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Abstract  
Background 
Our goal in BioCreAtIve has been to assess the state of the art in text mining, with 

emphasis on applications that reflect real biological applications. To this end, we have 

focused on the curation process for model organism databases. This paper summarizes 

the BioCreative task 1B, the “Gene Identifier List” task, which is inspired by the gene 

list typically supplied for each curated paper in a model organism database. For the 

assessment, systems were given a set of abstracts from each of three model organism 

databases (Yeast, Fly, and Mouse), along with synonym lists for these organisms that 

define the correspondence between unique gene identifiers and the mentions of these 

genes and gene products in the curated literature.  The systems were evaluated on 

their ability to produce the correct list of unique gene identifiers for the genes and 

gene products mentioned in the abstracts for each organism.   For the evaluation, we 

prepared a training data set of 5000 abstracts per organism with (noisy) gene lists 

derived automatically from the gene lists for the full text articles; a development test 

data of 100-200 abstracts per organism with hand-corrected gene lists; and a blind test 

set of 250 abstracts per organism with carefully annotated gene lists.  

Results 
We report results from 8 groups fielding systems for the three data sets (Yeast, Fly, 

and Mouse). The results are reported as balance F-measure (the harmonic mean of 

precision and recall). For Yeast, the top scoring system (out of 15 systems) achieved 

an F-measure of 0.92; for Mouse and Fly, the task was more difficult, due to larger 

numbers of genes, and more ambiguity in the gene naming conventions. For Fly, the 

top F-measure was 0.82 out of 11 systems and for Mouse, it was 0.79 out of 16 

systems.   
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Conclusion 
The gene list task 1B builds on findings from BioCreative task 1A, identification of 

gene mentions in text. Systems achieved scores of over 80% F-measure for task 1A. 

Task 1B added an additional complication, namely the mapping of a gene name to its 

unique identifier. Because there is extensive ambiguity in gene names, task 1B 

required that systems distinguish between common English words and gene names 

(“dorsal”, “yellow”), as well as between multiple possible identifiers associated with a 

particular gene name (e.g., actin appears in FlyBase as a synonym for 6 genes). 

Because the nomenclature for Yeast is fairly unambiguous, systems did well, 

indicating that this application could be automated for production use in curation. 

Both Mouse and Fly presented different challenges, namely gene names with greater 

ambiguity and more complex names; these applications will require further research 

to reach useful accuracy. However, the major finding is that multiple groups were 

able to perform a real biological task across a range of organisms, given lexical 

resources derived from the model organism databases. This holds out great promise 

for partial automation of the curation process in the next few years, as natural 

language processing applications refine techniques and increase their ability to be 

quickly adapted to new model organism curation tasks. 

 

Background  

Why Evaluate? 
Our goal in organizing BioCreative was to provide a systematic assessment of the 

state of the art for a set of “building block” biological tasks. There has been increased 

activity in the field of text mining and information extraction applied to the biological 

literature. However, each group has tackled a different problem and reported on a 
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different data set [Hirschman 2002a; Hirschman 2002b]. With BioCreative, our goal 

was to assemble a suite of tasks that would: 

• Attract researchers from natural language processing and bioinformatics; 
• Address problems of importance to the biology and bioinformatics 

community; 
• Create legacy training and test data suites that could be used for 

development and benchmarking of future applications. 
• Permit the assessment of the state of the art on real biological tasks. 
 

We chose to frame these tasks in terms of aids for the curation of biological databases.  

This built on earlier work in organizing one of the first challenge evaluations in text 

mining for biology [Yeh 2003], which also focused on a task related to the curation of 

biological literature, namely the identification of articles containing experimental 

evidence for gene products for Flybase [Flybase]. 

Choice of Evaluation Task 
In designing the tasks for BioCreative, we were motivated by several factors: first, the 

need to define meaningful biological applications; second, the availability of training 

and “gold standard” test data; third, the need for a simple evaluation procedure; and 

fourth, the need to attract participants from fields such as natural language processing 

and text mining, as well as from bioinformatics.   

By choosing tasks related to the curation process of some of the major biological 

databases, we guaranteed that the tasks would have biological relevance, since these 

are tasks that are presently performed by expert human curators.  This also meant that 

there would be “gold standard” annotated data available: annotations produced by 

experts that could be used to as training data for system development and as an 

evaluation standard for the blind test data.   

Task 1B, the normalized gene list task, is intermediate in the BioCreAtiVe tasks. It 

builds on task 1A, the gene mention identification task [Yeh 2004], but it is much 

simpler and requires far less understanding of the underlying biology than task 2, 
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functional annotation from text [Blaschke 2004].  It reflects a step in the curation 

process for the model organism databases:  once an article is selected for curation, an 

important step is to list those genes discussed in the article that have sufficient 

experimental evidence to merit curation – see discussion in [Colosimo 2004]. 

Therefore, we were able to extract the expert-curated gene lists from the model 

organism databases, to use as training and test data.  

By defining the task as the generation the list of unique gene identifiers, we made the 

evaluation much simpler than for either task 1A or task 2.  Task 1A required the 

comparison of annotated text segments, raising issues of how to annotate and complex 

gene names (e.g., TTF-1-binding sites (TBE) 1, 3, and 4), as well as questions about 

gene name boundaries.  Task 2 required expert human evaluation of whether a text 

passage constitutes adequate evidence for a particular Gene Ontology annotation. By 

contrast, the gene list task simply required the comparison of a proposed set of gene 

identifiers against a “gold standard” list.  This made the actual evaluation process very 

straightforward. Originally we had also wanted evidence for each answer, to provide a 

safeguard against manual curation of the articles, but our instructions for this were not 

clear, different people submitted different things and we did not evaluate this. 

In order to make the task as accessible as possible, we extracted synonym lists for Fly 

[FlyBase], Mouse [MGI], and Yeast [SGD]. These consisted of the list of unique gene 

identifiers and their associated gene symbol and synonym lists. We made these lists 

available in a simple standard flat file format.   

We chose to use abstracts as the basis for the gene list task, rather than full text 

articles. This simplified the task for the participants, since abstracts are much shorter 

and easier to process than full text article (because they are around 250 words long 

and are available in ASCII). The abstracts can also be readily collected and distributed 
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to the participants, unlike the full text articles. However, using abstracts meant that we 

had to “prune” the gene lists provided by the model organism database, since these 

were usually based on the full text articles (although withYeast, curators often only 

read the abstract to create the gene list).  We developed an automated pruning 

procedure to remove genes from the gene list that were not mentioned in the abstract. 

As discussed in [Colosimo 2004], this was a “noisy” process. We delivered the noisy 

training data “as is” but we hand corrected the development test data and the blind test 

data.  In addition to pruning the gene lists to reflect the content in the abstracts, we 

made one additional simplification in the task. The model organism databases do not 

curate every gene mentioned in a paper – they curate only those genes that meet a set 

of (organism-specific) criteria, including presentation of experimental evidence 

related to gene or gene included in the gene list. However, we felt that the abstract 

might not provide enough context to determine whether a gene had sufficient 

evidence for curation or was mentioned only in passing, so for the test data sets, the 

annotators added by hand all genes mentioned in the abstract. This was not done for 

the automatically generated training data, so the automatically generated training set 

had significant recall errors (see Tables 2-4).  

Task Description 
The task is defined as follows: given an abstract from a specific model organism (Fly, 

Mouse or Yeast), the task is to create the list of unique gene identifiers for the genes 

that are mentioned in the abstract (see Figure 1). These mentions will include explicit 

mentions of genes (gene names, e.g., esterase-6 and gene symbols, e.g., est-6, as well 

as gene mentions implicit in mentions of gene mutants, alleles, and products, e.g., 

esterase-6 in the sentence some allozymes of the enzyme esterase 6 in Drosophila 

melanogaster….  Genes must come from the appropriate organism for the specific 
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database (e.g., Drosophila melanogaster for FlyBase, Saccharomyces cerevisiae for 

Yeast, Mus musculus for Mouse) and must be identified by their unique gene 

identifier from the database.   

Figure 1 shows the gene list for an abstract, along with entries from the FlyBase 

synonym list. At the top of the figure is the gene list, given as a set of pairs of 

(abstract number, gene identifier). In the middle is the text of the abstract. At the 

bottom are the entries for the two Fly base genes on the gene list (FBgn0000592 and 

FBgn00026412). 
There are thus two distinct aspects to the gene list task: finding the gene mentions for 

the specific organism (similar to Task 1A); and mapping the gene mention to the 

appropriate unique gene identifier, which requires resolving ambiguities. It is clear 

from the 18 entries for the gene Est-6 that the synonym list contains many variants – 

some of which are not obvious (e.g., Est-5 is listed as a synonym of Est-6). In 

addition, some synonyms are ambiguous:  EST also occurs in the genomic literature 

as an abbreviation for Expressed Sequence Tags.  

Results  
 
Tables 2-4 show the scores from each participating system, by group and run (each 

run was considered a system) for Yeast (Table 2), Fly (Table 3) and Mouse (Table 4).  

Each user was allowed to submit up to three systems for each organism.  The systems 

were scored against the manually created “gold standard” for each abstract in the test 

set (250 abstracts per organism).  The results are presented in terms of the following 

metrics: 

True Positives: Number of correctly detected genes 

False Positives: Number of genes incorrectly marked as being present 

Misses:   Number of genes NOT detected by the system 
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Precision:    True Positives / (True Positives + False Positives) 

Recall: True Positives/ (True Positives + Misses) 

F-measure:  Balanced precision/recall computed as 2*P*R/(P+R) 

The first two rows of each table show first the Gold Standard compared to itself, 

which always yields a score of 100% or 1. The second line, AutoFound, shows the 

results of comparing the test data run through the “automatic cleaning” procedure and 

compared to the Gold Standard. This provides an estimate of the quality of the 

automatically generated training data.  

Next, for each organism, we show High, Median and Low scores for each of these 

quantities, followed by the scores of each user by run.  

In addition to the tables, Figure 2 shows a composite graph of precision versus recall 

for all systems and all organisms. This graph also shows the estimates of training data 

quality (marked as  Yeast Train, Fly Train and MouseTrain in the legend and in solid 

symbols on the graph). The diagonal line indicates balanced precision versus recall. 

The results demonstrate several things, in particular that there are significant 

differences among organisms.  

1. Yeast is the easiest. The F-measures of the systems tended to be high, with 

several groups achieving an F-measure of over 0.90, and a median F-measure 

of 0.86. Also, the quality of the training data was high (F-measure 0.92).   

2. Fly was harder than Yeast: the high F-measure was 0.82, and there was much 

greater variability in performance (median F-measure was 0.66). The training 

data quality for Fly was significantly lower than for Yeast (0.83). Fly was hard 

because there are many ambiguous terms, and also extensive overlap between 

Fly gene names and abbreviations and English words, as in “not”, “period”, 

“was”, etc. 
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3. Mouse was the hardest, as measured by system performance (best F-measure 

0.79), although the median system performance for Mouse was better than for 

Fly (0.74). The training data quality was the lowest (F-measure of 0.71).  The 

poor training data quality was related to the stringent Mouse curation criteria. 

As a result, there were relatively many more genes that were “mentioned in 

passing” and needed to be added back into the Gold Standard. These genes 

were not included in the automatically generated training data (hence the low 

recall and low F-measure for the training data). Indeed, for Mouse, the median 

system F-measure was actually higher than the training data F-measure, 

indicating that the systems did a good job in generalizing away from the noise. 

A second observation is that systems may have been limited by the quality of the 

noisy training data. For both Yeast and Fly, the estimated training data quality was 

just a shade higher than the final top performing systems.  

Methods 
This section discusses the methods used to prepare the evaluation materials.  

Data Preparation 
In order to evaluate the performance of the systems, the organizers prepared a hand-

coded gold standard, as described in [Colosimo 2004].  First, each abstract was 

associated with the gene ID list from the appropriate model organism database. Since 

we were using abstracts rather than full text, the gene list from the model organism 

database then had to be “adjusted” to conform to the names mentioned in the abstract. 

This was done in several steps, as follows: 

• Removing gene IDs that were not found in the abstract, but were found in the 

underlying full text article.  This was done automatically, using the synonym 
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list, to generate large quantities of “noisy” training data.  This corresponds to the 

Auto Found column on the tables for the model organism performance data. 

• Hand checking to make sure that the automatic procedure did not eliminate 

genes that were present in the abstract (development test set and blind test set 

only). This could occur if, for example, the mention in the text was a variant of 

the synonyms provided in the lexical resource, e.g., “polgamma B” versus 

“polgamma 2”.  

• Adding in any additional genes mentioned “in passing” in the abstract 

(development test set and blind test set only).  This was necessary because each 

model organism database curated genes according to a certain set of criteria, so 

not all genes mentioned were necessarily on the gene list. There might, for 

example, be additional genes mentioned “in passing” such as genes located near 

a gene of interest, or possible homologues etc. 

Overall, we estimate that it took between 1-2 staff weeks of time from an experienced 

curator to edit and check a 250 abstract test set.  The checking was particularly 

important because we detected significant interannotator variability, particularly for 

the Mouse annotations – see [Colosimo 2004] for a detailed discussion of the data 

preparation and interannotation agreement studies.  

Lexical Resources 
An analysis of the lexical resources provides insight into the differences in difficulty 

observed for the three organisms.  Table 5 shows the number of unique identifiers 

(IDs), the number of synonyms and the average number of synonyms per identifier for 

each organism.  We can see that the Yeast resources are the most parsimonious (1.9 

synonyms per ID), and Fly the richest (2.9 synonyms per ID). In addition, the last 

column shows the average length (in words) for the synonyms. Again, Yeast is very 
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compact, with barely over one word per synonym; however, Mouse has the longest 

synonyms on average, at 2.77 words per synonym.  This may have contributed to 

recall problems in identifying Mouse gene mentions, since longer names tend to be 

more descriptive and therefore, to show significant syntactic variation. Also, longer 

names are more difficult to identify (see [Yeh 2004], this volume, for a discussion of 

these issues in the context of task 1A).   

The resources for these organisms also differ in amount of ambiguity among the 

synonyms. This is shown in Table 6.  The 4th column of this table lists the absolute 

number of synonyms that were associated with multiple gene identifiers. Some of 

these were associated with many identifiers – see  Figure 3 for the distribution of 

synonyms associated with multiple gene identifiers.  Again we observe that Yeast is 

the least ambiguous (168 synonyms and an average of 1.013 identifiers per synonym, 

column 5), while Fly, with the most synonyms on average per gene, is also the most 

ambiguous, at 1.085 gene identifiers per synonym.  The 6th column shows the 

absolute number of synonyms that overlap with the 5000 most common English 

words, and the last column shows the average number of ambiguities with English 

words per synonym. While this is very low for Yeast (0.00014), it is over 10 fold 

higher for Mouse(0.00171) and about four-fold higher than that for Fly (0.0065). 

These figures correlate with the differences in difficulty between Yeast, Fly and 

Mouse.  Yeast was relatively easy, with few problems of ambiguity; Fly and Mouse 

were both significantly harder, for slightly different reasons. The Fly lexical resources 

were the richest, and as a result, the most ambiguous (with respect to gene identifiers 

and also with respect to overlap with regular English words). Mouse, on the other 

hand, had longer names and a more limited set of synonyms. This required more 

complex gene mention and gene ID matching procedures; this may have been offset 
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by having reduced problems with ambiguity. In addition, Mouse had the noisiest 

training data, which may have contributed to the difficulty of the task.  The high 

scores for Mouse and Fly were quite similar: for Fly, the high recall was 0.841, 

precision 0.831 and F-measure of 0.815 (all these scores were from the same group 

[Hanisch 2004]); for Mouse, high recall was 0.898, precision 0.828, and F-measure 

0.791; for Mouse, these three high scores came from three different groups.  

Discussion 
There were eight groups participating in task 1B; 7 groups submitted 15 systems for 

Yeast; 6 groups submitted 11 systems for Fly; and 7 groups submitted 16 systems for 

Mouse. 

Of the eight participating groups, two groups did not submit extended write-ups and 

are not discussed in detail here. Four systems are documented in articles in this issue 

[Crim 2004;  Fundel 2004; Hanisch 2004; Tamames 2004].  For descriptions of the 

other two systems, see [Hachey 2004; Liu 2004] in the BioCreative Workshop 

Handout.  The remainder of this section discusses the challenges presented by task 1B 

and how the participating systems approached these challenges. 

Technical Challenges for Task 1B 
The requirements for task 1B can be divided into four inter-dependent steps: 

• Identifying gene mentions in the text 

• Associating gene mentions to one or more unique gene identifiers 

• Selecting the correct gene identifier in cases of ambiguity  

• Assembling the final gene list for each abstract 

These steps were highly interdependent. There are complex recall/precision trade-offs 

that occur in capturing candidate gene mentions and in assigning a unique (and 

correct) gene identifier to these mentions. This is because of significant ambiguity 
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among gene synonyms (one word might be a synonym for multiple genes) and also 

because of significant overlap between gene synonyms (“white”, “dorsal”) and 

English vocabulary.  At the same time, the synonym lists provided by the model 

organism databases, while extensive, were by no means exhaustive; also in some 

cases, very confusable synonyms were entered, such as the synonym “A” for 

“abnormal abdomen” in FlyBase.  As noted above, the lexical resources differed in 

number of synonyms per gene identifier and in ambiguity of terms within the 

resource. 

Precision errors could be caused by: 

• False alarms for gene mentions (for example, taking an English word to be a 

gene name) 

• Incorrect disambiguation of ambiguous gene names 

• Assignment of gene identifiers to genes from non-relevant organisms (e.g., 

human genes are often discussed in Mouse abstracts, but should be entered into 

the gene list) 

Recall errors could be caused by:  

• Failure to recognize a gene mention (perhaps due to mismatch with the 

organism-specific synonym list) 

• Incorrect disambiguation of ambiguous gene names 

Finding Gene Mentions  
The participating groups took a variety of approaches to these challenges. For gene 

mentions, the approaches fell into roughly two groups:  

• Matching against the lexical resource; in many cases, an approximate matching 

approach was used. For example, [Crim 2004] used exhaustive pattern matching 

against the synonym lists to generate a high recall system (91% for fly; 79% for 
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mouse; and 90% for Yeast), but with very low precision, similar to [Morgan 

2004]. The approach described in [Liu 2004] also used an enriched lexical 

resource to achieve high recall (but lower precision) results for Mouse and 

Yeast.  

• Gene mention identification as done for task 1A, adapted to the three specific 

organisms in 1B [Hachey 2004]. To do this, Hachey et al used a technique to 

generate “noisy” training data similar to that described in [Morgan 2004]. 

Association with Unique Gene Identifier 
The second stage, association with a unique identifier, was essentially a table look-up. 

For groups that used a task 1A-type gene mention tagger, they were then able to use 

the table look up to filter out erroneous gene mention candidates. However, recall at 

this step was limited by the completeness of the synonym list from the model 

organism database.  While the synonyms contained many variant forms (see the 

example with Est-6 in Figure 1), there were still more variations that had to be 

handled.  The incompleteness of the lexical resources could lead to recall errors.    

This was also the stage at which ambiguity was flagged, since some synonyms could 

refer to multiple genes (see Table 5).  A number of groups chose to edit the lexical 

resources, removing highly ambiguous or uninformative terms and adding additional 

variants or descriptions [Crim 2004; Fundel 2004; Hanisch 2004; Tamames 2004]. 

The systematic editing and expansion of the underlying lexical resources was at the 

core of two high performing systems [Hanisch 2004; Fundel 2004]. Both Tamames 

[2004] and  Liu [2004] used the same tokenization for the lexicon as was used for the 

gene mention identification and also used stemming to improve the matching between 

lexicon terms and candidate gene names in the text. 
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For several groups, the gene mention tagging, gene identifier look-up and 

disambiguation were interleaved; for example, Hanisch et al [2004] accrued evidence 

during the process of identifying candidate gene mentions that was then used to 

disambiguate the gene mention to a specific gene identifier. For Tamames [2004], 

these stages were also combined.  

Disambiguation 
The final stage, disambiguation for gene synonyms associated with multiple 

identifiers, turned out to be the most interesting feature of this task.  The extensive 

ambiguity of gene names, particularly for Fly and to a lesser extent, for Mouse (see 

Figure 3), required that systems develop techniques for disambiguation. These 

included pruning the lexicon or accumulating multiple sources of contextual evidence 

for use in a classifier.  Hanisch et al [2004] used a multi-stage process that included 

correlating abbreviations with their long forms and also a filter for abstracts based on 

organism specificity. Liu [2004] used features derived from rich lexical resources to 

create feature vectors used in word sense disambiguation.  Crim [2004] followed their 

high recall pattern matching system with a maximum entropy classifier trained to 

distinguish correct matches from bad matches. Hachey et al [2004] used information 

retrieval techniques to associate candidate gene identifiers with term frequencies in a 

document. They used this to create a pool of candidate gene identifiers for a given 

abstract, based on its similarity to abstracts in the training data. 

Generating the Final Gene List 
Once these stages were completed, the systems assembled the final gene list for each 

abstract as output. For some groups, this stage was parameterized in terms of a 

certainty threshold. Increasing the threshold traded recall for precision, e.g., in 

[Hanisch 2004] and [Liu 2004]. One group [Crim 2004] was able to achieve 
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reasonable performance (well above the median of the reported systems) using a 

single approach across all three organisms, based on high recall pattern matching, 

followed by a maximum entropy classifier for remove bad matches. Many groups 

found that it was possible to use much simpler techniques for Yeast than for Mouse or 

Fly, due to the more tightly constrained nomenclature. 

Conclusions 
 
Overall, BioCreative demonstrated the ability of automated systems to do gene 

normalization for a range of organisms, given a simple lexical resource consisting of 

the set of unique gene identifiers and their names and synonyms.  The actual 

performance depended more on the organism than on the kind of system. Factors 

included the number of genes, the number of synonyms per gene identifier, the 

consistency of naming conventions, the length and complexity of names, and the 

degree of ambiguity in the naming conventions. The more ambiguity (among genes, 

between genes and English) and the more complex the names (descriptions versus 

simple gene symbols), the harder the problem.  Yeast naming is relatively simple and 

regular -- and good performance could be achieved with relatively simple methods 

(such as expanded lexical look-up).  Fly is hard because of ambiguity of short names, 

both with English words and among gene names; the Flybase lexicon is quite large, 

with many synonyms per gene; for this task, editing the synonym lists turned out to be 

a useful technique for reducing ambiguity. Mouse is hard because names are often 

long and descriptive, subject to many variants (grammatical as well as syntactic and 

typographic). Mouse was also harder because of the our decision to simplify that task 

to include all gene mentions;  this required that the annotators add many genes in by 

hand, which made training and test data preparation difficult (and somewhat less 

reliable than other organisms). 
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It is always important to evaluate the evaluation.  The success of an evaluation can be 

gauged by several criteria: 

• The level of participation: did the evaluation attract good researchers from 

diverse groups and backgrounds? 

• The results: was the task sufficiently challenging, but not too easy? 

• The research: does the task raise important and interesting research questions? 

• The relevance of the application: does the evaluation task have applicability to 

some application that users care about? 

• The data: was there sufficient training and test data? Will these resources be 

available to the larger research community after the evaluation, for further 

benchmarking? 

• Repeatability: Would people want to do this again? 

By all the these criteria, the BioCreative task 1B evaluation was a success. 

Participation 
We attracted 8 groups from five countries and from some of the major groups 

involved in information extraction in biology 

Results 
The results were promising – with the results for Yeast sufficiently good to think 

about insertion into a production system. The results for Fly and Mouse were lower 

(around 80% F-measure), and it is not clear that this would be good enough for a 

production quality system – so there is more to do.  

Research 
The task raised three interesting research questions. (1) How to achieve high recall 

(achieving high precision seems relatively easy, but only one system achieved high 
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recall, at the expense of precision).  (2) How to disambiguate ambiguous synonyms, 

including both abbreviations or short forms of gene names, and longer forms. This 

problem requires word sense disambiguation, but this is a new way of framing the 

problem that should provide an interesting testing ground for various approaches to 

the problem. (3) How to do rapid adaptation to different task domains, given 

appropriate lexical resources (synonym list for the organism gene identifiers).  Some 

of the successful systems found that the different organisms benefited from somewhat 

different approaches. And several systems made use of additional lexical resources.  

Relevance 
The task of listing gene names is a task that is currently performed (manually) by 

curators for various model organism databases. In addition, ability to identify and map 

gene names to normalized gene identifiers would have great applicability for search 

and indexing operations.  

Data 
We were able to use our “noisy” training data, though the noisy data may have 

imposed limitations on system performance. The cost of preparing the training and 

test sets was greater than we expected: 1-2 person weeks of expert annotator time for 

a 250 abstract test set.  And the difficulties of achieving reliable interannotator 

agreement were greater than we expected.  The training and test data are now 

available for other groups to use in further experiments. 

Repeatability 
The participants at the workshop seemed interested to repeat the evaluation. For task 

1B in particular, we need to consider several questions. First, is the task realistic 

enough? The real task that curators perform uses full text articles (not abstracts, 

although the Yeast curators do curate from abstracts part of the time).  Furthermore, 
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the real task involves a biologically complex set of criteria about which genes to list 

and which genes that fall outside the scope of what is curated (for example, they 

belong to another organism, or they are only mentioned in passing). It would be far 

easier for the organizers to prepare “real” data sets, because it would require none of 

the editing that was performed for this year’s BioCreative task 1B. On the other hand, 

it would be harder for the participants, because they would have to handle full text 

and they would have to replicate biological decisions in terms of which genes to list. 

In conclusion, we look forward to receiving feedback from the participants and to 

defining a follow-on task for the next BioCreative evaluation.  
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(see pdf) 

Figure 2  Task 1B results for all organisms: precision vs. recall 

(see pdf) 

Figure 3 Distribution of ambiguous synonyms in Fly, Mouse and Yeast task 1B 
lexical resources 
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Tables 
Table 1:  Task 1B training and test data sets 

Abstracts Yeast Fly Mouse 
Training (noisy annotation) 5000 5000 5000 
Development test (hand corrected) 108 110 250 
Blind Test (extensively corrected) 250 250 250 

 

Table 2:  Task 1B results on Yeast gene list task 

YEAST F-measure Precision Recall True 
Positives 

False 
Positives 

Missed 

Gold 
Standard  

1 1 1 613 0 0 

AutoFound 0.918 0.985 0.86 527 8 86 
Hi 0.921 0.969 0.962 590 329 171 
Low 0.763 0.642 0.721 442 15 23 
Median 0.858 0.94 0.848 520 34 93 
user5_1B_1 0.819 0.948 0.721 442 24 171 
user5_1B_2 0.848 0.915 0.79 484 45 129 
user5_1B_3 0.848 0.969 0.754 462 15 151 
user6_1B_1 0.857 0.912 0.809 496 48 117 
user6_1B_2 0.858 0.907 0.814 499 51 114 
user8_1B_1 0.921 0.95 0.894 548 29 65 
user8_1B_2 0.91 0.95 0.873 535 28 78 
user16_1B_1 0.897 0.951 0.848 520 27 93 
user16_1B_2 0.899 0.966 0.84 515 18 98 
user16_1B_3 0.897 0.951 0.848 520 27 93 
user18_1B_1 0.904 0.94 0.871 534 34 79 
user19_1B_1 0.773 0.646 0.962 590 324 23 
user19_1B_2 0.77 0.642 0.962 590 329 23 
user19_1B_3 0.763 0.661 0.902 553 284 60 
user24_1B_1 0.897 0.917 0.878 538 49 75 
 



  

 22

Table 3: Task 1B Results on Fly gene list task 

FLY F-measure Precision Recall True 
Positives 

False 
Positives 

Missed 

Gold 
Standard  

1 1 1 429 0 0 

AutoFound 0.834 0.863 0.807 346 55 83 
Hi 0.815 0.831 0.841 361 684 266 
Low 0.284 0.224 0.38 163 70 68 
Median 0.661 0.659 0.732 314 146 115 
user5_1B_1 0.661 0.592 0.748 321 221 108 
user5_1B_2 0.612 0.659 0.571 245 127 184 
user5_1B_3 0.602 0.693 0.531 228 101 201 
user8_1B_1 0.665 0.638 0.695 298 169 131 
user8_1B_2 0.726 0.692 0.765 328 146 101 
user16_1B_1 0.781 0.728 0.841 361 135 68 
user16_1B_2 0.815 0.831 0.8 343 70 86 
user16_1B_3 0.787 0.744 0.834 358 123 71 
user18_1B_1 0.417 0.463 0.38 163 189 266 
user19_1B_1 0.284 0.224 0.389 167 580 262 
user23_1B_1 0.44 0.315 0.732 314 684 115 
 

Table 4: Task 1B results on Mouse gene list task 

MOUSE F-measure Precision Recall True 
Positives 

False 
Positives 

Missed 

Gold 
Standard  

1 1 1 540 0 0 

AutoFound 0.709 0.99 0.552 298 3 242 
Hi 0.791 0.828 0.898 485 674 267 
Low 0.571 0.418 0.506 273 69 55 
Median 0.738 0.765 0.730 394 131 146 
user5_1B_1 0.672 0.767 0.598 323 98 217 
user5_1B_2 0.737 0.811 0.676 365 85 175 
user5_1B_3 0.619 0.798 0.506 273 69 267 
user6_1B_1 0.739 0.813 0.678 366 84 174 
user6_1B_2 0.745 0.785 0.709 383 105 157 
user8_1B_1 0.744 0.828 0.676 365 76 175 
user8_1B_2 0.661 0.635 0.689 372 214 168 
user16_1B_1 0.772 0.75 0.794 429 143 111 
user16_1B_2 0.777 0.807 0.75 405 97 135 
user16_1B_3 0.791 0.765 0.819 442 136 98 
user18_1B_1 0.686 0.728 0.648 350 131 190 
user19_1B_1 0.58 0.428 0.898 485 648 55 
user19_1B_2 0.571 0.418 0.898 485 674 55 
user19_1B_3 0.606 0.489 0.798 431 451 109 
user24_1B_1 0.767 0.735 0.802 433 156 107 
user24_1B_2 0.776 0.764 0.787 425 131 115 
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Table 5: Lexical Resources: synonymy for Yeast, Mouse, Fly 

  # ID # Synonym
Synonym 

per ID 

Avg Length 
(wds) per 
Synonym 

Yeast 7,928 14,756 1.861 1.001 
Mouse 52,594 130,548 2.482 2.772 
Fly 27,749 81,711 2.944 1.470 
 

Table 6: Lexical resources for Yeast, Fly and Mouse: identifiers, synonyms, and 
ambiguity 

  # IDs 
# 

Synonyms
Ambiguous 
Synonyms 

Avg # IDs 
per 

Synonym

# Synonyms 
Overlap w 

English 

Avg Eng 
Amb per 
Synonym 

Yeast 7,928 14,756 168 1.013 2 0.00014 
Mouse 52,594 130,548 1919 1.017 205 0.00171 
Fly 27,749 81,711 2736 1.085 396 0.00650 
 
 
 
 




