise 
with just about any task on finding entity mentions. An example is that with this 
particular task, a partial review of the test set changed 0.4% (25 of 6000) of the 
answers. 
 
It would be good to test the results for statistical significance, but this has not been 
done yet. It is quite possible that these differences are small enough to not be 
statistically significant. 
 
Table 2 shows the high and low scores, as well as the 1st, 2nd (median) and 3rd quartile 
balanced-F, recall and precision scores for the 40 official submissions. One can see a 
compression or skew of the scores towards the high end.  

• The high, 1st, 2nd and even 3rd quartile scores are relatively close to each other 
compared to the low scores 

• With F-score, the top 3 teams have scores within 1% of each other 
• With recall, the top 2 teams are separated by about 2% 
• With precision, the top 2 teams are separated by about 1% 

 
Generally, the open submissions did better than the closed submissions. An exception 
is that for the highest recall score, the top closed score is actually better than the top 
open score. The compression at the high scores also occurred for the gap between the 
open and closed submissions. 

• For the higher scores (like high and 1st quartile), there was little difference 
(2% or less) between the open and closed submission scores 

• For the lower scores (like low and 3rd quartile), the open submissions scores 
are measurably better than the closed scores 

 
Figure 1 shows the balanced-F scores of the 40 official plus 4 unofficial submissions. 
The open submissions are in a dark solid and the closed submissions are in white with 
an outline. The submissions are labeled with the user (u) number of the team. 13 
official submissions from 4 different teams achieved an F-score of 80% or higher (in 
the figure, this appears as 0.8 or higher). For most teams, their open submission(s) 
scored higher than their closed submission(s). Team 11 was an exception, as was team 
5 to some extent. The gap between a team’s open and closed submissions was small 
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compared to the gap between the submissions from different users. However, team 21 
had a large gap between their open and closed submissions. 
 
Figure 2 shows a plot of the precision versus recall of the 40 official plus 4 unofficial 
submissions. The official open submissions are shown with diamonds, the official 
closed submissions are shown with squares. Unofficial submissions are shown with 
gray outlines (and clear centers) of diamonds and squares, respectively. Eight official 
submissions (from 3 different teams) achieved both a recall and precision of 80% or 
higher (appears in the figure as 0.8 or higher). As a set, the submissions with both a 
recall and precision of 60% or more seem to have a fairly balanced precision and 
recall. But for the most part, submissions which had a recall or submission below 60% 
tended to have a better recall than precision. 

Some observations 
Most teams made use of the training data in their system development. However, in 
reading the task 1A participants’ system descriptions team u27 did not [BioCreAtIvE 
2004]. Also, as far as we can tell, neither did team u18 (based on a short description 
not in the reference). Like many similar tasks, task 1A has its own unique features. 
This is probably a reason why, relative to the other teams, these two teams did not get 
very good results: u27’s submission had a 61% balanced F-score, while u18’s 
submission had 55% (both in the 4th quartile range for official open submissions). One 
indication of these unique features comes from Tamames [Tamames 
2004](Discussion of the results - task 1A), whose system had not considered entities 
like domains, regions and mutants as “gene names” that should be marked, where as 
task 1A did include such entities. 
 
A common comment from several Task 1A participants (for example, see the post-
processing descriptions in Dingare [Dingare 2004](sec. 2.3) and Kinoshita [Kinoshita 
2004](sec. 3)) was that one of the more difficult aspects of task 1A was determining 
the starting and ending boundaries of the gene-or-protein names. The requirement for 
an exact match to the answer key (or alternative) increased the difficulty. 
 
As has been mentioned, many of the open and closed submissions achieved fairly 
close results. One possible reason for this is that, to the extent that this task is unique, 
outside sources will not help performance that much. Another possible reason is that 
for the most part, we relied on the teams themselves to classify their submissions as 
being "open or closed". In viewing the task 1A system descriptions [BioCreAtIvE 
2004], one can see that the different teams varied in what resources they thought were 
allowed in a closed submission.  As an example, when using a sub-system that 
generates part-of-speech (POS) tags, some (but not all) teams use such a POS sub-
system for a "closed" submission even when the sub-system itself was trained on 
another annotated corpus. This is an indirect reliance on an outside corpus. Some 
teams treated this indirect reliance as permissible for a closed submission (for 
example, Dingare [Dingare 2004](sec. 2.1) and Zhou [Zhou 2004](sec. 1)), some 
teams did not. 

Summary of System Descriptions 
For task 1A, the teams tended to use one of the three following approaches at the top 
level of their system (see the participants’ system descriptions [BioCreAtIvE 2004]): 

1. Some type of Markov modelling. 
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2. Support vector machine (SVM). Typically, the input information on the word 
being classified would come from a small window of the words near that word 
of interest. 

3. Rules. As far as we could tell, the rules were usually manually generated. 
 
Many of the systems had pre- and/or post-processing stages in addition to the main 
approach taken. One system combined several other systems via a voting scheme 
[Zhou 2004]. 
 
These teams used a variety of features in their systems. For some features, many of 
the systems used entire other sub-systems to find the feature value. An example is 
using a part-of-speech (POS) tagger to find a word’s part-of-speech. These sub-
systems often used an approach that differed from the overall system’s approach. 
 
The four teams with 80% or higher F-scores had post-processing stages in addition to 
the main approach taken, and made use of many different features. All four of these 
teams performed some type of Markov modelling at the system’s top level [Dingare 
2004][Kinoshita 2004][Zhou 2004][McDonald 2004]. However, the teams used 
different techniques on their Markov models: maximum entropy, hidden Markov 
models (HMM) and conditional random fields. In addition, one team [Zhou 2004], 
also had an SVM system at the top level: decisions were made by having two HMMs 
and an SVM system vote. Also, note that when comparing different systems, the 
choice of features used is often at least as important as the approach/algorithm used. 
Yeh [Yeh 2000] gives an example of this. 

Task 1A as a Building Block 
One of reasons for having task 1A is that a task 1A system can serve as a building 
block for other tasks, like task 1B or task 2 of the BioCreAtIvE evaluation. The task 
1B evaluation focused on finding the list of the distinct genes (of a particular species) 
mentioned in a Medline abstract, where the list contained the normalized, canonical 
names for those genes. Task 2 focused on classifying what a protein does and where 
in a cell it is found, and on returning text passages as evidence to support these 
classifications. 
 
To what extent was it viable to use task 1A systems as a building block for more 
advanced capabilities? It turns out that three of the teams taking part in task 1A also 
took part in task 1B. In addition, one of the three teams also took part in a portion of 
task 2. So an interesting question is how useful these three teams found their task 1A 
systems to be when working on task 1B or 2. 
 
One team with a high precision (80%+) task 1A system used the mentions found by 
their 1A system as the input for their 1B system [Tamames 2004](Task 1B): their 1B 
system then tried to find the normalized version of the mentions found by their task 
1A system.  
 
The story was more complicated for two other teams with both high precision (80%+) 
and high recall (78%+) task 1A systems. One team was from Pennsylvania (1A: 
[McDonald 2004], 1B: [Crim 2004]). The other team was from Edinburgh and 
Stanford (1A: [Dingare 2004], 1B: [Hachey 2004]). Both these two teams looked at 
some version of finding mentions with their task 1A system and then compared the 
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found mentions against the synonym lists for the genes of interest for task 1B. One 
complication that both teams found was this approach could easily produce a low 
precision for 1B, due to many genes sharing many of the same synonyms.  
 
The Pennsylvania team also found that for genes from two (fly and yeast) of the three 
organisms of interest in task 1B (mouse was the 3rd organism), the task 1A tagger was 
not that accurate. A possible explanation given was that the task 1A training data did 
not have enough examples from these two organisms. For task 1B, the Pennsylvania 
team in the end did not use their task 1A tagger.  
 
The Edinburgh/Stanford team found that using the original task 1A training set and 
lots of features tended to lower their recall of the 1B genes. They raised the recall by 
training their 1A system using the noisy task 1B training data and a reduced set of the 
possible features. 
 
The Edinburgh/Stanford team also took part in task 2.1. In this task, a system is given 
an article, a protein mentioned in that article, and a classification of that protein that a 
person made based on that article. The system’s job is to find a passage of text in that 
article that supports the classification made for that protein. The description for the 
team’s task 2.1 system [Krymolowski 2004] made no mention of using their task 1A 
system or trying it on some part of task 2.1. 
 

Discussion  

One unique aspect of the data: enforcing a particular tokenization 
As mentioned before, every entity mention task such as task 1A will have some 
features that are more or less unique to it.  For task 1A, one such feature is that the 
data comes with a particular tokenization (word segmentation). Furthermore, this 
tokenization affects what counts as a mention, because either all of a token is tagged 
as part of a mention, or none of that token is tagged. This can cause problems when 
one just wants to tag part of a token as part of a mention. An example is the phrase 
 
… a protein kinase a-mediated pathway … 
 
where the odd word tokens are underlined, but the even tokens are not. Here the token 
“a-mediated” is not useful, as the mention that one would really like to tag is “protein 
kinase a”. 
 
This tokenization is important because it affects what counts as a mention. Here are 
some rules (Lorraine Tanabe, personal communication): 
 

1. If "X" is a token which is a gene name, then "X" is usually marked. An 
example is "CBF1" in the phrase “... of CBF1 in yeast …” (in training data’s 
sentence 90233781202). 

 
2. If a token is of the form "X-" or "X-Y”, where "X" is a gene name and "Y" is 

an adjective or verb, then the token is usually NOT marked. An example is 
"EGF-induced" in the phrase “... block EGF-induced mitogenesis and ... “ (in 
training data’s sentence 94547351603). 
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3. An exception to (2): when the Y in "X-Y" is "like", then "X-Y" is usually 

marked. Also, if the form is "X-Y Z", where "X-Y" is as in (2), and "Z" is a 
token like "domain", then "X-Y" is usually marked as part of the mention "X-
Y Z". An example is “SH2-binding domain”.  

Disagreements in the data 
In tasks like task 1A, small disagreements usually exist on what to annotate and what 
not to annotate. An example in task 1A is phrases of the form “X pathway(s)”, where 
X is a phrase that is marked as part of a gene mention. An initial review of the test set 
found the following annotation variations (afterwards, all test set cases were changed 
to have “X” and “X pathway(s)” be both allowed alternative answers):  
 

• 4 cases where “X pathway(s) is NOT an allowed alternative to “X”. An 
example is X= “Mek-Erk1/2” in the phrase  
“... the Mek-Erk1/2 pathway by …” (sentence 14076). 

 
• 10 cases where “X” and “X pathway(s)” are both allowed alternatives. An 

example is X= “Ras/Raf/MAPK” in the phrase  
“... the Ras/Raf/MAPK pathway.” (sentence 10544). 

 
Similarly, the training set has 

• 12 cases where “X pathway(s)” is NOT an allowed alternative to “X”. 
• 11 cases where “X pathway(s)” and “X” are allowed alternative answers. 

Such variation in annotation makes it more difficult to learn or to formulate a rule for 
how to handle these kinds of constructions. 

Lessons learned for future evaluations 
If and when a future task 1A evaluation is run, we list the following issues to 
consider: 

1. Tokenization is non-trivial for biological terms. Perhaps one should not 
enforce a fixed tokenization of the data. This non-enforcement will be 
expensive because one will need to change both how the data is annotated and 
how the system results are compared against the gold standard.  

2. On a related matter, because of the difficulties in exactly determining a 
mention’s boundaries, there is interest in also counting inexact matches to 
answers as being correct. One needs to be careful how this is done. For 
example, if missing either the first or last token still counts as correct, then just 
returning “epsilon” would count as finding “PKC epsilon”.  

3. For open versus closed submissions, one should either remove the distinction, 
or be more explicit as to what is allowed for a closed submission. 

4. A suggestion was made to pad the test set with a lot of extra material that 
would not be scored, which will make it harder to “cheat” by manually 
examining the test set. If one were to do this, one would need to announce this 
ahead of time. One reason is that some automated approaches need more 
processing time than others. Another reason is that some automated 
approaches, such as transductive support vector machines [Joachims 1999], 
make use of statistics derived from the entire un-annotated test set. 

5. At least one team [Dingare 2004] automatically searched for the 
PubMed/Medline abstract associated with each test set sentence. They used 

 9



  

the abstract as a surrounding context, and it seemed to be helpful. In many 
“real uses” of a task 1A system, a system will probably have such surrounding 
text. So one should probably just give these abstracts to every participant in 
the future. 

6. There is also a question of what is a permissible resource to use: 
• One example is that with PubMed/Medline, a system could also look-up 

MESH terms, etc. associated with the Medline abstract for each sentence. 
If one plans to use such a tagging system before an abstract is assigned 
MESH labels (assignment is done manually), then such information will 
not be available in real usage, and such information should not be 
permitted. 

• Given a possible entity “X”, at least one team [Dingare 2004] did web 
searches for contexts like “X gene”, which support “X” being a possible 
entity. This seemed to be of limited help. Should this be permitted in the 
future? This probably depends on the anticipated “real” uses for such a 
feature. When tagging older material (such as the task 1A test set), the web 
will have relevant material. When tagging new text that describes new 
gene(s), the web will probably not have much, if any material. 

 

Conclusions  
For the BioCreAtIvE task 1A of gene mention finding, a number of teams achieved an 
80-83% balanced F-score. This is similar to results for some other similar biological 
mention finding tasks, and is somewhat behind the 90%+ balanced F-scores achieved 
on English newswire named entity tasks [Hirschman 2002B]. Based on an observation 
offered by Kevin Cohen (who was on one to the teams [Kinoshita 2004]), a 
hypothesis for discrepancy is that gene names tend to be longer than comparable 
newswire names. To investigate this, we compared the length distribution of gene 
names in the test set for task 1A; this distribution is shown in Figure 3, and is 
compared to the distribution for name length of organizations in a newswire task. The 
newswire results are computed from the MUC-6 data, which is available from the 
Linguistic Data Consortium [LDC].  The average length of the task 1A gene names 
was 2.09, compared to 1.69 for ORGANIZATION names in the MUC-6 data. Given 
this distribution, we fitted a simple logistic regression model to both data sets, 
assuming that the success rate would be multiplicative based on the number of words 
in a name.  This allowed us to extrapolate back to a single-word error rate for both 
tasks, allowing us to factor out differences in name length. For gene names, a 92% 
success rate on a single word gene name gave an overall task performance of 83%, the 
observed high score.  For the MUC-6 organization names, a 95.5% single word 
success rate yielded a 93% success rate overall, which was the highest recorded result 
for MUC-6.  In using this simple model, we recognize that it is not mathematically 
valid to use F-measure in place of accuracy. However, it does provide a crude 
approximation for how much of the task difficulty can be attributed to difference in 
name lengths among different tasks. This comparison leaves a residual 3-4% 
discrepancy between performance on the tasks for the single-word case. We 
hypothesize that this may be due to interannotator variability, leading to “noise” in the 
training and test data. For the MUC-7 task [Marsh 1998], interannotator agreement 
was measured at 97%, which is almost certainly significantly higher than for the gene 
mention task, which has not yet been formally measured.  
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In terms of successful approaches, the teams that achieved an 80% or more balanced 
F-score tended to use some type of Markov modelling at the top system level. 
However, these teams also had post-processing stages in addition to the main 
approach taken, and the different teams made use of different features. These stages 
and features can have just as much an effect on performance as the main approach 
taken. 
 
One of the reasons to have task 1A is that it should be a useful building block to work 
on other tasks, like BioCreAtIvE task 1B. Three teams tried using their task 1A 
system for task 1B. Their experiences are mixed, with two of the three teams finding 
that a task 1A system trained on the task 1A training data often does not work so well 
on task 1B. One of these two teams improved things by retraining their 1A system 
using the noisy task 1B data. 
 
A 2nd test set is available for task 1A, so it would be straightforward to run a task 1A 
evaluation in the future using this 2nd test set. Three questions to think about in any 
future evaluation are the following: 
 

• What will it take to improve task 1A performance? 
• How much will improving task 1A performance help with other tasks (like 

tasks 1B and 2)? 
• How can one make a task 1A system be a more useful building block for other 

tasks? 
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Figures 
Figure 1  - Balanced F-scores of the 40+4 submissions  

Figure 2  - Precision versus recall of the 40+4 submissions 

Figure 3  - Percent of names of a given length for BioCreAtIvE task 1A gene 
names and MUC-6 organization names 

 

Tables 
 
Data Set     Sentences Gene Mentions
training 7500 9000 
(development) test 2500 3000 
(final) test   5000 6000 
Table 1  - Data set size 

 
Balanced F-score Recall Precision  
open closed open closed open closed

High 83% 83% 84% 85% 86% 86% 
Quartile 1 81% 80% 81% 79% 83% 81% 
Median (Q2) 78% 74% 74% 72% 80% 72% 
Quartile 3 67% 59% 70% 62% 72% 53% 
Low 25% 16% 42% 36% 17% 11% 
 
Table 2  - F-score, recall and precision quartiles for the 40 official submissions 
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