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Abstract 

A key aspect of any data integration endeavor is estab-
lishing a transformation that translates instances of one 
or more source schemata into instances of a target 
schema. This schema integration task must be tackled 
regardless of the integration architecture or mapping 
formalism. In this paper we provide a task model for 
schema integration. We use this breakdown to motivate a 
workbench for schema integration in which multiple tools 
share a common knowledge repository. 

In particular, the workbench facilitates the interopera-
tion of research prototypes for schema matching (which 
automatically identify likely semantic correspondences) 
with commercial schema mapping tools (which help pro-
duce instance-level transformations). Currently, each of 
these tools provides its own ad hoc representation of 
schemata and mappings; combining these tools requires 
aligning these representations. The workbench provides a 
common representation so that these tools can more rap-
idly be combined. 

1. Introduction 

Schema integration is an integral aspect of any data in-
tegration endeavor. The goal of this paper is to organize 
the strategies and tools used in schema integration into a 
consistent framework. Based on this framework, we pro-
pose an open, extensible integration workbench to facili-
tate tool interoperation. 

We view the development of a data integration solution 
to consist of three main steps: schema integration, instance 
integration and deployment. This paper focuses on schema 
integration, which generates a transformation that trans-
lates source instances into target instances. 

This task involves first identifying, at a high level, the 
semantic correspondences between (at least) two sche-
mata, a task we refer to as schema matching. Second, 
these correspondences are used to establish precise trans-
formations that define a schema mapping from the 
source(s) to the target. 

Researchers have built many systems to semi-
automatically perform schema matching [1]. Schema 
mapping tools generally provide the user with a graphical 
interface in which lines connecting related entities and 
attributes can be annotated with functions or code to per-
form any necessary transformations. From these map-
pings, they synthesize transformations for entire databases 
or documents. These tools have been developed by com-
mercial vendors (including Altova’s MapForce, BEA’s 
AquaLogic, and Stylus Studio’s XQuery Mapper) and 
research projects (such as Clio [2], COMA++ [3] and the 
wrapper toolkit in TSIMMIS [4]). 

Currently an integration engineer can choose to em-
brace a specific development environment. The engineer 
benefits from the automated support provided by that ven-
dor, but cannot leverage new tools as they become avail-
able. The alternative is to splice together a number of 
tools, each of which has its own internal representation for 
schemata and mappings. In one case, we needed four dif-
ferent pieces of software to transform a mapping from one 
tool’s representation into another. 

By adopting an open, extensible workbench, integra-
tion engineers can more easily leverage automated tools as 
they become available and choose the best tool for the 
problem at hand. 

1.1. Contributions 

First, we describe pragmatic considerations that are 
important to the design of schema matchers: 1) contrary to 
conventional wisdom, many real-world schemata are well 
documented, so linguistic processing of text descriptions 
is important, 2) in several real-world scenarios, schema 
integration must be performed without the benefit of in-
stance data, and 3) domain values are often available and 
could be better exploited by schema matchers. 

Second, we establish a task model for schema integra-
tion based on a review of the literature and tools and on 
observations of engineers solving real-world integration 
problems. We presented our task model to three experi-
enced integration engineers to verify that the model in-
cluded all of the subtasks they had encountered. 
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The task model is important because it allows us to 
make comparisons: Among integration problems, we can 
ask which of the tasks are unnecessary because of simpli-
fying conditions in the problem instance. Among tools, we 
can ask what each tool contributes to each task and quan-
tify the impact in realistic settings. 

Third, we describe how the task model and pragmatic 
considerations guide the development of a specific inte-
gration tool, in our case Harmony, a prototype schema 
matcher, which bundles a variety of match algorithms with 
a graphical user interface. 

Our fourth contribution is to articulate the need for 
data integration among schema integration tools—our 
community can benefit in insight and utility by practicing 
what we preach. We propose a candidate collection of 
interfaces that constitute an integration workbench, which 
allows multiple integration tools to interoperate and pro-
vides a common knowledge repository for schemata and 
mappings. One outcome of the integration workbench is 
that integration engineers can more easily choose which 
match algorithms (or suites thereof [5]) to use when solv-
ing real integration problems. We offer this proposal as a 
discussion starter, which could ultimately lead to an open 
standard for interoperation of integration tools. 

1.2. Outline 

This paper is organized as follows: Section 2 contains 
our observations regarding schema integration efforts per-
formed on behalf of the federal government. In Section 3 
we describe a task model for integration problems. In Sec-
tion 4 we present design desiderata based on the task 
model and describe how the Harmony schema matching 
tool addresses these desiderata. Finally, Section 5 de-
scribes the interfaces that constitute the integration work-
bench and Section 6 discusses future work. 

2. Pragmatic Considerations 

Conventional wisdom suggests that schema matching 
should focus on data instances because instances are 
common and documentation is sparse (or even incorrect). 
Whereas these phenomena may be observed in some do-
mains, particularly web-based sources, it is often not the 
case for schemata developed for or by the US federal gov-
ernment (or, we suspect, other large enterprises).  

From the perspective of an integration engineer, data 

instances may be extremely hard to obtain (the data exist, 
but are not available to the engineer) for at least two rea-
sons. 

• Security/sensitivity: Data instances are often more 
sensitive than their corresponding schemata—e.g., 
in defense applications, an integration engineer 
may have access to schemata but may lack suffi-
cient clearances to access instances. Sometimes, an 
agency that owns the data is willing to share them 
with another agency, but not with the contracting 
integration engineers responsible for developing 
the initial mappings. Wider release of schema in-
formation is less problematic. 

• Conceptual schemata: One may begin creating 
important mappings to and from a new system, 
even before it has any data or running applications. 
For example, the U.S. Federal Aviation Admini-
stration developed a mapping of some of its sys-
tems to a conceptual model for the new European 
Air Traffic Control System, before that system was 
implemented or had any instance data. As a general 
phenomenon, when one builds a data warehouse, 
the mappings from data sources are the actual 
means for populating it. 

Thus, we have observed that it is not safe to assume the 
availability of instance data in enterprises. Instead, 
schema integration tools must use whatever information is 
available. Instance data, thesauri, etc. are sometimes 
available and sometimes not. 

While instance data are often unavailable, we have 
found that many government (and probably many other 
enterprises’) schemata are well documented. Evidence for 
this claim will now be presented. 

We obtained a collection of 265 conceptual (ER) mod-
els from the Department of Defense metadata registry 
(which contains schemata only, no instances!). This re-
pository contains 13,049 elements (entities or relation-
ships) and 163,736 attributes. As indicated in Table 1, the 
vast majority of these items contain a definition of roughly 
one sentence. 

This registry also explicitly enumerates domain values 
for which documentation is also available. For example, a 
schema for air traffic control introduces coding schemes 
for types of aircraft, runways and airports. Unfortunately, 
this documentation is often lost when a logical schema is 
converted into SQL. The standard approach is to store 
each coding scheme in its own relation, and each code as a 

Table 1: Frequency and length of documentation in the DoD Metadata Registry 

Item 
Item 

Count 
# With 

Definition 
% With 

Definition 
Word 
Count 

Words/ 
Item 

Words per 
Definition 

Element 13,049 12,946 ~99% 143,315 ~11.0 ~11.1 
Attribute 163,736 135,686 ~83% 2,228,691 ~13.6 ~16.4 
Domain 282,331 282,128 ~100% 1,036,822 ~3.67 ~3.68 

 



string or integer value, sans documentation. 
This approach is good for referential integrity, but bad 

for integration efforts. A better solution would be to de-
fine semantic domains for each coding scheme so that 
integration tools could more easily identify domain corre-
spondences. In fact, when we asked integration engineers 
to describe how they approach an integration problem, a 
recurring pattern emerged. They first identified obvious 
top-level entity correspondences. But then, instead of pro-
ceeding to sub-elements or attributes, they then manually 
inspected the domain values to find correspondences. 
From this low-level, they then worked their way up the 
schema hierarchy to attributes, sub-elements, and finally 
back to top-level entities. Our task breakdown was de-
signed to support this pattern. 

3. Task Model for Data Integration 

To better understand how schema integration tools as-
sist an integration engineer, we enumerated the subtasks 
involved in schema integration. We started with a task 
model based on input from 147 survey participants famil-
iar with schema integration from a research or practical 
perspective [6].  We extended that model to include the 
subtasks addressed by a variety of systems ([3, 4, 7-13]) 
and then presented it to three experienced integration en-
gineers for validation. Based on their feedback, we ex-
tended the model to include subtasks not directly sup-
ported by any system. 

At a high level, we consider 13 fine grained integration 
tasks, grouped into five phases: schema preparation, 
schema matching, schema mapping, instance integration 
and finally system implementation. During schema prepa-
ration, the source and target schemata are identified so 
that a set of correspondences can be identified during the 
matching phase. These semantic correspondences are 
formalized in the third phase as explicit logical mappings. 
Once schema integration is complete, instance integration 
reconciles any remaining discrepancies. In the final phase 
the integration solution is deployed. 

In this section, we describe each phase in detail and de-
scribe how we evaluated the task model’s completeness. 

3.1. Schema Preparation 

The first phase of schema (or data) integration captures 
knowledge about the source and target schemata, to facili-
tate the subsequent matching and mapping phases. It iden-
tifies the target schema, and organizes the source sche-
mata. The specific subtasks are: 

1) Obtain the source schemata. This step gathers 
available documentation and imports the source schemata 
into the integration platform. If the source schemata are 

not in a format compatible with the platform, this step also 
includes any necessary syntactic transformations. 

2) Obtain or develop the target schema. If per-
formed, this step is analogous to the previous step. In 
many cases, the target schema is defined by the problem 
specification (e.g., translate data into the following mes-
sage format). In other cases, the target schema must be 
developed based on the queries to be supported, or to 
combine the data from multiple sources. This step is op-
tional because the target schema may be derived from the 
correspondences identified among the source schemata, as 
is assumed in [8]. 

In both cases, one may enrich the schemata, e.g., by de-
fining coding schemes as domains, or documenting con-
straints that are not documented in the actual system, ei-
ther because the system does not support the needed con-
structs, or because nobody took the time to do so. Thus, 
the integration platform may enable richer descriptions 
than the underlying systems. One also needs a means to 
keep the metadata in synch, as the actual systems change. 

3.2. Schema Matching 

The second phase establishes high-level correspon-
dences among schema elements. There is a semantic cor-
respondence between two schema elements if instances of 
one schema element imply the existence of corresponding 
instances of the other [14]. 

If a target schema has been identified, these correspon-
dences establish relationships between each source 
schema and the target. As noted in [8], in the absence of a 
target schema, correspondences can also be established 
between pairs of (or across sets of ) source schemata. 

For example, to publish data stored in a relational da-
tabase into an XML message format, some correspon-
dences indicate that tuples from the source relation will be 
used to generate XML elements. Additional correspon-
dences indicate which attributes will be used to generate 
data values. For example, multiple relations might corre-
spond to a single element because a join is needed to 
populate the element’s attributes, or a single relation may 
correspond to multiple elements to match nesting present 
in the target. 

3) Generate semantic correspondences. This step de-
termines which schema elements loosely correspond to the 
same real world concepts. These correspondences estab-
lish a weak semantic link in that they indicate that in-
stances of one element can be used to generate instances 
of the other. 

Whereas this phase consists of a single step, we con-
sider matching to be its own phase because of its impor-
tance and the research attention it has received. The exact 
transformations implied by a correspondence are detailed 
in the mapping phase. 



3.3. Schema Mapping 

The schema mapping phase establishes, at a logical 
level, the rules needed to transform instances of the source 
schemata into instances of the target. The mappings must 
generate results that adhere to the target schema (or the 
target must be modified to reflect accurately the trans-
formed data). 

The first four subtasks below establish piecemeal trans-
formations, and are not performed in a particular order. 
Each transformation indicates the precise mechanism by 
which source data is used to generate target data. Note 
that at times these transformations cross the 
schema/instance boundary [15]. Once transformations 
have been established for each schema element, they are 
aggregated into a logical mapping and verified. 

4) Develop domain transformations. For each pair of 
corresponding domains, a transformation must be devel-
oped that relates values from the source domain to values 
in the target domain. In the simplest case, there is a direct 
correspondence (i.e., no transformation is needed). How-
ever, it is often the case that an algorithmic transformation 
must be developed, for example, to convert from feet to 
meters, or from first- and last-name to full-name. In the 
most detailed case, the transformation can best be ex-
pressed using a lookup table (e.g., to convert from one 
coding scheme to a related coding scheme). Context me-
diation techniques can then be applied [16, 17]. 

5) Develop attribute transformations. The previous 
step handled the case where the same property was en-
coded using different domains. This step deals with prop-
erties that are different but derivable. Sometimes one pro-
vides a transformation from source to target values, either 
scalar (e.g., Age from Birthdate), or by aggregation (e.g., 
AverageSalaryByDepartment from Salary). Other trans-
forms we have seen include pushing metadata down to 
data (e.g., to populate a type attribute or timestamp), and 
populating a comment (in the target) to store source at-
tribute information that has no corresponding attribute. 

6) Develop entity transformations. The next step is to 
determine the structural transformations necessary to gen-
erate instances of the target schema. In the simplest case, a 
direct 1:1 mapping can be established. Alternatively, mul-
tiple entities may need to be combined (e.g., using join or 
union) to generate a single target entity. Or, a single entity 
may need to be split into multiple entities (e.g., based on 
the value of some attribute), which effectively elevates 
data in the source to metadata in the target. 

7) Determine object identity. For each entity in the 
target, the next step is to determine how unique identifiers 
will be generated. In the simplest case, explicit key attrib-
utes in the source can be used to generate key values in 
the target. This may include populating implicit keys 
(such as those inherited from a parent entity), or correctly 

establishing parent/child relationships in a nested meta-
model. For arbitrarily assigned identifiers (such as internal 
object identifiers), Skolem functions are commonly em-
ployed (see, for example, [2]). 

These four subtasks interact with schema matching be-
cause establishing transformations is an iterative process. 
For example, in the first pass, we might establish a trans-
formation from Professor to Employee (since instances of 
the former are also instances of the latter). While working 
on the Course/Grade sub-schema, we might realize that, in 
some cases, Students are also Employees. This new in-
sight requires us to refine the Employee mapping. In other 
words, the previously identified correspondences may be 
both imprecise and incomplete. 

The remaining mapping subtasks produce an executa-
ble mapping. 

8) Create logical mappings. The next step is to aggre-
gate the piecemeal mappings, which all concerned indi-
vidual elements, into an explicit mapping for entire data-
bases or documents. Humans may need to specify addi-
tional information (e.g., to distinguish join from outerjoin) 
before automated tools can sew the pieces together. In 
most cases, this requires writing a query (over the source 
schemata) that generates instances of the target schema, 
although in the local-as-view formalism [18] the source 
schemata are expressed as views over the target schema. 

9) Verify mappings against target schema. If the in-
tegration task included a specific target schema, the final 
step is to verify that the transformations are guaranteed to 
generate valid data instances (i.e., all constraints are satis-
fied). In some cases, the only solution may be to modify 
the target schema to reflect how it will be populated. If a 
target schema was not specified, the final step is to gener-
ate the target schema based on the logical mappings. 

3.4. Instance Integration 

At this point, the tasks involved in schema integration 
are complete, and we turn our attention to instance inte-
gration. 

10) Link instance elements. Two instance elements 
(with different unique identifiers) may represent the same 
real-world object. This subtask merges these elements into 
a single element. 

11) Clean the data. This subtask removes erroneous 
values from instance elements. A value may be erroneous 
because it violates a domain constraint or because it con-
tradicts information from a more reliable source. 

3.5. System Implementation 

Finally we are ready to develop and deploy a system 
that addresses operational constraints—factors external to 
schema and instance elements. Examples include deter-



mining the frequency and granularity of updates and the 
policy that governs exceptional conditions. 

12) Implement a solution. The integration system de-
signed in this phase must address any operational con-
straints. The significance of these constraints on real-
world integration systems was stressed by the integration 
engineers who reviewed the task model. 

13) Deploy the application. This step does not receive 
much research attention, but ease of deployment is an im-
portant concern. 

This task model guided our development of the Har-
mony schema matching tool. 

4. Harmony 

Harmony is a schema matching tool that combines 
multiple match algorithms with a graphical user interface 
for viewing and modifying the identified correspondences. 
The architecture for Harmony is shown in Figure 1. Har-
mony’s contributions include adding linguistic processing 
of textual documentation to conventional schema match 
techniques, learning from the input of a human in the 
loop, and GUI support for removing clutter and iterative 
development, as discussed in following sections. 

Harmony currently supports XML schemata, entity-
relationship schemata from ERWin, a popular modeling 
tool, and will soon support relational schemata. Schemata 
are normalized into a canonical graph representation. 

The Harmony match engine adopts a conventional 
schema integration architecture [5, 19-21]. It begins with 
linguistic preprocessing (e.g., tokenization, stop-word 
removal, and stemming) of element names and any associ-
ated documentation. Then, several match voters are in-
voked, each of which identifies correspondences using a 
different strategy. For example, one matcher compares the 
words appearing in the elements’ definitions. Another 
matcher expands the elements’ names using a thesaurus. 
For each [source element, target element] pair, each match 
voter establishes a confidence score in the range (–1, +1) 
where –1 indicates that there is definitely no correspon-

dence, +1 indicates a definite correspondence and 0 indi-
cates complete uncertainty. 

Given k match voters, the vote merger combines the k 
values for each pair into a single confidence score. The 
vote merger weights each matcher’s confidence based on 
its magnitude—a score close to 0 indicates that the match 
voter did not see enough evidence to make a strong pre-
diction. The vote merger also weights each matcher in toto 
based on past performance (see Section 4.3). 

A version of similarity flooding [22] adjusts the confi-
dence scores based on structural information. Positive 
confidence scores propagate up the schema graph (e.g., 
from attributes to entities), and negative confidence scores 
trickle down the schema graph. Intuitively, two attributes 
are unlikely to match if their parent entities do not match. 

Finally, these confidence scores are shown graphically 
as color-coded lines connecting source and target ele-
ments. The GUI provides various mechanisms for manipu-
lating these lines, based on our design desiderata. 

4.1. Design Goals 

The considerations presented in Section 2 suggest that 
schema matching algorithms should not assume the ab-
sence of usable documentation. Many of the candidate 
matchers in the Harmony engine perform natural language 
processing and comparisons on this documentation. In our 
experience these matchers have good recall, although their 
precision is less impressive. 

The task model in Section 3 suggests additional design 
desiderata. First, the integration engineer needs to be able 
to focus at different levels of granularity. For example, a 
common first step is to establish correspondences among 
conceptual sub-schemata. In the air traffic flow manage-
ment domain, these sub-schemata might include facilities 
(airports and runways), weather, and routing. Note that the 
hierarchical and decomposable nature of XML Schema 
makes it easier to identify sub-schemata. 

After establishing these high-level correspondences, 
the integration engineer focuses on one sub-schema at a 
time and delves into the details of the domains appearing 
in that sub-schema. The engineer wants to be distracted by 
neither correspondences pertaining to other sub-schemata 
nor those at intermediate levels of granularity. 

A related goal is that the software tools must support 
iterative refinement. This desideratum is one of our moti-
vations for developing the integration workbench de-
scribed in Section 5. If data cannot flow freely among 
components, the engineer has little control over the order 
in which tasks will be completed. 

The final desideratum is that all sub-tasks involved in 
schema integration must be supported. The commercially 
available tools naturally take this requirement more seri-
ously than do research tools, such as Harmony. Whereas it 
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Figure 1: Architectural Overview of Harmony 



is an interesting research problem to identify semantic 
correspondences, this contribution alone does not greatly 
assist the integration engineer. Because Harmony by itself 
does not currently support schema mapping, we defer fur-
ther consideration of this desideratum to Section 5. We 
now consider how Harmony addresses the remaining de-
siderata. 

4.2. Filtering 

The Harmony GUI supports a variety of filters that 
help the integration engineer focus her attention. These 
filters are loosely categorized as link filters and node fil-
ters. A link filter is a predicate that is evaluated against 
each candidate correspondence to determine if it should 
be displayed. A node filter determines if a given schema 
element should be enabled. An enabled element is dis-
played along with its links; a disabled element is grayed 
out and its links are not displayed. 

Harmony currently supports three link filters. First, a 
confidence slider filters links based on the confidence 
assigned to a link by the Harmony engine. Only links that 
exceed some threshold are displayed. Links that were 
drawn by the integration engineer, or were explicitly 
marked as correct, have a confidence score of +1. Simi-
larly, links explicitly rejected have a score of –1. 

The second filter determines if a link should be dis-
played based on whether it is human-generated or ma-
chine-suggested. The final filter displays, for each schema 
element, those links with maximal confidence (usually a 
single link, but ties are possible). 

The node filters include a depth filter and a sub-tree fil-
ter. The former enables only those schema elements that 
appear at a given depth or above. For example, in an ER 
model, entities appear at level 1, while attributes are at 
level 2. Thus, using this filter, the engineer can focus ex-
clusively on matching entities. 

The sub-tree filter enables only those elements that ap-
pear in the indicated sub-tree. For example, this filter can 
be used to focus one’s attention on the ‘Facility’ sub-
schema. By combining these filters, the engineer can re-
strict her attention to the entities in a given sub-schema. 

4.3. Iterative Development 

Harmony supports iterative refinement through two 
mechanisms. First, the engineer can rerun the Harmony 
engine, which can learn from her feedback. Second, the 
engineer can mark sub-schemata as complete. We now 
describe these two mechanisms. 

When the Harmony engine is invoked after some cor-
respondences have been explicitly accepted or rejected 
(i.e., set to +1 or –1), this information is passed to the 
engine and used in two ways. First, each candidate 

matcher can learn from the user’s choices and refine any 
internal parameters. For example, a bag-of-words matcher 
that weights each word based on inverted frequency in-
creases or decreases word weight based on which words 
were most predictive. Second, the vote merger weights the 
candidate matchers based on their performance so far. 
Learning new weights must be done carefully, though. 
Each candidate matcher focuses on a particular form of 
evidence, such as elements’ names. If the engineer based 
her first pass on exactly that form of evidence, the corre-
sponding candidate matcher will appear overly successful. 

In addition to accepting and rejecting specific links, the 
engineer can mark a sub-tree as complete. This action has 
several effects. First, it accepts every link pertaining to 
that sub-tree as accepted (if currently visible), or rejected 
(otherwise). Once a link has been accepted or rejected, the 
engine will not try to modify that link. This ensures that 
links do not mysteriously disappear or appear should the 
user subsequently invoke the Harmony engine. 

Second, it updates a progress bar that tracks how close 
the engineer is to a complete set of correspondences. This 
feature was introduced at the request of integration engi-
neers working on large schema integration problems that 
involve several dozen iterations. 

Once all schema elements have been marked as com-
plete, the final set of correspondences could be used to 
guide the generation of a more detailed mapping. Har-
mony provides neither a mechanism for authoring code 
snippets, nor a code generation feature; these would du-
plicate commercial capabilities. Instead, we are develop-
ing the integration workbench to couple our matching 
tools (and GUI) with commercially-available mapping 
products. 

5. Integration Workbench 

Our attempts to integrate Harmony with other schema 
integration tools revealed a key barrier to interoperability. 
Whereas schema integration experts trumpet the advan-
tages of a modular, federated architecture that presents a 
unified view of multiple data sources, we have not applied 
that same insight when we develop our own systems. 
While some vendors may be moving in this direction in-
ternally to support integration of their own tools, they 
have not published their approaches or interfaces. There 
are obvious advantages to user organizations and small 
software companies to developing a standard framework 
for combining schema integration tools. We propose the 
following as a way to initiate discussion that could lead 
toward development of such a standard. 

At the core of our workbench proposal is an integration 
blackboard, which is a shared knowledge repository. Me-
diating between the blackboard and the various schema 
integration tools is a workbench manager. The manager 



provides several services including transaction manage-
ment, event services and query evaluation. The following 
sections describe the blackboard and manager. 

5.1. Integration Blackboard 

The integration blackboard (IB) is a shared repository 
for information relevant to schema integration that is in-
tended to be accessed by multiple tools, including sche-
mata, mappings, and their component elements. We pro-
pose using RDF [23] for the IB, because: 1) it is natural 
for representing labeled graphs, 2) one can use RDF 
Schema to define useful built-in link types while still of-
fering easy extensibility, 3) it is vendor-independent, and 
4) it has significant development support. 

The basic contents of the IB are schema graphs and 
mapping matrices (an approach also taken in [19]). How-
ever, in RDF, any element can be annotated; we use this 
feature to enrich the graphs and matrices with additional 
information. We predefine certain annotations using a 
controlled vocabulary (these terms appear in sans serif). 

5.1.1. Schemata: The IB represents a schema as a di-
rected, labeled graph. The nodes of this graph correspond 
to schema elements. In the relational model, these ele-
ments include relations, attributes and keys. In XML, they 
include elements and attributes. 

The edges of a schema graph correspond to structural 
relationships among the schema elements. These edges are 
object properties whose subject and object are both 

schema elements. For example, in the relational model 
contains-table edges are used to link a database to the 
tables it contains. Tables are linked to attributes via con-
tains-attribute edges. In XML, elements are linked to sub-
elements via contains-element edges, and to attributes via 
contains-attribute edges. For many schema languages, the 
edge-types are specified by the modeling language, but 
with ontologies they are extensible. 

Whereas schema elements can be annotated arbitrarily, 
we identify three edge labels of particular importance to 
schema importing and matching utilities: name, type and 
documentation. Import tools populate these metadata so 
that they can be used by schema matchers to identify po-
tential correspondences. 

Source Schema 

Target Schema 
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Figure 2: Sample schema graphs 
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is-complete=false
variable=$shipto

total
is-complete=false

code=
data($shipto/subtotal)

* 1.05

name
is-complete=false

code=
concat($lName,

concat(", ", $fName))

shippingInfo
is-complete=false

code=

code=
let $shipto := $purchOrd/shipTo

return

<shippingInfo total =

"{ data($shipto/subtotal) * 1.05 }">

{

for $fName in $shipto/firstName,

$lName in $shipto/lastName

return

<name>{

concat($lName, concat(", ", $fName))

}</name>

}

</ShippingInfo>

 
Figure 3: Sample mapping matrix in which every component has been annotated 



Sample schema graphs appear in Figure 2. In the next 
section we present a sample mapping from the source 
schema to the target schema. 

5.1.2. Mappings: Inter-schema relationships can be 
represented conceptually as a mapping matrix. This ma-
trix consists of headers (describing source and target ele-
ments) plus content: a row for each source element and a 
column for each target element. (Note that whereas the 
structure can easily be interpreted as a matrix, we store 
this matrix using RDF.) 

For example, the mapping matrix for the schemata in 
Figure 2 contains four rows and three columns, as shown 
in Figure 3. Each cell in the mapping matrix describes a 
potential correspondence between a source element and a 
target element. 

Mapping elements are also annotated. First, each cell is 
annotated with confidence-score, which ranges from –1 
(definitely not a match) to +1 (definitely a match), and 
is-user-defined. This latter annotation is true for any cor-
respondence provided by the user (for example by draw-
ing a link between two elements), and the associated con-
fidence-score is ±1. When a match algorithm is executed, 
is-user-defined is false, and the confidence-score falls in 
the range (–1,+1). 

Each row is further annotated with a variable-name. 
Each column is annotated with code that references these 
names. Finally, the matrix as a whole has a code annota-
tion, which represents the mapping from source to target. 
Additional annotations are possible; for example, Har-
mony annotates rows and columns with is-complete to 
track progress. The relationship between these annotations 
and the mapping matrix appears in Figure 3. 

5.1.3. Integration Blackboard Enhancements: We 
currently assume that the blackboard captures information 
about the source and target schemata, as well as the cur-
rent state of the mapping that relates the source(s) to the 
target. Future goals include the following. 

• The blackboard should maintain a library of map-
pings, partly to facilitate mapping reuse, but also as 
a resource for some matching tools. 

• Schemata inevitably change; the blackboard should 
track schemata across versions. 

• Mappings are also refined over time, especially 
once they are tested on real data. The blackboard 
should maintain mapping provenance. 

• Based on Section 4.2, the blackboard should allow 
contextual information, such as focus on a particu-
lar subschema, to be shared across tools. 

• The blackboard should be shared across multiple 
workbench instances. 

5.2. Workbench Manager 

All interaction with the IB occurs via the workbench 
manager, which coordinates matchers, mappers, import-
ers, and other tools. The manager provides several ser-
vices: First, it provides transactional updates to the IB. 
Second, following each update, it notifies the other tools 
using an event. Third, the manager processes ad hoc que-
ries posed to the IB 

A single-user version of the workbench architecture 
appears in Figure 4. Ultimately, we envision there to be 
one IB for each community of interest—i.e., a set of 
stakeholders “who must exchange information in pursuit 
of their shared goals, interests, missions, or business proc-
esses” [24]. Each integration engineer would have her 
own instance of the integration workbench containing a 
single manager and multiple tools. 

5.2.1. Tools: We focus on four kinds of tools: loaders, 
matchers, mappers and code-generators. The first two 
tools support the first two phases of schema integration. 
Given the complexity of schema mapping, we separate out 
steps 4)–7), in which the mapping is produced piecemeal, 
from steps 8) and 9), in which code is generated. 

Loaders are used during schema preparation to parse a 
schema from a file, database or metadata repository (in-
cluding ancillary information such as definitions from a 
data dictionary) into the internal representation used by 
the IB. When the user invokes a loader, that tool places 
the new objects in the IB, which extends the mapping ma-
trix accordingly and advises the other tools via an event. 

Schema matching can be performed manually, as is the 
case for most commercial tools, or semi-automatically. 
(Harmony supports both approaches.) A match tool up-
dates the cells of the mapping matrix. When correspon-
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Figure 4: Workbench Architecture 



dences are generated automatically, all of the interactions 
with the IB are wrapped in a transaction; no events are 
generated until the mapping matrix has been updated. 

Schema mapping can also be performed manually or 
automatically [25], although we are not aware of any 
commercial automatic mapping tools. A mapping tool 
updates the code associated with each column. Both 
matchers and code generators may need to listen for these 
events to update their internal state. 

Finally, a code-generator assembles the code associ-
ated with each column into a coherent whole. Thus, the 
code-generator must understand how to assemble code 
snippets based on the structure of the target schema graph 
(e.g., Clio [2]). 

This enumeration of tools is by no means complete. 
Another tool might attempt to enforce domain-specific 
constraints on the mapping matrix. Or, a tool might anno-
tate a schema with information culled from external 
documentation. All that is required is that a tool imple-
ments the tool interface. 

The tool interface defines two methods. First, a tool 
must provide an invoke method. The implementation of 
this method might launch a GUI (for mapping), invoke a 
match algorithm, or display a file selection dialog (to 
load). Second, when the workbench starts, each tool has 
the option of implementing an initialize method. Generally, 
this is done when a tool needs to register for events. 

5.2.2. Events: Tools generate events whenever they 
make any change to the contents of the IB. The work-
bench manager propagates these events to allow any tool 
to respond to the update. A different type of event is gen-
erated for each major component of the IB so that a tool 
can register for only those events relevant to that tool. 

A schema loader generates a schema-graph event when 
it imports a schema into the workbench. Any tool with a 
GUI listens for these events and refreshes the display. 

A mapping-cell event is generated when a user manu-
ally establishes a correspondence. Multiple such events 
are triggered by an automatic matching tool. A mapping 
tool can listen for these events to propose a candidate 
transformation, such as a type conversion. 

Conversely, when a mapping tool establishes a trans-
formation, it generates a mapping-vector event. Match 
tools listen for these events to synchronize the mapping 
cells with the updated row or column. A code generation 
tool similarly listens for these events to synchronize the 
assembled mapping. The code generation tool, in turn, 
generates a mapping-matrix event when the user manually 
modifies the final mapping. 

Additional interactions are possible, but generally 
speaking, a tool listens for events immediately upstream 
or downstream in the task model. It is necessary to listen 
in both directions given the iterative behavior described in 
Section 4.3 and illustrated using a case study. 

5.3. Case Study 

We have begun validating the integration workbench 
by using it to allow Harmony and BEA’s AquaLogic tool 
to interoperate. Both tools support schema loading and 
manual matching. Harmony also supports automated 
matching, but neither mapping nor code generation. Con-
versely, the AquaLogic development environment sup-
ports manual mapping and automatic code generation. 

In our pilot study, AquaLogic is the first tool launched 
by the workbench. Within AquaLogic, the integration 
engineer can load schemata, connect source elements to 
target elements, and initiate the automatic generation of 
XQuery code. Alternatively, she can choose a sub-tree 
(including an entire schema) and request recommended 
matches from Harmony. The workbench launches the 
Harmony GUI and begins an IB transaction. The integra-
tion engineer uses Harmony to automatically propose 
likely correspondences, which she accepts or rejects using 
the GUI. Once satisfied, she exits Harmony to complete 
the IB transaction. 

AquaLogic then updates its internal representation 
based on the changes made in Harmony. The integration 
engineer also provides element and attribute transforma-
tions that are incorporated into the generated XQuery. At 
any point this code can be tested on sample documents. 

This combination of tools addresses all of the desider-
ata presented in Section 4.1. Harmony allows the integra-
tion engineer to focus on varying levels of granularity 
while matching, and AquaLogic supports all of the 
schema integration subtasks. Both tools support iterative 
refinement when used independently, as well as when 
combined. The next step will be to try the combined tool 
on real government schema integration problems. 

6. Conclusions and Future Work 

Data integration is a widely researched problem. How-
ever, we described ways in which enterprise data integra-
tion differs from the situations usually encountered in the 
research literature (e.g., documentation is widely avail-
able, instance data less so). Other pragmatic comments 
discussed how best to represent coding schemes so they 
can be leveraged by integration tools. 

We also enumerated the subtasks involved in data inte-
gration, partitioned to reflect the behavior of integration 
engineers and the support provided by existing tools. This 
task analysis is intended to guide tool development and to 
enable comparisons across tools and integration problems. 

Based on our observations and task modeling, we iden-
tified important design goals for integration tools. Specifi-
cally, we articulated the need to support all of the tasks 
involved in schema integration. One approach to meeting 
this need is to bring multiple tools to bear. 



Unfortunately, assembling several tools to solve a par-
ticular integration problem is daunting. Our community 
needs to adopt the principle of assembling systems from 
modular components and integrating existing components. 

To facilitate tool interoperation, we proposed an open, 
extensible integration workbench. This architecture pro-
vides a unified view of schemata and mappings so that 
integration tools can more easily communicate. We be-
lieve that both tool vendors and database researchers 
benefit from this arrangement. We hope that this proposal 
will generate discussion that ultimately could lead to stan-
dards (e.g., for mapping matrices) for data integration tool 
interoperation. 

Since our overarching goal is to improve the lives of 
integration engineers, our next task is to perform a usabil-
ity analysis of the Harmony/AquaLogic integration suite. 
We will measure the extent to which software tools save 
time on each of the schema integration subtasks. 
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