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ABSTRACT

Acoustic vehicle classification is a difficult problem due to the non-stationary nature of the signals, and especially
the lack of strong harmonic structure for most civilian vehicles with highly muffled exhausts. Acoustic signatures
will also vary largely depending on speed, acceleration, gear position, and even the aspect angle of the sensor.
The problem becomes more complicated when the deployed acoustic sensors have less than ideal characteris-
tics, in terms of both the frequency response of the transducers, and hardware capabilities which determine the
resolution and dynamic range. In a hierarchical network topology, less capable Tier 1 sensors can be tasked
with reasonably sophisticated signal processing and classification algorithms, reducing energy-expensive commu-
nications with the upper layers. However, at Tier 2, more sophisticated classification algorithms exceeding the
Tier 1 sensor/processor capabilities can be deployed. The focus of this paper is the investigation of a Gaussian
mixture model (GMM) based classification approach for these upper nodes. The use of GMMs is motivated by
their ability to model arbitrary distributions, which is very relevant in the case of motor vehicles with varying
operation modes and engines. Tier 1 sensors acquire the acoustic signal and transmit computed feature vectors
up to Tier 2 processors for maximum-likelihood classification using GMMs. In a binary classification task of
light-vs-heavy vehicles, the GMM based approach achieves 7% equal error rate, providing an approximate error
reduction of 49% over Tier 1 only approaches.
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1. INTRODUCTION

Vehicle detection and classification has been one of the mainly emphasized tasks of an internally-funded research
program in netted sensors recently undertaken by the MITRE Corporation, with potential application areas that
include border monitoring, combat vehicle identification, and urban warfare. The focus of the first-year effort
has been an acoustics-only based approach, the preliminary results of which are reported here.

Acoustic vehicle classification is a difficult problem due to the non-stationary nature of the signals, the
lack of strong harmonic structure for most civilian vehicles brought about by their highly muffled exhausts,
and the usually dominant tire noise. A vehicle’s acoustic signature will vary largely depending on its speed,
acceleration, gear position and engine speed, the road conditions and texture, and even the aspect angle of the
sensor itself. Usually, features extracted from the acoustic waveform are not fully adequate for clear vehicle type
discrimination.1, 2 The problem becomes more complicated within the paradigm of networked sensors, with
significant size and energy constraints on the lower tier sensor/processor nodes. The deployed acoustic sensors
will usually have less than ideal characteristics, in terms of both the frequency response of the transducers, and
the hardware capabilities which determine the resolution, dynamic range, and sampling interval of the captured
acoustic signals.

In a hierarchical network topology, the less capable sensors at the “Tier 1” level can be tasked with reasonably
sophisticated signal processing and classification algorithms, like the linearly weighted discriminator (LWD),
reducing energy-expensive communications with the upper layers.3 However, at the “Tier 2” level, where
information from the lower tier “trickles up”, and where there is substantially more computing power, more
sophisticated classification algorithms can be deployed, which would certainly exceed the capabilities of the
“Tier 1” sensors/processor combinations. One such sophisticated approach that is very suitable for these “Tier 2”
processor nodes is to use a maximum likelihood (ML) classifier based upon Gaussian mixture models (GMM),
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Figure 1. Map of traffic circle and leading roads, and placement of mote/sensor combinations.

and this has been the focus of the investigation presented here. The use of GMMs is motivated by their ability to
model arbitrary distributions, which is very relevant in the case of motor vehicles which have varying engine types,
sizes, configurations, and operating modes. Components of vehicular noise (engine, muffler, tire) have differing
contributions to the overall acoustic waveform, depending on the vehicle speed, gear and throttle positions, type
of road surface, and so forth. With adequate training data, GMMs have the potential to represent variations
within each class which are caused by factors such as the number of cylinders, different muffler characteristics,
gear position/engine speed, vehicle speed and acceleration/deceleration.

Naturally, this approach requires a data set that is representative of the problem at hand to train the GMM
parameters for the considered vehicle classes. Therefore a data collection effort was an integral part of this
investigation and is described in Section 2. In Section 3, feature extraction on the remote sensor is described,
followed by Section 4 on ML classification using GMMs. Finally, the experimental results are presented and
discussed in Section 5, with summary and conclusions given in Section 6.

2. DATA COLLECTION

The performance of statistical model-based automatic classification algorithms is largely dependent on the avail-
ability of an adequate amount of training data. Lacking any available suitable corpora of vehicle acoustic data,
an effort was undertaken to collect real data as part of this initiative. The main goal was to record vehicles using
sensors that would actually be deployed, so that more realistic data could be utilized for the investigation of the
classification problem.



The wireless remote sensors utilized in this investigation comprised Crossbow r© Technology Inc. MICA2
(MPR400/MPR410) processor/radio boards (“motes”) mated to MTS310 general-purpose multi-sensor boards
with an on-board microphone, a light detector, a temperature sensor, an accelerometer and a magnetometer.
The mote/sensor board combinations were enclosed in plastic food containers, mounted to the lid. Holes were
drilled at the bottom of the containers and polyester quilt batting was used to act as windscreen. The inside of
the containers were lined with foam to make the characteristics approach an anechoic chamber. The containers
were fitted with four legs in each corner, so that they would sit about two inches off the ground. This packaging
allowed for a non-directional acoustic sensor configuration. Due to the limitations of the hardware, the data
acquisition was restricted to 8-bit PCM at a sampling rate of 3750 Hz, with 125 ms long data-frames extracted
every 250 ms. The mote radios were too slow to ex-filtrate this output, and as a result, each mote/sensor
combination was connected to a Crossbow MIB510 programming and serial interface board using a 51-position
ribbon cable through a slit cut on the side of the container. Each interface board was in turn connected via its
serial port to an x86 notebook computer running GNU/Linux. The software running on the motes implemented
an adaptive detection algorithm and sent out data frames through the interface board when a “vehicle” was
detected. Each detection segment was written to a separate file on the notebook computer hard drive, with
time-stamp information inserted into the filename.

The data collections were performed in September 2004 around the MITRE campus in McLean, Virginia.
Specifically, a traffic circle and three roads leading to it were selected for the placement of six motes (Figure 1).
This area sees a mix of light and heavy vehicles, going up-hill and down-hill. Two of the roads leading to the
circle also have stop-signs. The vehicles decelerate when approaching the circle, generally come to a full-stop
where there is a stop-sign, and accelerate leaving the circle. This provided for a good variety of vehicle and
engine speed combinations. The mote/acoustic sensor combinations were also individually calibrated to equalize
their sensitivity. The whole duration of the data collection was captured on video by a consumer digital camera
placed in a sixth-floor office overlooking the area. During post-processing of the collected data, the time-stamped
audio segments were manually categorized into vehicle types, using this accompanying video footage.

The end-product of this data collection effort was 2640 segments of vehicle audio data, representing a total
of about 146 minutes (about 73 minutes of actual captured acoustic waveform due to the 50% duty cycle mote
data exfiltration process). The vehicles included a variety of cars, small, medium and large sport-utility vehicles
(SUV), minivans, light trucks, full-size/delivery vans, medium and large diesel trucks and buses, and several
examples of motorcycles. For this study, it was decided to focus on the two-class classification problem of
“light”-vs-“heavy” vehicles, using data recorded by the sensor which was closest to each passing vehicle. Cars,
SUVs, minivans and light trucks were lumped into the “light” category, whereas medium and and heavy diesel
trucks and buses were designated as “heavy”. This “closest point” sub-set of the whole collection data set
consisted of 1123 “light” vehicle segments (almost 32 minutes actual), and 65 “heavy” vehicle segments (about
4 minutes of actual). Furthermore, the “closest point” data set was split into two disjoint partitions at the
mid-point of the data collection time window, and both partitions included data captured at all six locations.
These partitions were used alternatively as class model parameter training sets and test sets. Table 1 summarizes
the vehicle segment statistics for the data sub-set used in this investigation.

3. FEATURE EXTRACTION

In a netted sensor environment, the Tier 1 sensors would be tasked with reasonably sophisticated signal processing
and classification algorithms, reducing energy-expensive communications with the upper layers. As such, the
time-waveform associated with acoustic events detected by the remote sensor would not be communicated out.
However, features extracted by the Tier 1 sensors might be conveyed upwards, where they can be utilized by
more sophisticated and more computationally expensive algorithms.

The features should be simple enough to be computed with the limited resources of the Tier 1 sensors, yet
they should capture the essential information necessary for the classification task at hand. Motor vehicles are
complicated systems, and a combination of different sources contribute to their acoustic signals, which include
the engine, its fans, the exhaust system, the transmission system components, as well as the interaction between
the tires and the road surface.4–6 The harmonics of the engine and exhaust noise depend on the number of
cylinders, piston transient settling times, piston ping amplitudes, engine speed, and other quantities which may



Table 1. Segment statistics for the vehicle acoustic data sub-set of “closest point” recordings and its partitions.

Set Number of Segments Segment Duration (in seconds)

Average σ Minimum Maximum

Partition 1 “light” 559 3.46 2.36 0.25 14.26

Partition 2 “light” 564 3.36 2.24 0.25 12.01

Partitions 1&2 “light” 1123 3.41 2.30 0.25 14.26

Partition 1 “heavy” 32 7.75 2.48 3.50 12.26

Partition 2 “heavy” 33 6.42 2.92 0.75 10.76

Partitions 1&2 “heavy” 65 7.07 2.77 0.75 12.26

All 1188 3.61 2.47 0.25 14.26

vary significantly with vehicle size and operation mode.7 However, these harmonics might also be masked, by
considerable tire noise which is a function of vehicle speed, tire size and tread pattern, and the road conditions.8, 9

In light of all this, feature vectors formed by the output energy levels of a generalized parametric non-linear
filter-bank form were investigated. The parameters were defined as the number of filters in the bank (nb) and
the “stretch factor” (ks). To keep the computations on the sensor processor simple, non-overlapping, rectangular
filters were considered. For any given filter-bank implementation, the Nyquist bandwidth is divided into nb + 1
unequal width sections with bandwidths b0, b1, . . . , bnb

, such that for i = 1, . . . , nb, bi = bi−1 · ks, and filter 0
corresponding to b0 which contains the DC term is dropped, yielding an nb dimensional feature vector. (Of
course, in actual implementation, this definition can only be a general guide subject to quantization because of
the discrete frequencies of the DFT, and to satisfy NF /2 =

∑nb

i=0 bi, where NF is the DFT size.) Then, for each
analysis frame x(n) of duration Na ≤ NF , the mean energy of filter i becomes element i of the feature vector ~v,
such that,

vi =
1

bi

bi+
∑

i−1

j=0
bj∑

k=1+
∑

i−1

j=0
bj

|X(k)|2, i = 1, . . . , nb, (1)

where X(k) is the complex DFT value at discrete frequency k. The energy normalized variation of ~v is given by

~vn =
NF /2

∑NF /2−1

k=0 |X(k)|2
~v. (2)

As an example, given the sampling frequency of 3750Hz, frame duration of 0.125 ms (corresponding to 469
samples), NF = 512, nb = 15 and ks = 1.25, the rectangular filter center frequencies and bandwidths are given
in Table 2.

4. CLASSIFICATION

As stated in Section 3, for the problem of acoustic vehicle classification, the feature space will encompass
substantial variability, even only considering the features extracted from the same vehicle, at different road and
engine speeds, at acceleration, or at deceleration. Therefore, it is quite possible that the even the distribution
of feature vectors from a single vehicle will have multiple modes. Considering the fact that the classification
problem considered here has two broad classes with an even larger variation of vehicle sizes, types, engine types
and displacements, cylinder numbers, tire sizes and tread patterns, and so forth, the ability of GMMs to model
arbitrary distributions with multiple modes makes them all the more appealing. (The GMM approach has been
widely used in pattern recognition problems, especially in speech and speaker recognition,10–12 and is a well
established technique.)



Table 2. Non-overlapping rectangular filter center frequencies and bandwidths for the sampling frequency of 3750Hz,
NF = 512, nb = 15 and stretch factor ks = 1.25.

Filter # fc (Hz) Bandwidth (Hz) Bandwidth ratio to previous

1 29.30 14.65 –

2 51.27 21.97 1.50

3 80.57 29.30 1.33

4 117.19 36.62 1.25

5 161.14 43.95 1.20

6 219.73 58.59 1.33

7 292.97 73.24 1.25

8 388.19 95.22 1.30

9 505.38 117.19 1.23

10 651.86 146.48 1.25

11 834.97 183.11 1.25

12 1062.02 227.05 1.24

13 1347.66 285.64 1.26

14 1706.55 358.89 1.26

15 1794.44 161.13 0.45

The probability density function for a multivariate random variable ~v with a Gaussian mixture distribution
is given by:

P (~v) =

M∑

i=1

wiN(v, µi, Ci), ~v ∈ Rn (3)

where Λi = {wi, µi, Ci} are the parameters for the ith mixture component, and represent the mixture weight,
mean vector, and the covariance matrix, respectively. While there is no closed-from solution for estimation of
these parameters, the iterative Expectation-Maximization (EM) algorithm13 is the most commonly used method.

For this investigation, estimation (training) of the GMM parameters for each class was performed using a
MATLAB PDF estimation toolbox for Gaussian mixtures.14 Once the class model parameters are estimated,
the maximum-likelihood classification of an observation vector ~x is performed according to:

log(P (~x|Class0)) − log(P (~x|Class1))
0

>
<
1

T (4)

where T is a threshold that determines the operating point of the binary classifier on the detection error trade-off
(DET) curve∗ In the case of multiple observation vectors ~x1, . . . , ~xp, as would happen for a detected acoustic
segment that is longer than a single analysis frame, with the assumption of independent and identically distributed
observations, the same test would become:

1

p

p∑

i=1

(log(P (~xi|Class0)) − log(P (~xi|Class1)))
0

>
<
1

T (5)

using an average log-likelihood measure over the incoming feature vectors.

The alternative classifier that represents a solution running at the Tier 1 nodes, is the closed-form LWD
algorithm, the details of which are given in Reference 3. In summary, the hypothesis test for the LWD classifier

∗The DET curve is similar to the receiver operating characteristic curve (ROC).



with parameters ~γ and β is given by:

1

p

p∑

i=1

(~xi
′ · ~γ + β)

0

>
<
1

T (6)

for a segment of observation vectors ~x1, . . . , ~xp, and decision threshold T .

The performance comparison of the GMM based classifier for the Tier 2 nodes, and the LWD algorithm for
the Tier 1 nodes is the subject of the next section.

5. EXPERIMENTAL RESULTS

Using the two class data set of “light” and“heavy” vehicles (Table 1) a variety of classification experiments were
performed by varying the parameters of the non-linear filterbanks to obtain a variety of front-end features, for
the Tier 1 LWD classifier, and for the Tier 2 GMM classifier.

For every experiment undertaken, model parameters were trained on one partition, tested on the other,
and the DET curve was established for the “light”-vs-“heavy” vehicle classification task. This was repeated by
exchanging the training and test partitions. The average equal error rate (EER) operating point from the two
runs was used for the evaluation and comparison of various classification schemes.

A number of experiments were run by varying the number of filterbanks (nb) between 8 to 17, stretch factors
between 1 (linearly spaced filterbank) to 1.5. Further variation was introduced by using normalized feature
vectors (~vn) as given in Eq. (2) so that only the information present in the relative frequency content of the
feature vector would be used in classification. These variations in features were implemented using both GMM
based and LWD based classifiers. For the GMM classifier case, the feature vectors were subjected to a log-
transformation, and the minimum standard deviation allowed for the mixture components during training was
varied between 0.1, 0.05, and 0.01, and the rest of the estimation parameters were left at their default values.
Table 3 lists a sub-set of the results for 20 out of a total of 560 experiments performed using these variations,
including the best EER figures for the varied parameters and classification schemes.†

The best overall performance of 7.0±1.5% average EER was achieved by using a GMM classifier and a
filter bank with 15-bands and a stretch factor ks = 1.25 (Table 2), using un-normalized log-energy terms (see
Figure 2 for the DET curve). With this feature set configuration, the “light” class converged to have 16 mixture
components (modes) training on Partition 1 and 11 mixture components training on Partition 2 data, whereas
the “heavy” class converged to have four mixture components training on Partition 1 data, and three mixture
components training on Partition 2 data. Reducing the number of filters by 33% to 10 and using a stretch
factor ks = 1.1, with un-normalized log-energy terms, the EER slightly increases to 7.7±1.5% which is only
an insignificant difference. Using normalized log-energy terms, the 16-element filterbank with a stretch factor
ks = 1.20 achieves an average EER of 11.4±1.8% (see Figure 3 for the DET curve). Using the same type of
energy terms, reducing the number of filters to 11 and using a stretch factor ks = 1.25, the increase in EER to
11.6±1.8 is insignificant.

In comparison, almost all of the LWD classifier configurations achieved a best average EER figure of 13.8±2.0%,
using un-normalized filter RMS-energy terms (see Figure 4 for the DET curve). However, when the RMS-energy
terms were normalized, the average EER figures for the LWD classifier increased significantly to between 30–40%.
The DET curve for the best configuration among these is given in Figure 5.

It is observed that by applying the logarithm function to the filter energies, better performance is achieved
using the GMM based classifiers compared with the case of using raw RMS-energy terms. This probably can be
best explained by the fact that although GMMs can model arbitrary distributions, the highly skewed distributions
of non-negative filter energy outputs still cause some under-fitting problems, and the logarithm function helps
by decreasing this skew in the distributions, making them easier to fit with a Gaussian mixture model. However,
for the LWD classifier, using the un-normalized raw RMS-energy values always gives better average EER figures
than using the un-normalized log-energy values, consistent with the derivation.3

†The confidence intervals given in Table 3 are estimates obtained by approximating the binomial distribution with a
normal distribution



Table 3. Percent equal error rate (EER) figures with estimated 95% confidence intervals for the “light”-vs-“heavy” vehicle
binary classification task, with two-partition jack-knifing (train on Partition 2, test on Partition 1, and vice versa).

Test Part.1 Test Part.2 Overall Type nb ks log() normalized σmin
6.2±1.9 7.9±2.2 7.0±1.5 GMM 15 1.25 Yes No 0.1

6.2±1.9 9.1±2.3 7.7±1.5 GMM 10 1.10 Yes No 0.05

6.2±1.9 9.1±2.3 7.7±1.5 GMM 16 1.20 Yes No 0.01

7.4±2.1 10.7±2.5 9.1±1.6 GMM 16 1.17 Yes No 0.1

7.4±2.1 12.1±2.6 9.8±1.7 GMM 11 1.25 Yes No 0.1

10.6±2.5 12.1±2.6 11.4±1.8 GMM 16 1.20 Yes Yes 0.01

9.4±2.4 13.7±2.8 11.6±1.8 GMM 11 1.25 Yes Yes 0.05

9.4±2.4 18.2±3.1 13.8±2.0 GMM 16 1.17 Yes Yes 0.1

12.5±2.7 16.4±3.0 14.4±2.0 GMM 15 1.25 Yes Yes 0.1

12.5±2.7 18.2±3.1 15.3±2.0 GMM 10 1.10 Yes Yes 0.01

12.5±2.7 15.2±2.9 13.8±2.0 LWD 8 1.10 No No n/a

12.5±2.7 15.2±2.9 13.8±2.0 LWD 10 1.10 No No n/a

12.5±2.7 15.2±2.9 13.8±2.0 LWD 11 1.25 No No n/a

12.5±2.7 15.2±2.9 13.8±2.0 LWD 15 1.25 No No n/a

12.5±2.7 15.2±2.9 13.8±2.0 LWD 16 1.17 No No n/a

12.5±2.7 15.2±2.9 13.8±2.0 LWD 16 1.20 No No n/a

26.4±3.6 33.4±3.8 29.9±2.6 LWD 16 1.17 No Yes n/a

25.0±3.5 34.9±3.8 30.0±2.6 LWD 10 1.10 No Yes n/a

32.1±3.8 33.4±3.8 32.8±2.7 LWD 15 1.25 No Yes n/a

37.5±3.9 38.6±3.9 38.1±2.8 LWD 16 1.20 No Yes n/a

34.4±3.8 44.2±4.0 39.3±2.8 LWD 11 1.25 No Yes n/a

6. CONCLUSIONS

These experiments suggest that in a binary classification task of “light”-vs-“heavy” vehicles, the GMM based
approach can reduce the EER by approximately 49% compared to the LWD classifier with the best configuration.
GMM based classifiers are computationally more expensive and therefore more suitable for Tier 2 processor nodes,
whereas LWD classifiers can be implemented at the Tier 1 sensor/processor level. However, the GMM based
classifiers degrade more gracefully when the feature vectors are normalized with respect to energy, and this is an
important detail, given that employing un-normalized features requires calibration of the sensors, which might
be impractical in actual deployment systems. The results also suggest that employing GMMs, result in better
utilization of the information present in the frequency content, especially when considering the energy-normalized
feature sets.

Since both the LWD and GMM classification schemes provide a confidence measure associated with the
classification decision that could be fed upward in a netted sensing environment, and utilized in collaborative
approaches, both have the potential to be very useful in tracking and classifying targets in a sensor field.
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