
ARTICLE IN PRESS

www.elsevier.com/locate/dsw

xx (2004) xxx–xxx
Decision Support Systems
0167-9

doi:10.

* C

E-m

hgoma
1 F

affiliati

Aviatio

McLea
Agent-oriented compositional approaches to services-based

cross-organizational workflow
M. Brian Blakea,*,1, Hassan Gomaab

aGeorgetown University, Room 234, Reiss Science Building, 37th and O Street, NW, Washington, DC 20057, USA
bGeorge Mason University, 4400 University Drive, Mail Stop 4A4, Fairfax, VA 22030-4444, USA
Abstract

With the sophistication and maturity of distributed component-based services and semantic web services, the idea of

specification-driven service composition is becoming a reality. One such approach is workflow composition of services that

span multiple, distributed web-accessible locations. Given the dynamic nature of this domain, the adaptation of software agents

represents a possible solution for the composition and enactment of cross-organizational services. This paper details design

aspects of an architecture that would support this evolvable service-based workflow composition. The internal coordination and

control aspects of such an architecture is addressed. These agent developmental processes are aligned with industry-standard

software engineering processes.
D 2004 Elsevier B.V. All rights reserved.
Keywords: Agent architectures; Workflow modeling; Coordination; UML; Web services

1. Introduction incorporates the services of another within its own
Online businesses are beginning to adopt a devel-

opmental paradigm where high-level component-

based services and semantic web services [37] are

becoming sufficiently modular and autonomous to be

capable of fulfilling the requirements of other busi-

nesses. We use the term, services-based cross-orga-

nizational workflow (SCW)[5], to describe the

workflow interaction that occurs when one business
236/$ - see front matter D 2004 Elsevier B.V. All rights reserved.

1016/j.dss.2004.04.003

orresponding author.

ail addresses: blakeb@cs.georgetown.edu (M.B. Blake),

a@gmu.edu (H. Gomaa).

or identification purposes only, this author also has an

on with The MITRE Corporation, Center for Advanced

n System Development, M/S N420, 7515 Colshire Drive,

n, VA, 22102-7508, USA.
processes (also described as business-to-business

(B2B)). This term is sometimes associated with the

idea of a third-party organization that composes the

services of multiple businesses, which is also de-

scribed as virtual enterprise [15].

In general, the major problems in this domain relate

to the dynamic and distributed nature of the Internet

environment. In this environment, business processes

and the underlying services are constantly removed

and updated. It is a major problem to create systems

that operate with respect to these dynamic conditions.

A second major issue is related to the distribution of

services. Since services are distributed across physical

and geographical boundaries, any solution architecture

must support an equivalent degree of distribution.

Although there are several related projects that

define solutions to the problems of cross-organiza-
DECSUP-10983; No of Pages 20

SABROWN
Text Box
Approved for Public Release; Distribution UnlimitedCase # 05-0693

ARTICLE IN PRESS

M.B. Blake, H. Gomaa / Decision Sup2
tional workflow (which will be described in more

detail in Section 2.3), a distinguishing innovation of

this work is the use of the autonomy of agent

technologies. In applying agent technologies to the

problems related to dynamism and distribution, an

agent architecture and design is introduced which

places emphasis on the specific roles, responsibili-

ties, and actions of the individual agents. A further

contribution of this work is the specification and

programming of the control mechanisms internal to

the agents. A unique feature introduced here is the

integration of this specification approach with cur-

rent, industry-standard software engineering process-

es and methodologies. Considering the dynamism of

the Internet environment, these specification-driven

approaches are essential for the dynamic reconfigu-

ration that results from distributed service and pro-

cess changes.

The paper proceeds in Section 2 with an over-

view and motivation of the cross-organizational

workflow domain with respect to the integration

of distributed services. In Section 3, the Workflow

Automation through Agent-based Reflective Process-

es (WARP) is introduced to support the SCW

domain. In Section 4, there is a discussion of the

integration of independent services and, in Section

5, the agent-based modeling approach to support the

community of services in the SCW domain. Section

6 contains details of the general agent interaction

protocols that support this environment. Finally,

Section 7 discusses the WARP prototype and its

performance.
2. The SCW environment and web services

The SCW approaches are a natural extension of the

related areas of component-based software engineer-

ing, in particular component composition. In tradition-

al component composition research [19], components,

such as CORBA, COM+, J2EE, Enterprise Java

Beans, and .NET, and their interfaces are modeled

using formal (text and visual) languages. Consequent-

ly, these specifications are evaluated and deployed to

support automated component composition. Currently,

these components can be specified with web service

technologies to facilitate large-scale electronic market

interoperability.
2.1. Web service technologies

Components, which are specified with web serv-

ices technologies, have the capability of being dis-

covered and accessed from distributed locations.

These web services are specified with the Web Serv-

ices Description Language (WSDL) [37] and can be

invoked using the Simple Object Access Protocol

(SOAP) [31]. Traditional WSDL supports a syntacti-

cal form of specifying web services, while the term,

semantic web services refers to an extended Web of

machine-readable information and automated serv-

ices. The DARPA Agent Markup Language for Serv-

ices (DAML-S) and the Web Ontology Language

(OWL-S) [26] both provide an ontology of services

to allow automated support for components such as

agents to locate, select, employ, compose, and monitor

Web-based services. Distributed registries, such as the

Universal Description, Discovery, and Integration

(UDDI) [34,35] architectures, advertise the specifica-

tions of distributed services universally. In addition,

other Extensible Markup Language (XML)-based

languages, such as the Web Services Flow Language

(WSFL), Business Process Execution for Web Serv-

ices (BPEL4WS), and the Business Process Modeling

Language (BPML), specify the process-based compo-

sition of these services as described in Refs. [7,25,

32,40]. However, these process languages are speci-

fied with a text-based approach that tends to conflict

with the visual design notations commonly accepted

for software development, in particular the use of the

Unified Modeling Language (UML) [6,17]. A main

goal of this work, which will be discussed in detail in

Section 3, is to support service-based composition

using accepted visual developmental approaches cou-

pled with agent-based protocols.

2.2. A sample SCW environment

The SCW environment described in this paper

incorporates the interoperability of general web serv-

ices. In Fig. 1, an example is given of a SCW

environment for multiple travel-related businesses.

The initiating business is the travel agency com-

pany. The Travel Agency has internal services for

managing customers’ accounts and credit card numb-

ers. However, the travel agency uses other third-party

vendors to realize the hotel reservation and car rental

port Systems xx (2004) xxx–xxx

ARTICLE IN PRESS

Fig. 1. An example of the SCW environment.

M.B. Blake, H. Gomaa / Decision Support Systems xx (2004) xxx–xxx 3
reservations. The Hotel Reservation and Car Rental

companies register their offerings as web services in a

distributed registry, such as a UDDI registry. The

Travel Agency uses these registry services as a part

of its internal workflow. In addition, the Travel

Agency has a partnership with an on-line publishing

company that publishes the finalized itineraries. In

this case, the travel agency has a static connection

with the partner organization and is able to access

services directly over a shared network connection.

Problems occur in this domain when the online

companies update or remove their service offerings.

This SCW environment requires a framework that

supports a methodology for process or workflow-

oriented service specification. This framework would

allow workflow developers to specify the process

sequence and message exchange between local and

distributed services. The specification approach must

support both functional and nonfunctional concerns.

Therefore when the process or services change, the

specification can be updated and the supporting ar-

chitecture automatically reconfigured.

2.3. Related work in the SCW domain

Several related projects directly and indirectly

address the dynamism problems associated with the

SCW environment. One area of research, which
addresses the ability for reconfiguration in such envi-

ronments, is traditional component composition

approaches. Mennie and Pagurek [27] summarize

the landscape of service composition and describes a

Jini-based architecture for service composition. In this

work, they describe an XML-based specification and

process to compose services realized as Java Bean

components. The CHAIMS project [33] at Stanford

University also declares a compilation process and

text-based composition language, CLAM [29], for the

composition of services. In another approach, Chak-

raborty et al. [9] define an architecture for service

composition in pervasive environments. The motiva-

tion for this work, though early in development, is for

automated reactive service composition.

Other projects address the problems in the SCW

environment, while also considering services as build-

ing blocks for workflow and business processes [18].

Casati et al. [8] in the eFlow environment use flow-

chart approaches to specify the workflow composition

of services, with the workflow and individual services

both specified in an XML format. Benatallah et al. [1]

conduct research that uses UML-based state charts

and formal methods for declarative peer-to-peer ser-

vice composition. This research does not specifically

claim to handle workflow, but the process-oriented

specification is related to workflow. In later work [41],

agents are incorporated as well as formal methods for

ARTICLE IN PRESS

M.B. Blake, H. Gomaa / Decision Support Systems xx (2004) xxx–xxx4
process enactment. Benatallah et al.’s work is the most

similar to our research and a comparison of the two

approaches is given in Section 8.

Other research projects use agent theories to ad-

dress the SCW problems. Helal et al. [20] use an agent

architecture for workflow enactment with consider-

ation to web services using SOAP and UDDI-regis-

tered services. Chen et al. [10] also consider the use of

agents for workflow with semi-structured specifica-

tion languages. Finally, Singh et al. [30] discuss the

workflow composition of services as a community of

services, with emphasis on an approach to the discov-

ery of services.

Considering related research in the SCW area, all

projects support the idea of multiple layers to address

the dynamic nature. In general terms, there must be a

configuration layer and a layer where the actual

compositional enactment occurs, as illustrated in

Fig. 2. Sometimes the configuration layer and enact-

ment layer are further decomposed. In most cases,

there is an understood benefit of allowing services to

remain on the providers’ servers while the composi-

tion occurs locally using distributed invocation. An-

other common approach is the use of some proxy

component or agent that represents the services. These

proxy components/agents encapsulate the knowledge

of service capabilities and how to execute the serv-

ices. With the use of proxy component/agents to wrap

services, there must be a manager/coordination/pro-
Fig. 2. General state of the art for architectures supporting SCW

issues.
cess component or agent to control the composition.

In all cases, there is some language (either text-based

or visual) that is used to allow the specification of the

composition which is then later compiled or inter-

preted by the manager or coordination component.
3. The WARP approach

Workflow Automation for Agent-Based Reflective

Processes (WARP) is an agent-based middleware

architecture used to implement the SCW framework.

In addition, a standard software engineering process

and language supports the specification of the work-

flow processes and control.

3.1. The WARP architecture

The WARP architecture consists of software

agents that are configured to control the workflow

operation of distributed services. The WARP archi-

tecture is divided into two layers, the application

coordination layer and the automated configuration

layer, as shown in Fig. 3. The application coordina-

tion layer is the level in which the workflow instan-

ces are instantiated and the actual workflow exe-

cution occurs. The application coordination layer

consists of two agents, the Role Manager Agent

(RMA) and the Workflow Manager Agent (WMA).

The RMAs have knowledge of a specific workflow

role. The WMA has knowledge of the workflow

policy and applicable roles. When a new process is

configured, the workflow policy is saved in a cen-

tralized database, which is used as the agents’ knowl-

edge base. The RMA plays a role in the workflow

execution by fulfilling one or more services as

defined by the workflow policy in the centralized

database. The RMA registers for workflow step-level

events in a centralized event server based on its

predefined role. When an initiation event is written

into the event server, the RMA is notified. Subse-

quently based on its localized knowledge of services

and its workflow role, the RMA invokes the correct

service. RMAs do not directly communicate and

collaborate, but the events that they propagate im-

plicitly direct the actions of their peer RMAs. The

WMA has similar functionality, but instead registers

for overall workflow level events (i.e. workflow

ARTICLE IN PRESS

Fig. 3. The WARP architecture.

M.B. Blake, H. Gomaa / Decision Support Systems xx (2004) xxx–xxx 5
initiation and nonfunctional concerns). The WMA

does not control the workflow execution, but in some

cases it adds events to bring about nonfunctional

changes to the execution of the entire workflow.

At the automated configuration layer (Fig. 3),

agents accept new process specifications and deploy

application coordination layer agents with the

corresponding policy. This layer consists of the Site

Manager Agents (SMA) and the Global Workflow

Manager Agent (GWMA). The GWMA accepts

workflow representations/specifications from a work-

flow designer as input. The SMAs discover available

services and provide service representations to the

GWMAs. This discovery can occur reflectively for

local services or from a UDDI registry for distributed

services. The GWMAs accept both of these inputs and

write the workflow policy to the centralized database.

The GWMA then configures and deploys WMAs to
play certain workflow-oriented roles. At the comple-

tion of workflow-level configuration, the SMA con-

figures and deploys RMAs to play each of the roles

specified in the workflow database.

This paper highlights three major areas of the

WARP approach which are data management for

distributed services, workflow modeling of services,

and agent interactions for service modeling and

composition. Similar to related work [1,30], we

adopt the ideas of elementary services and service

communities. Elementary services, in the context of

the WARP approach, are atomic component-based

services, invocation-based services, and/or web

services. In Section 4, agents are shown to charac-

terize these services and manage data dealing with

composition. In this research, a service community

refers to the workflow composition of elementary

services. In WARP, this service community is a

ARTICLE IN PRESS

M.B. Blake, H. Gomaa / Decision Support Systems xx (2004) xxx–xxx6
virtual community, since services are distributed.

Accessible to the agents is a data repository, which

contains the information that defines the workflow-

oriented composition specifications for this virtual

community. A major focus of this paper is the

workflow modeling approach, which uses industry-

standard software modeling approaches as described

in Section 5. In Section 6, there is a discussion of

the significance of using agents and the interactions

that multiple agents undertake to realize the idea of

service composition.
Fig. 5. WARP service population procedure.
4. Data management for distributed services

With the WARP approach, an elementary service

repository is not a repository of the services but a

repository of service descriptions. Since services are

stored at the providers’ locations, there are certain

characteristics of the services that must be captured

and stored locally before the agent-oriented workflow

composition can be executed.

4.1. Elementary services for the WARP environment

There are two elementary service types considered

in the WARP approach, invocation-based and web

services-oriented. In both cases, these services have a

‘‘call-and-return’’ style of operation. The environment

incorporates web services accessible using SOAP

protocols in addition to Java-based components and

.NET components. Not considered in this work is the

area of event-based component services.

Similar to the current state of the art in service

specification [13,29,32,39], WARP-mediated services

are specified with three parts known as the operation,

the input parameters, and the returned parameters. The

operation is the identification information of the ser-

vice, which includes the location and the execution

procedure of that service. The input parameters specify

the information required for operation and the returned
Fig. 4. Decomposing an elementary service.
parameters consist of the output information. These

concepts, which underlie the service specification, are

common to web services and traditional invocation-

based services. In addition, input and returned param-

eters may be associated with other system-oriented pre-

and post-conditions of the service. An illustration of the

parts of the elementary service is shown in Fig. 4.

4.2. Automated population into the agent-accessible

data model

Site Manager Agents (SMA) are responsible for

the automated capturing of service characteristics and

assigning Role Manager Agents (RMA) in the WARP

environment. The SMAs have two basic functions for

gathering services, registry access and introspection.

In registry access (UDDI), SMAs use the access

methods provided by the registry, such as find_service

and get_serviceDetail methods in the UDDI specifi-

cation [34]. In this case, SMAs are required to know

the specific service name. For other services, the SMA

gathers the service characteristics directly from the

binary representations of the services using introspec-

tion, which is a reflective capability for determining

service characteristics from binary source code at run-

time. Using this approach, the SMAs are able to gather

operations, pre- and post-conditions directly from the

previously compiled services, without the requirement

of having initial source code or specifications. An in-

depth discussion of introspection is contained in pre-

vious work [2]. Fig. 5 shows an overview of the

ARTICLE IN PRESS

Fig. 6. Service specification data model.

M.B. Blake, H. Gomaa / Decision Support Systems xx (2004) xxx–xxx 7
operations of the SMA to populate service specifica-

tions into a local repository.

The SMAs populate a data repository consisting

four entities, Component, Operation, InputPara-

meter, and ReturnedParameter. The services data

model is shown in Fig. 6. The Component entity

defines the characteristics of the components that are

available for composition, such as location and

network path. Because an individual component

may contain multiple elementary services, the Com-

ponent entity is an aggregate of the Operation entity,

which specifies the independent elementary services.

Each service consists of an aggregation of InputPara-

meter and ReturnedParameter. In these entities, the

input and returnedParameters are further defined by

their data type. Throughout all entities, unique iden-

tification numbers are used to distinguish compo-

nents, services, and input and returnedparameters

that may be named similarly. Input and returnedPara-

meters can use ontological approaches to assist in

data integration [38].
5. Workflow modeling of services

Considering the fact that, in previous steps, elemen-

tary services have been discovered, captured, and

stored by the SMAs, the next step in the WARP

approach requires human intervention to model the

workflow composition of these services. A service

community can be defined as a repository of these

compositions. In the specification of this service com-
munity, the WARP approach incorporates industry-

standard modeling approaches, in particular UML

[6,17].

5.1. Workflow terminology in WARP

The workflow language here follows workflow

terminology used commonly by researchers, as in

Lei and Singh [24]. In order to set the nomenclature

for further discussion, the following set of definitions

are adhered to throughout this paper.

� A task is the atomic work item that is a part of a

process.
� A task can be implemented with a service. (In

complex cases, it may take multiple services to

fulfill one task.)
� An actor or resource is a person or machine that

performs a task by fulfilling a service.
� A role abstracts a set of tasks into a logical

grouping of activities.
� A process is a customer-defined business process

represented as a list of tasks.
� A workflow model depicts a group of processes

with interdependence.
� A workflow (instance) is a process that is bound to

particular resources that fulfill the process.

The WARP approach separates the semantic

modeling of the workflow from the specification

of services that implement the model. The task,

role, process, and workflow model terms are used

in specification of conditions that are directly related

to the workflow process. However, the terms, ser-

vice, actor, and workflow instance, specify imple-

mentation-oriented information. This is not a new

approach but one that is necessary to ensure that the

services and the workflow modeling can evolve

separately. One simplification made in this work is

that a task is directly related to one type of service.

Based on this simplification, roles are directly

connected to services as opposed to tasks. This

does not significantly limit the modeling

approaches, which are the focus of this paper, since

many roles can be modeled for the same service.

However in future work, it may be necessary for

services of a specific task to dynamically change

without changing roles.

ARTICLE IN PRESS

n Support Systems xx (2004) xxx–xxx
5.2. Workflow interaction in the WARP environment

Fundamentally, the design of workflow processes

and complex interactions have been investigated in

great detail. Van der Aalst [36] maintains a list of

workflow interactions called workflow patterns. At the

most general level, there are two concepts in workflow

that seems to be adopted universally. In specifying

workflow, the modeler must be able to show the

sequence of control as the workflow executes, in

addition to the ability to show how data is passed

throughout the process. These two concepts can be

referred to as control flow and data flow or message

flow. The most common workflow interactions can

be characterized in terms of control flow and mes-

sage flow sequences. However, shortcomings in

modeling approaches are discovered when the work-

flow interactions are complex combinations of both

control flow and message flow. This complexity is

extended further as modeling must occur across

multiple workflow instances. The WARP approach

implements the basic workflow control patterns con-

sisting of normal sequence, parallel split, synchroni-

zation, exclusive choice, and simple merge as defined

in Ref. [36].

5.3. WARP workflow modeling approaches

In the WARP approach, workflow processes are

specified using UML activity diagrams and class

diagrams. We introduce a new approach to modeling

workflow in which workflow processes are specified

using multiple views, which use different UML

diagrams. The advantage of this approach is that it

M.B. Blake, H. Gomaa / Decisio8
Fig. 7. Summary of WAR
promotes the separation of concern [23] in workflow

specification, thereby reducing complexity. In addi-

tion, multiple agents can be deployed to implement

the workflow process with respect to individual

concerns.

There are three major concerns that are specified in

WARP-based models, structural, dynamic, and non-

functional concerns. The structural concerns deals

with specification of workflow roles and how those

roles are associated with specific workflow processes.

From an implementation aspect, structurally the de-

scription of underlying services must be considered in

addition to their binding to workflow roles. The

dynamic concerns incorporate the control flow and

message flow. Nonfunctional concerns consider such

things as performance, atomicity, and error-handling.

Nonfunctional concerns tend to be peripheral con-

cerns important to the operation of the workflow. We

adopt two groupings as specified by Kamath [22],

failure atomicity and execution atomicity. In the fail-

ure atomicity grouping, models must define the se-

quence of actions that must take place when errors

occur. The execution atomicity grouping includes

specification of services and groups of services that

are incompatible in the same workflow instance or

across instances.

Using the WARP approach, the three workflow

concerns can be modeled using multiple models and

views in UML (predominantly class and activity

diagrams). These models and views are summarized

in Fig. 7. The two central models are the Control

Model and Role Collaboration Model. These models

are described using control-based and information-

based activity diagrams. One distinguishing feature of
P workflow models.

ARTICLE IN PRESS

M.B. Blake, H. Gomaa / Decision Support Systems xx (2004) xxx–xxx 9
the WARP approach is the separation of control flow

and message flow into two different activity diagrams.

The other WARP views are the Service Representa-

tion View, the Role Association View, the Workflow

Structural View, the Failure Atomicity View, and

Execution Atomicity View. In the following subsec-

tions, we briefly summarize these views for complete-

ness as additional in-depth discussions have been

made in previous work [2].

5.3.1. Structural and dynamic models

WARP structural models are views of the SCW

environment representing the physical agents and

services involved with respect to the configured work-

flow processes. The structural views consist of the

Service Representation View, the Role Association

View, and the Workflow Structural View. These views

are constructed using UML class diagrams. Since the

focus of this paper is the dynamic process, the reader

is directed to related work for further detail [2] on the

structural models.

The dynamic models are defined by the Control

Model and the Role Collaboration Model. The se-

mantics for the Control Model and the Role Collab-

oration Model follow closely to related work using

activity diagrams for workflow [11,12]. Each role, as

initially specified in the structural models, is illustrat-

ed with a new UML swim lane, as illustrated in Fig. 8.

Each time a role executes a specific service an activity

state (oval) is placed in the swim lane. The major

difference that distinguishes the WARP approach is

the use of the Control Model as an activity diagram
Fig. 8. Dynamic
that describes the sequence of actions, in addition to

the Role Collaboration Model that describes the

exchange of messages. In the Control Model, standard

fork and join notations are used and the transitions are

illustrated with solid arrows.

In the Role Collaboration Model, the dotted arrow

notation is used between messages. A message sent

by one service to another is modeled by means of a

class. The class name represents a message as

defined by the modeler. The attributes of this class

are a list of the Parameter names, which act as the

returned parameter components of one service and

the input parameter requirements of the subsequent

service.

5.3.2. Nonfunctional models

The workflow designer may also model common

nonfunctional concerns. The first concern is the

assurance of failure atomicity or recovery, when

some domain-related problem occurs. The Failure

Atomicity Views are the same as the Control Model

and the Role Collaboration Model. The major dif-

ference is that default values are stipulated with the

Param_Name attributes. In addition, agents can parse

Failure Atomicity Views that mix control flow and

message flow in one diagram. This feature was

allowed because the Failure Atomicity Views tend

to consist mostly of control flows after the initial

exception is realized. Agents in the WARP architec-

ture monitor messages for the existence of these

exception-driven values. The existence of these val-

ues serves as the trigger for the execution of the
models.

ARTICLE IN PRESS

Fig. 10. WARP process-oriented data model.

Fig. 9. Failure Atomicity View notations and concrete example.

M.B. Blake, H. Gomaa / Decision Support Systems xx (2004) xxx–xxx10
exception-handling-specific workflows specified in

the Failure Atomicity Views. Consequently, for each

possible exception, there is a corresponding set of

Failure Atomicity Views.

In addition, UML stereotypes are used to specify

actions that must be taken to correct services that have

been executed in the process of correcting the work-

flow state. Several common actions represented as

stereotypes are babortH, broll-backH, broll-

back and abortH, bre-executeH, broll-back and

re-executeH, binitiationH. In Fig. 9, there are the

semantics of the Failure Atomicity View and a con-

crete example of an incorrectly formatted customer

identification scenario is shown.

There was one major assumption made in this

approach. This assumption is that services contain

basic error-handling functionality. Actions such as

roll-back and re-execute have to be supported by the

services internally. It is not unrealistic to assume that

services will be constructed with internal error cor-

recting capabilities. However, the WARP architecture

also requires that these error-correcting actions be

implemented in a relatively uniform manner so that

agents can invoke them universally. Though web

service messages have support for this, this manner

of development is not the current state of heteroge-

neous services developed in different enterprises. This

is a weakness in the WARP approach that serves as an

avenue for future research.

5.4. Capturing the WARP models

In the WARP architecture, GWMAs operate on

information extracted from the WARP models and

views as represented by the data model in Fig. 10.
The main table for the process specification is the

Workflow Policy table. Each record in this table

defines a single process transition. A transition can

be defined as the control flow between the completion

of a service or group of services and the initiation of a

subsequent service or group of services. These serv-

ices are grouped in the EventGrouping table. There is

also a Role table that defines a role based on a group

of services. The FailureAtomicity tables are used to

capture the nonfunctional concerns of exception-han-

dling, atomicity, performance, and security. All tables

represent the long-term storage in the run-time oper-

ation of the workflow. The process of parsing the

WARP models and views is a systematic process. The

data model presented in Fig. 10 maps directly to the

various models and views. These views also map to a

WARP XML-based text schema. This visual, textual,

and database view of the SCW processes is an

innovation discussed here and in related work [3].

ARTICLE IN PRESS

for the travel agency domain.

M.B. Blake, H. Gomaa / Decision Support Systems xx (2004) xxx–xxx 11
5.5. A concrete example of the WARP modeling

approach

A concrete example of WARP service modeling is

motivated in the travel agency domain, which was

first described in Section 2. In Fig. 11, we show the

control model for a travel agency scenario for pur-

chasing an airline ticket (purchaseTicket), reserving a

taxi (reserveCar), reserving a hotel or motel room

Fig. 11. A control model
Fig. 12. (a) Control model for the travel agency domain. (b) R
(reserveRoom), reserving a rental car (makeReserva-

tion), and receiving an email-delivered itinerary (pub-

lishItinerary). In this simple scenario, the fork, join,

and other workflow-oriented transitions, in particular

instance creation and exclusive-or relations are illus-

trated by the shaded regions. Though the initial

studies emphasize fork and join relations, other rela-

tions, as discussed Section 5.2, will be investigated in

future work.
ole collaboration model for the travel agency domain.

ARTICLE IN PRESS

M.B. Blake, H. Gomaa / Decision Support Systems xx (2004) xxx–xxx12
Multiple agents coordinate the composition and

enactment of services based on this travel agency

scenario. This scenario starts when a user issues a

new job with travel preferences. A new instance is

created and the first service executed is the purchase-

Ticket service. This service returns with a flight ticket

and times. The flight information serves as the input

parameters for the next three services concurrently.

There are two reserveRoom services where one ser-

vice is in a hotel reservation system and the other is in

a motel reservation system. The exclusive-or relation

specifies that just one of the reservation services will

be executed concurrently with services for making an

appointment for a taxi (reserveCar) to take the person

to and from the airport in the originating city and for

reserving a rental car (makeReservation) in the desti-

nation city. Once the three concurrent services have

completed, then the returned parameters of the serv-

ices can be used as input to the publishItinerary

service.
Fig. 13. Composing web services based o
The relation of the WARP models to an actual web

service specification is shown with a subset of the

travel agency domain. Considering only the services

for reserving a hotel room, making a car rental

reservation, and publishing the itinerary, there is the

corresponding control model and role collaboration

model illustrated in Fig. 12a and b. In Fig. 12a, there

is a control model that shows that the car rental and

hotel reservation services will be executed concur-

rently and the output of both services will be used to

execute the itinerary publishing service. Also in Fig.

12b, the class notations show the subset of informa-

tion that will be transferred between the services. In

these class representations, the attributes represent the

information shared between the services. Information

is extracted from both of these models to further

populate the WARP data entities to later serve as a

knowledge base for the WARP agents.

The models in Fig. 12a and b are constructed from

concrete web services and SOAP specifications.
n the travel agency control model.

ARTICLE IN PRESS

M.B. Blake, H. Gomaa / Decision Support Systems xx (2004) xxx–xxx 13
Examples of these specifications are illustrated in Fig.

13. In Fig. 13, the reserveRoom and makeReservation

web services are composed and integrated with the

publishItinerary service. The input and output param-

eters are grouped and represented using sample SOAP

messages customerInformation.xml and reservationIn-

formation.xml respectively. The service is specified

using WSDL specification (i.e. label as the WSDLO-

perationSpecification). There are SOAP and WSDL

message examples shown for the input/returned

parameters of the car rental service, and another

SOAP message is shown for the input parameters to

the itinerary publishing service.

The database illustrations show the specific WARP

data entities that relate to the input and returned

parameters represented in the SOAP messages. The

swimlane stereotypes, HotelReservation, CarRental,

and ItineraryPublishing, represent the location of the

web service. The independent activities, such as

reserveRoom, makeReservation, and publishItinerary,

represent the actual web services. Each activity would

be documented with a WSDL specification and two

SOAP representations that describe input and returned

parameters. The class notations (customerMessage

and reservationMessage) between the activities con-

tain the subset of parameters from the outgoing and

incoming SOAP messages (i.e. the customerInforma-

tion.xml and reservationInformation.xml specifica-

tions). This subset of parameter information is

exchanged among the web services.

Summarizing the WARP scenario, a set of WSDL

and SOAP specifications, as in Fig. 13, are accessible

to a set of information agents. These agents present

the available services to a user within an initial

development environment consisting of UML-based

service representation views, perhaps using a case tool

such as Rational Rose. The human user then creates

the control model and role collaboration models, as in

Fig. 12a and b, based on the type of service compo-

sition that is desired. The WARP data entities, also

illustrated in Fig. 13, are populated and used in

subsequent agent configuration processes prior to

the real-time web service composition. This is a

simple example that illustrates the use of the WARP

models and web service specifications. The assump-

tion in this example is that services in this domain will

typically be produced at separate businesses. The

focus of this paper is not the data integration aspects
of this work, although further work toward solving

these problems is explained in related research [38].
6. Agents and interactions for service modeling

and composition

A major characteristic of the WARP architecture is

the use of agent-oriented programming approaches to

realize the workflow composition and management of

services exploiting the adaptability of agents. Soft-

ware entities have been defined as agents when they

possess certain characteristics. The grouping of these

characteristics has been defined as levels of agency

[21]. Entities classified as weak agency tend to

possess characteristics such as autonomy, social abil-

ity, reactiveness, and/or proactiveness. However,

strong agency dictates that, in addition to the weak

agency characteristics, software entities must also

possess mental abilities, even emotions, which are

usually attributed to human behavior.

WARP agents can be classified as possessing weak

agency as they are autonomous software entities that

have knowledge of their environment to reactively

and proactively mediate service executions and pro-

cess management. WARP agents have independent

assignments to invoke specific services or manage

specific business processes, reacting to both function-

al and nonfunctional conditions of the workflow. In

addition, these agents are programmed with general

proactive abilities to effect change when negative

nonfunctional events occur. The following sections

describe the software design process used to program

the WARP agents for the SCW domain, a formal

definition of the WARP agents, and a description of

the interactions among agents.

6.1. Agent-oriented software design process for

service modeling and composition

Software design and configuration in the WARP

environment, in a general sense, consists of five steps

as illustrated in Fig. 14. In the first step, SMAs are

deployed locally or with access to distributed services

that are required for the cross-organizational workflow

composition. This discovery can occur on services in

UDDI registry or locally registered component-based

services. These SMAs search for relevant services, and,

ARTICLE IN PRESS

Fig. 14. A software engineering process for developing the WARP environment.

M.B. Blake, H. Gomaa / Decision Support Systems xx (2004) xxx–xxx14
in the second step, save the service characteristics in

the service-oriented data model as illustrated in Fig. 6.

Also in the second step, with help from the

GWMA, the service characteristics are captured in

WARP models. In the third step, a workflow designer

accesses the available services as Service Representa-

tion Views. The workflow designer then creates a set

of cross-organizational process models. Once the

process modeling is complete, in the fourth step, the

GWMA captures the WARP models and extracts the

process information. This process information is

stored in the process-oriented data model as illustrated

in Fig. 10. Consequently, an integrated data model of

both service and process data models is ready for

agent access. In the fifth and final step, application-

layer agents (Workflow Manager Agents and Role

Manager Agents) access the integrated data model and

configure themselves for workflow enactment in the

SCW environment.

6.2. Formal definition of the application-layer agents

In a structural sense, the RMA is composed of a

number of workflow roles that it has responsibility to

proxy. The operational responsibilities of an RMA

consist of the invocation of distributed services at the

appropriate time, acknowledgement of completions to
other RMAs and WMAs, monitoring of the condition

of the services, reporting of known errors, and the

proactive reporting of perceived errors. Formally, the

RMA can be defined by the set of one or many

workflow roles, WR, such that RMA={WR1, WR2,. . .,
WRn}. Therefore, the workflow role is defined as the

tuple WR:

WR ¼ ðRni; S;GiÞ where: ð1Þ

1. Rni is the unique name for the workflow role.

2. S is the set of service: S={s1, s2, s3,. . ., sn}.
3. Gi is the grouping or transition type for multiple

services, which can be AND or XOR. An AND

type specifies that multiple services are executed

concurrently, while an XOR type specifies that

one service must be chosen from among

multiple possible services (typically based on

past performance).

An atomic service can be represented by the tuple,

Si: Si ¼ ðNsi;Oi; TiÞ where: ð2Þ

1. Nsi is the combination of the name and an unique

identification that distinguishes the service from

the set of available services.

ARTICLE IN PRESS

M.B. Blake, H. Gomaa / Decision Support Systems xx (2004) xxx–xxx 15
2. Oi is the organization name (routing) of the service

used for the distributed access to the service.

3. Ti is the type of service, which can be webservice

or invocation. The webservice types of services are

accessed from the UDDI registry and executed

using SOAP messages. The invocation types of

services, at this point, are access locally using

reflective functionality.

Given the definition of the RMAs, a straightfor-

ward definition of the WMA would be the sequential

set of RMAs and the workflow name or identification.

However, if WMAs were defined in this manner, they

would have global knowledge of the workflow pro-

cess and consequently global bias. An innovation in

the WARP environment, which further distinguishes it

from other approaches, is the fact that the WMA does

not control the workflow process. As such, there is no

centralized controller that may result in a single point

of failure. The major responsibilities of the WMAs are

to initiate the workflow instance and monitor for

nonfunctional changes. In this way, the workflow

process is enacted through the coordination among

the RMAs and the process control is distributed.

Given this explanation, the WMA can be defined as

the tuple WMA:

WMA ¼ ðWni; J ; Lri;Fri;EÞ where: ð3Þ
1. Wni is the unique name for the workflow process.

2. J is the set of job events: J={ j1, j2, j3,. . ., jn}; ji is
an atomic event that triggers the WMA to initiate a

new workflow process.

3. Lri is the name of the first workflow role in a new

workflow process, and Fri is the name of the final

workflow role.

4. E is the set of exception-handling workflows:

E={e1, e2, e3,. . ., en}.

Agents must be programmed to handle errors or

exceptions in the workflow execution. Agents execute

a new series of actions, an exception-handling work-

flow, to make corrections for exceptions. The excep-

tion-handling workflow defines a workflow in a

similar fashion to the WMA tuple. An exception-

handling workflow is triggered when an agent per-

ceives workflow errors resulting from improper data

exchange. The exception-handling workflow is de-

fined by the value of the erroneous data, V, as opposed
to the job event, J. An assumption in this approach is

that the exception-handling workflows are atomic;

therefore there are no nested exception-handling

workflows. The exception-handling workflow ei, is

defined as the tuple:

ei ¼ ðWni;V ; LriÞ where: ð4Þ

1. Wni and Lri are the workflow name and lead role

name as in the WMA tuple.

2. V is the set of value names: V={v1, v2, v3,. . ., vn}. vi
is defined with the Value_Name identifier, Nvi and

the workflow designer-specified error code or

improper data value, Di. Therefore, vi, can be

defined as the tuple vi:

mi ¼ ðNmi;DiÞ: ð5Þ

6.3. The operation of WARP agents in the SCW

environment

The WARP environment uses event-driven com-

munication similar to the publish/subscribe commu-

nication mechanism specified in Linda and other

approaches [14]. In addition, the WARP architecture

is configured using a process repository that agents

access at run-time. This connectivity supports the

run-time evolution of the workflow process and

service-oriented bindings. In developing the WARP

architecture, many basic workflow processes were

implemented, such as pre-run-time and run-time con-

figuration, normal and advanced workflow enactment

modes, exception-handling enactment, AND and XOR

condition enactment, synchronization, and workflow

instance management.

WARP agents also have several operational modes

in realizing the above workflow operations. An inno-

vation in the WARP architecture is its flexibility to

support the loose and tight-coupling of agents to the

pre-established process repository. In a loosely cou-

pled mode, agents only access the process repository

at configuration prior to real-time execution. In a

tightly coupled mode, agents access the process re-

pository at configuration, at the initiation of each

workflow, and during each workflow step.

ARTICLE IN PRESS

Fig. 15. Agent interactions for two modes of workflow enactment.

M.B. Blake, H. Gomaa / Decision Support Systems xx (2004) xxx–xxx16
In the WARP approach, there are three modes of

operation with various degrees of coupling. The first

mode is the most loosely coupled. Both WMAs and

RMAs are configured from the process repository at

system initiation. In the second mode, the RMAs

verify and reconfigure the service bindings during

each workflow step while the WMAs remain as

defined in the first mode. In the third mode, the

WMAs and the RMAs access the repository for each

action. Therefore in the third mode, WMAs can re-

configure the process at the beginning of job and at

each step. In addition, the RMAs reconfigure service

bindings during each workflow step. The first mode

and the third mode are illustrated in Fig. 15.

The three operational modes in the WARP envi-

ronment are designed to support different organiza-

tional needs. In settings where all distributed services

are within one enterprise, business process and service

changes may be less frequent. In this static setting, the

business can take advantage of the faster performance

of the first operational mode that limits access to the

process and service repositories at run-time. However,

for business processes that are predominantly defined

by the distributed services of other provider busi-

nesses, the services may change frequently outside of

the control of the originating organization. In these

dynamic settings, operational modes 2 and 3 may be

optimal despite the fact that the system performs

slower. The third operational mode also supports

businesses that change their processes in real-time,

for example, businesses that change their processes
based on the change of customer demand for products

or capabilities. In Section 7, there is a discussion of

the performance overheard associated with each of the

operational modes using the WARP prototype.
7. The WARP prototype and operational

evaluation

To evaluate the WARP architecture, a WARP pro-

totype and experiment was developed as illustrated in

Fig. 16. For initial purposes, the prototype used only

invocation-based services. JavaBean components were

chosen for the implementation of component-based

services. The reason for this choice was the ability to

use reflective processes to emulate local invocations, in

addition Java introspection could be used to simulate

UDDI calls. To implement the event-based communi-

cation, JavaSpaces technology was incorporated. The

choice to use JavaSpaces as opposed to other imple-

mentations, such as IBM’s TupleSpaces, was because

of the seamless integration with Java Beans [4,16]. In

addition, JavaSpaces is freely available. To simulate

cross-organizational interactions, RMAs were distrib-

uted across multiple Windows 2000 Professional

machines. The integrated data model was replicated

on all machines using Oracle8iLite, which is a rela-

tional database management system that is operational

in the personal computer environment. Finally, services

were registered both on Java’s RMI registry and given

web accessibility using the Tomcat web server.

ARTICLE IN PRESS

Fig. 16. The WARP prototype environment and low-level object-oriented design.

M.B. Blake, H. Gomaa / Decision Support Systems xx (2004) xxx–xxx 17
The WARP agents were built using pure Java as the

programming language. All agents are JavaBean/App-

lets, meaning they have both event-based and call-

return style of communication. The agents have the

graphical user interface and Internet functionality in-

herent to JavaBean/Applets. The agents communicate

through the JavaSpaces server. The agent architecture

was developed in UML using strict object-oriented

design practices. The WARP Representations were

captured using Rational Rose developer tool. Using

the Rose Extensibility Interface (REI), agents can

access the representations via the model file (.mdl)

created by Rational Rose. In this way, the Rational

Rose tool was used as the workflow modeling and

capturing tool. The design of this prototype follows the

WARP architectural design explicitly. The functional-

ity of the Abstract Agent is the most important func-

tionality in the design. Using the publish/subscribe

communication mechanism, each agent can transmit

events over the event server, register for events, and

receive events. The functions are delegated to the

Communicator class and the Listener class. The Com-

municator class is used to send and receive events,

while the Listener class is used to register for events.

The Listener class is activated when a notification

returns based on an event registration or subscription.

The implementation of the full WARP prototype is
approximately 20,000 lines of program code and

scripting.

An experiment was conducted using the WARP

prototype to evaluate the impact of the overhead

caused by the three modes of real-time configuration

as discussed in Section 6.3. The various modes were

evaluated against a baseline system that uses the same

technology but has hard-coded interactions. This

baseline system has less functionality than any of

the WARP operational modes and was created with

the sole purpose to evaluate performance. The base-

line system is static and only performs one specific

type of process. This type of system has no reconfig-

uration functionality and all nonfunctional concerns

are bundled into the implementation. Conceptually,

this system should have the fastest performance and in

the case of Java-based services, this fact was proven

through experimentation. In this baseline case, work-

flow interactions are hard-coded in memory.

The system was then configured for the operation-

al modes as in Section 6.3. The first case was a

WARP system that performed pre-run-time configu-

ration of the workflow processes and available serv-

ices, as Operational Mode 1. The second and third

modes (Operational Modes 2 and 3) are more tightly

coupled to the database, but more evolvable. In

Operational Mode 2, RMAs check services at each

ARTICLE IN PRESS

Table 1

Evaluating the operational modes of the WARP environment (percent latency)

Number of

workflow steps

Java components

with memory-based

workflow look-up

tables (base case) (%)

WARP configured

agents that check

database only at

configuration

(Operational Mode 1) (%)

WARP configured

agents that check

services at each step

(Operational Mode 2) (%)

WARP configured

agents that check

policy and service

each step

(Operational Mode 3) (%)

3 2 9 13 23

5 2 10.7 14 27

50 2 12 15 37

M.B. Blake, H. Gomaa / Decision Support Systems xx (2004) xxx–xxx18
step in addition to the initial configuration. In Oper-

ational Mode 3, the RMAs and WMAs check services

and the workflow process, respectively, at the com-

pletion of each workflow step. The overheard results

are shown in Table 1.

The increase in overhead by operational mode was

anticipated. As the operational mode was changed

from mode 1 to mode 3, the system queries the

database more times, thus increasing the latency on

the completion of the workflow process. Therefore, an

important aspect is that the latency is directly depen-

dent on the size and performance of the underlying

database.

Another result was that the overhead increased with

the increase of workflow steps. This was relatively

unexpected since the latency was constant in the base

case as the number of workflow steps was increased.

One explanation of this increase of overhead was the

degradation of the database connection using the cho-

sen database driver as more queries were executed.

However, further experiments demonstrated that this

could not account for all of the additional delay. The

performance of the reflective calls between the agents

and the Java Beans components also varied with load.

In future work, we plan to run additional experiments to

prove that this increase in latency is implementation-

related and not design-related.

Even with the latency found in this experiment,

this approach is promising with respect to other

approaches that use CORBA-based technology.

Reports have shown that the communication overhead

associated with CORBA is consistent with the over-

head associated with the second operational mode

[28]. These experiments verify that the WARP ap-

proach is a viable SCW solution considering the

comparable performance to other middleware tech-

nology that lacks the reconfiguration functionality.
8. Discussion and conclusion

The WARP approach to service composition

extends the state of the art discussed in Section 2.3.

The work of Mennie, CHAIMS, and Chakroborty

[9,33] successfully support base-level composition

approaches, however consideration of complex work-

flow interactions is not evident. These approaches tend

to be formal, but consider composition at a relatively

atomic level. The WARP approach extends the work in

these projects by investigating complex workflow

interactions. Another variation is their sole use of

text-based specification, while the WARP approach

uses both visual (software engineering standard) and

text-based specifications. The work of Casati and

Benatallah [1,8] consider more complex workflow-

oriented interactions with visual and text-based spec-

ification approaches. Both adopt formal approaches to

the service composition, but have non-agent-oriented

interactions in the operation of their respective internal

architectures. The WARP approach extends the ap-

proaches of Casati and Benatallah by considering both

the complex workflow-oriented interactions among the

services, and the complex interactions of agents inter-

nal to our architecture. The work of Helal et al. [20],

Chen et al. [10], and Singh [30] concentrate on agent

architectures for service composition and discovery.

Though these approaches are promising with respect to

their problem domains, their service composition spec-

ification languages are neither text-based nor were they

intended to address the complex workflow configura-

tion issues supported in the WARP approach.

Another innovation in the WARP approach is the

software developmental process (as in Fig. 14) in the

creation of these composite systems that respect work-

flow protocols. This software development lifecycle is

consistent with industry-standard software engineering

ARTICLE IN PRESS

M.B. Blake, H. Gomaa / Decision Support Systems xx (2004) xxx–xxx 19
lifecycles. In fact, the use of industry-standard model-

ing methodologies (i.e. UML) assists the integration

into industry processes. In experiments of the WARP

prototype, we determined the system latency of the

WARP approach was comparable to related middle-

ware approaches. These performance results verify the

appropriateness of the WARP approach considering

the major increase in operational flexibility with over-

head comparable to related approaches.

The WARP approach is one of few projects that use

an industry-standard developmental process and mod-

eling techniques. By using multiple UML-based views

and software agents to extract the operational data,

service evolution and process evolution can occur

independently. Furthermore, a workflow designer can

control this change by visually modeling the workflow

design in available object-oriented software engineer-

ing tools. This work also presents a systematic method

of combining the UML-based workflow representa-

tions to configure an agent-based architecture and

relational database for the management of workflow.

However, there were several issues encountered in this

approach that are the source for future investigations.

As briefly discussed in earlier sections, we have started

investigating agent approaches for the major problem

of data integration and modeling. Since input/output

messages can be represented in heterogeneous formats,

such as plain text, concrete objects, or XML, modeling

approaches and agent support have a formidable chal-

lenge to create operational patterns to deal with these

formats. In future work, we intend to investigate

DAML-S as a solution to the data management issues.

Another problem is support for error-handling. An

inefficient approach taken in this work is to create new

models for each error-handling case. These cases can

be more efficiently wrapped into the general opera-

tional models (i.e. Control Model and Role Collabo-

ration Model). Future work would consist of further

evaluating this approach with advanced workflow

patterns and interactions while also incorporating

UDDI and SOAP technologies.

References

[1] B. Benatallah, M. Dumas, Q. Sheng, A. Ngu, Declarative

Composition and Peer-to-Peer Provisioning of Dynamic Web

Services, 18th International Conference on Data Engineering,

2002 Feb.
[2] M.B., Blake, Agent-Based Workflow Modeling for Distri-

buted Component Configuration and Coordination, PhD dis-

sertation, George Mason University, 2000 online at: http://

www.cs.georgetown.edu/~blakeb/pubs/diss.zip.

[3] M.B. Blake, An Agent-Based Cross-Organizational Workflow

Architecture in Support of Web Services, Proceedings of the

11th IEEE WETICE, 2002 June, Pittsburgh, PA.

[4] M.B. Blake, Agent-Based Communication for Distributed

Workflow Management using Jini Technologies, Interna-

tional Journal on Artificial Intelligence Tools, vol. 12 (1),

World Scientific, Toh Tuk Link, Singapore, 2003 March, pp.

81–99.

[5] M.B. Blake, H. Gomaa, Object-OrientedModeling Approaches

to Agent-BasedWorkflow Services, in: C. Lucena, et al. (Eds.),

Software Engineering to Large-Scale Mult-Agent Systems II,

LNCS, vol. 2960, Springer-Verlag, Heidelberg, Germany, 2004

Feb.

[6] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling

Language User Guide, 1999, Addison-Wesley, Reading, MA.

[7] BPEL4WS (2002): http://www.ebpml.org/bpel4ws.htm.

[8] F. Casati, L. Jin, S. Ilnicki, M.C. Shan, An Open, Flexible, and

Configurable System for Service Composition, HPL technical

report HPL-2000-41, 2000 April.

[9] D. Chakraborty, F. Perich, A. Joshi, T. Finin, Y. Yesha, A

Reactive Service Composition Architecture for Pervasive

Computing environment, 7th Personal Wireless Communica-

tions Conference (PWC 2002), 2002 October.

[10] Q. Chen, U. Dayal, M. Hsu, M.L. Griss, Dynamic-Agents,

Workflow and XML for E-Commerce Automation. EC-Web

(2000) 314–323, London, UK.

[11] M. Dumas, A.H.M ter Hofstede, UML Activity Diagrams as

Workflow Specification Language, The Unified Modeling

Language, Modeling Languages, Concepts, and Tools, 4th In-

ternational Conference, Toronto, Canada, October 1–5, 2001,

Proceedings, Lecture Notes in Computer Science, vol. 2185,

Springer, Heidelberg, Germany, 2001, ISBN 3-540-42667-1.

[12] R. Eshuis, Semantics and Verification of UML Activity Dia-

grams for Workflow Modelling, PhD thesis, University of

Twente, 2002.

[13] D. Florescu, A. Grunhagen, D. Kossman, XL: An XML

Programming Language for Web Service Specification and

Composition’’ WWW 2002, ACM Press, Honolulu, Hawaii,

2002.

[14] D. Gelernter, Current research on Linda, Research Directions in

High-Level Parallel Programming Languages (1991) 74–76.

[15] J.W.J Gijsen, N.B. Szirbik, G. Wagner, Agent technologies for

virtual enterprises in the one-of-a-kind-production industry,

International Journal of Electronic Commerce 7 (1) (2002

October) 9–34.

[16] H. Gomaa, Inter-Agent Communication in Cooperative Infor-

mation Agent-Based Systems in Cooperative Information

Agents III, Lecture Notes in Artificial Intelligence, vol. 1652,

Springer-Verlag, Berlin, 1999, pp. 137–149.

[17] H. Gomaa, Designing Concurrent, Distributed, and Real-Time

Applications with UML, Addison-Wesley, Boston, MA, 2000.

[18] P. Grefen, K. Aberer, Y. Hoffner, H. Ludwig, CrossFlow:

cross-organizational workflow management in dynamic vir-

 http:\\www.cs.georgetown.edu\~blakeb\pubs\diss.zip
 http:\\www.ebpml.org\bpel4ws.htm

ARTICLE IN PRESS

M.B. Blake, H. Gomaa / Decision Support Systems xx (2004) xxx–xxx20
tual enterprises, International Journal of Computer Systems

Science and Engineering 15 (5) (2000) 277–290.

[19] G. Heineman, W. Council, Component-Based Software Engi-

neering Putting the Pieces Together, Addison-Wesley, Read-

ing, MA, 2001, Reading, MA.

[20] A. Helal, M. Wang, A. Jagatheesan, R. Krithivasan, Brokering

Based Self Organizing E-Service Communities, Proceedings

of the Fifth International Symposium on Autonomous Decen-

tralized Systems (ISADS), March 26–28, 2001, Dallas, Texas,

2001.

[21] N.R. Jennings, K.P. Sycara, M. Wooldridge, A Roadmap of

Agent Research and Development In Journal of Autonomous

Agents and Multi-Agent Systems 1 (1) (1998 July) 7–36.

[22] M. Kamath, K. Ramamrithan, Correctness issues in workflow

management, Distributed Systems Engineering Journal—

Special Issue on Workflow Systems 3 (4) (1996 December)

213–221.

[23] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V.

Lopes, J. Loingtier, J. Irwin, Aspect-Oriented Programming,

Proceedings of the European Conference on Object-Oriented

Programming (ECOOP), Finland, LNCS, vol. 1241,Springer-

Verlag, Heidelberg, Germany, 1997 June, pp. 75–88.

[24] Y. Lei, M.P. Singh, A Comparison of Workflow Metamodels,

Workshop on Behavioral Models and Design Transforma-

tions: Issues and Opportunities in Conceptual Modeling at

ER’97, Los Angeles, CA, November 1997.

[25] F. Leymann, Web Services Flow Language (WSFL 1.0),

IBM, 2001 May. http://www-306.ibm.com/software/solutions/

webservices/pdf/WSFL.pdf.

[26] P. Massimo, K. Sycara, T. Kawamura, Delivering Semantic

Web Services, Proceedings of the WWW2003, Budapest,

Hungary, 2003 May.

[27] D.W. Mennie, B. Pagurek, An Architecture to Support Dynam-

ic Composition of Service Components, Proc. of the 5th Inter-

national Workshop on Component-Oriented Programming–

WCOP 2000, Sophia Antipolis, France, 2000 June, pp. 1–8.

[28] C. O’Ryan, D.C. Schmidt, J. Noseworthy, Patterns and Per-

formance of a CORBA Event Service for Large-scale Dis-

tributed Interactive Simulations, International Journal of

Computer Systems Science and Engineering, vol. 17 (2),

CRL Publishing, Leicester, UK, 2002 March, pp. 1–19.

[29] N. Sample, D. Beringer, L. Melloul, G. Wiederhold, CLAM:

Composition Language for Autonomous Megamodules, Third

Int’l Conference on Coordination Models and Languages,

COORD’99, Amsterdam, April 26–28, 1999.

[30] M.P. Singh, B. Yu, M. Venkatraman, Community-based ser-

vice location, CACM 44 (4) (2001) 49–54.

[31] SOAP (2002): http://www.w3.org/TR/soap12-part0/.

[32] S. Thatte, XLANG: Web Services for Business Process

Design, 2001, Microsoft http://www.gotdotnet.com/team/

xml-wspecs/xlang-cl/default.htm.

[33] The CHAIMS Project (2002): http://www-db.stanford.edu/

CHAIMS/.

[34] UDDI (2002): http://www.uddi.org/.

[35] UDDI Specification 2.04 (2002): http://www.uddi.org/pubs/

ProgrammersAPI-V2.04-Published-20020719.pdf.

[36] W.M.P. Van der Aalst, Don’t go with the flow: Web Services
composition standards exposed, IEEE Intelligent Systems,

2003 Feb, pp. 72-85.

[37] Web Services (2002): http://www.w3.org/2002/ws/desc/.

[38] A.B. Williams, A. Padmanabhan, M.B. Blake, Local Con-

sensus Ontologies for B2B-Oriented Service Composition,

Proceedings of the 2nd International Joint Conference on Au-

tonomous Agents and MultiAgent Systems (AAMAS2003),

ACM Press, Melbourne, Australia, 2003 July, pp. 647–654.

[39] WSDL (2002): http://www.w3.org/TR/wsdl.

[40] WSFL (2002): http://www.ebpml.org/wsfl.htm.

[41] L. Zeng, A. Ngu, B. Benatallah, M. O’Dell, An agent-based

approach for supporting cross-enterprise workflows, Pro-

ceedings of the 12th Australasian Conference on Database

Technologies, 123–130, Queensland, Australia, 2001.
M. Brian Blake is an Assistant Professor

in Department of Computer Science at

Georgetown University. He received a

Bachelor of Electrical Engineering from

Georgia Institute of Technology and a

Master of Science in Electrical Engineer-

ing from Mercer University, both in

Atlanta, Georgia. He has a PhD of Infor-

mation Technology from George Mason

University, Fairfax, VA with a concentra-

tion in Information and Software Engi-
neering. He has over 10 years experience in projects related to

object-oriented software engineering and autonomous distributed

systems both in industry and academia. He has consulted for such

companies as General Electric, Lockheed Martin, Trident Data

Systems, and The MITRE Corporation. He has published over 40

refereed journal papers and conference proceedings in the areas of

agents and workflow, enterprise integration, component-based soft-

ware engineering, distributed data management, and software engi-

neering education.
Hassan Gomaa is Chair and Full Professor

in the Department of Information and Soft-

ware Engineering at George Mason Univer-

sity, Fairfax, VA. He received a BSc (Eng)

with First Class Honors in Electrical Engi-

neering from University College, London

University, and the DIC and PhD in Com-

puter Science from Imperial College of

Science and Technology, London Universi-

ty. He has over 25 years experience in

software engineering, both in industry and
academia, and has published over 125 technical papers and two

textbooks, ‘‘Software DesignMethods for Concurrent and Real-Time

Systems’’ and ‘‘Designing Concurrent, Distributed, and Real-Time

Applications with UML’’, both published by Addison Wesley. His

current research interests include object-oriented analysis and design

for concurrent, real-time, and distributed systems, software architec-

ture, software product lines, intelligent software agents, and software

process models. He also teaches short courses in industry on software

design and consults in both the technical and management aspects of

software engineering.

 http:\\www-306.ibm.com\software\solutions\webservices\pdf\WSFL.pdf
 http:\\www.w3.org\TR\soap12-part0\
 http:\\www.gotdotnet.com\team\xml-wspecs\xlang-cl\default.htm
 http:\\www-db.stanford.edu\CHAIMS\
 http:\\www.uddi.org\
 http:\\www.uddi.org\pubs\ProgrammersAPI-V2.04-Published-20020719.pdf
 http:\\www.w3.org\2002\ws\desc\
 http:\\www.w3.org\TR\wsdl
 http:\\www.ebpml.org\wsfl.htm

	Agent-oriented compositional approaches to services-based cross-organizational workflow
	Introduction
	The SCW environment and web services
	Web service technologies
	A sample SCW environment
	Related work in the SCW domain

	The WARP approach
	The WARP architecture

	Data management for distributed services
	Elementary services for the WARP environment
	Automated population into the agent-accessible data model

	Workflow modeling of services
	Workflow terminology in WARP
	Workflow interaction in the WARP environment
	WARP workflow modeling approaches
	Structural and dynamic models
	Nonfunctional models

	Capturing the WARP models
	A concrete example of the WARP modeling approach

	Agents and interactions for service modeling and composition
	Agent-oriented software design process for service modeling and composition
	Formal definition of the application-layer agents
	The operation of WARP agents in the SCW environment

	The WARP prototype and operational evaluation
	Discussion and conclusion
	References

