
Call by Contract for Cryptographic Protocols∗

Jon Millen Joshua Guttman John Ramsdell
Justin Sheehy Brian Sniffen

March 24, 2006

1 Introduction

A compositional approach to protocol design and analysis is recognized as ad-
vantageous. We wish to perform design decomposition in a way that permits
independent design and verification of components, and preserves security and
correctness goals when the components are recombined. There are many dif-
ferent ways in which composition can be interpreted and implemented. Our
version of composition applies to the design of secure protocols. Our objec-
tive is to extend verification techniques based on abstract encryption models to
protocols that incorporate or implement encapsulated services.

One use for such services is to invoke computations that are not included
in the vocabulary of operations built into the protocol specification language,
such as the special operations of a Trusted Platform Module [7] or some other
specialized cryptographic application interface. Another use is to allow flexibil-
ity in the choice of means to implement an operation. For a public-key lookup,
for example, there may be two alternative services, one that fetches a locally
cached certificate, and another that initiates a protocol with a directory server
to retrieve one. A service might even establish a shared session key between two
parties who have already begun a protocol.

With encapsulation of services, we can create and maintain a library of
services that could be shared by all protocol processes running on the same
system. The service library can be updated with improved implementations
without disturbing existing protocols, and new services can be added at any time
for use by future protocols. New services can also be used by older protocols if
they extend older services, that is, if their functionality is more general or their
input requirements are less strict.

There are two challenges in designing and using services: first, to allow for
use of services whose specific interfaces have not been anticipated; second, to
assure ourselves that it is safe to use separately designed services when there
are security as well as functionality concerns.

∗This work was supported by the National Security Agency through US Army CECOM
contract W15P7T-05-C-F600.

1

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 06-0498

Our “encapsulated services” should be distinguished from “Web services”
because they can be purely local. Furthermore, the security objectives that
we wish to protect are the traditional confidentiality and authentication goals
for secure protocols, rather than the more specific access control, execution
history [2] or other policies associated with Web services. However, we need not
exclude Web services as an option for implementing an encapsulated service.
Our focus is on the interface to a calling protocol and on maintaining the security
objectives of that protocol.

Service specifications will be expressed in a logical call-by-contract form. An
algorithm for selecting services that satisfy protocol requests is given. We take
into consideration that a service specification may include not only functional
guarantees but also confidentiality guarantees, which we call non-disclosure
agreements (NDAs). We give some conditions under which authentication and
secrecy properties established in a Dolev-Yao idealized encryption context can
be carried over to a general service invocation context.

In the remainder of this section, the formal modeling context is presented.
Then, in Section 2, we give the abstraction-binding technique that underlies
the selection algorithm. In Section 3, we show how abstraction binding is used
to select services in response to requests. In Section 4, we investigate how the
conventional Dolev-Yao techniques for verification of protocol security can be
extended safely to this more general context.

1.1 Modeling Style

Protocols are modeled here as sets of roles, where a role is the trace of a param-
eterized annotated strand. An annotated strand, as presented in [10], extends
the basic strand notion from [13] by labeling nodes not only with messages but
also trust management formulas.

Messages in this model are elements of a free message algebra, presented
as expressions constructed from atoms of a few sorts (such as key and text)
and operators such as idealized encryption and pairing. Formulas are logical
expressions over the same set of atoms. The threat environment is a version of
the Dolev-Yao attacker model, in which there is a single attacker who is assumed
able to intercept any message, and able to decompose or construct messages
using the available operators, but unable to encrypt or extract information from
encrypted messages without the appropriate key. Models of this kind have been
widely used to analyze the vulnerability of protocols to attacks such as replay
and spoofing, in which the attacker fools an honest participant into revealing
an entire key or accepting a key provided by, or previously compromised by, the
attacker.

1.2 Strand Spaces: A Brief Summary

The purpose of this summary is primarily to review the vocabulary used in this
paper. Most of the details are not necessary until we apply a prior strand space
result in the latter part of Section 4.

2

A strand is a sequence of nodes. A node has a label (±m,φ) where ±m
is a directed (+ for sent or − for received) message, and the annotation φ
is a formula. The atoms used in m and φ are elements of the disjoint union
A = X ∪Z of parameters X and values Z. The trace of a strand is its sequence
of node labels. Any sequence of node labels may be referred to as a trace. When
applied to a trace, the term “node” refers to a position in the label sequence.

A bundle is a finite partially ordered set of nodes, where each node belongs
to a partial strand (an initial subsequence of a strand) and the partial ordering
combines the strand node sequence ordering (represented with ⇒) and a com-
munication ordering → that relates each receive node to a prior send node with
the same message. All atoms occurring in a bundle must be from Z, though
some authors make use of semibundles in which parameters may occur, and
some receive nodes do not have predecessors in the communication ordering.

A parameter is bound at a node if it occurs in the node label of that node,
or of a prior node, or (for any node) if it is an input.

A protocol is a set of roles. A role is a 4-tuple r = (R, I, U, T) where R is a
trace in which all atoms are parameters, I is a subset of parameters designated
as inputs, U is a subset of parameters designated as uniquely originating, and
T is the initial theory. T consists of general inference rules (see Section 2) and
facts expressible as formulas over input parameters.

There are penetrator roles that define the attacker model. The penetrator
roles do not belong to any particular protocol. A penetrator role is one of a few
specific types representing the ability of the attacker to construct and decompose
messages. For example,

(−k,>), (−{x}k,>), (+x,>)

is a penetrator role that performs decryption, where > is the constant true
formula.

A strand is a ground strand if its atoms (the atoms occurring in its node
labels) are all values. A (strand) substitution is an idempotent map of a subset
of X into A. Strand substitutions are extended to messages, formulas, node
labels, and traces in the usual way. A strand is an instance of a role r under
substitution σ if its trace is rσ.

It is a ground instance if the range of σ is included in Z. A regular strand is
an instance of a protocol role. A penetrator strand is an instance of a penetrator
role.

A bundle is consistent with a protocol with roles {ri} if its nodes are the
disjoint union of nodesets of ground partial strands, such that each strand is
either a regular strand of some role ri or a penetrator strand. Furthermore, we
require that

1. each positive node formula is provable from the (mapped) initial theory
together with the formulas on prior negative nodes of the strand, and

2. the bundle respects unique origination.

3

Any value of a uniquely originating parameter must be uniquely originating
in the bundle in the sense of [13]. A bundle can be consistent with a proto-
col without necessarily satisfying security properties expressed as rely formulas.
Protocol verification establishes correctness of rely formulas in any bundle con-
sistent with the protocol.

1.3 Trust Management Formulas

The germ of the call-by-contract idea was presaged in the rely-guarantee trust
management approach described in [10]. The trust management formula as-
sociated with a positive (send) node is a guarantee, expressed in terms of the
protocol parameters, that must be provable for the values bound to those param-
eters. The formula associated with a negative (receive) node is a rely formula,
which may be assumed in proofs of subsequent guarantees. The local theory of
a node consists of the initial theory T plus the rely formulas of prior nodes in
the role.

Rely formulas are usually of the form “p saysφ”. These are authentication
goals whose validity must be proved by the protocol designer as part of the
verification of the protocol. The formula φ is a guarantee that should have
appeared on the send node of a strand owned by p that causally precedes the
receive node with the rely. A strand is “owned” by a principal occurring as the
value of a parameter p if p is considered responsible for the use of secret keys
needed to compose or decompose messages sent or received by that strand. The
the owning principal of each role may be designated as one of the parameters.

��
φ

+m //

��−m // ψ

��

Figure 1: Nodes with guarantee and rely formulas

Note that guarantees can be active, in the sense that they bind parameter
values. For example, a guarantee pubkey(a,ka) may be evaluated in a node
prior to which the parameter a is bound but ka is unbound, and its effect is to
look up the public key of principal a in the local theory and bind ka to it.

4

1.4 General Services

A service can be viewed as a guarantee that is provided by a separate role of
the same principal, like a subprotocol. This view is illustrated in Figure 2. A
calling strand invokes the service with a call that guarantees some precondition
formula ρ that implies the service precondition ρ′, and the service strand sends
a return annotated with another formula γ′ that is the service postcondition,
which should imply the caller’s desired guarantee. The call and return messages
convey the sequences of values of the input and output parameters respectively.
Call and return operators could be modelled as additional operators in the
free algebra which create private messages, in the sense that they are neither
constructible nor analyzable by the attacker. (They could also be modeled using
the special protected message directions introduced in [8].)

There is no need for a “says” qualification on the returned rely because the
two strands are owned by the same principal, and the communication cannot
be seen or interfered with by any attacker.

Caller

��

Service

γ
call(~x) //__________

��

γ′

��
ρ

��

ρ′
return(~y)oo_ _ _ _ _ _ _ _ _ _

Figure 2: Calling a service

The service has a precondition and postcondition, as in the terminology of
the Eiffel “design by contract” concept. Our focus, however, is not on how the
service implements its contract, but rather on how a service selection mechanism
can adapt a caller rely formula ρ to a different but sufficient service postcondition
ρ′ that was stated with a different set of formal parameters. We also need to
match the caller guarantee to the service precondition.

A service is selectable for a call request if there exists a parameter mapping
that assigns values to service inputs from caller inputs, and caller outputs from
service outputs, such that the service precondition and the caller postcondition
are both satisfied.

For example, suppose that the caller requirement has precondition certAuth(z)
and its postcondition is pubKey(a,ka), so that its parameter set is Pc = {a,ka,z}.
The caller has bound a and z and needs a value for ka. It might be satisfied
by a service that asks for the precondition certAuth(ca) and offers the post-
condition pkCert(pk,p,ca), and its parameters are Ps = {pk,p,ca}, where

5

ca is a certification authority. To match the service to the call, we must find
the mapping p 7→ a, ka 7→ pk, and ca 7→ z. This match is justified using an
inference rule like:

pubKey(A,K) :- pkCert(K,A,C), certAuth(C).

This rule is presented in the Horn clause format used in Datalog and Prolog,
for reasons given in the next subsection. The capital letters used as arguments
are logical variables.

Where does this inference rule come from? We assume that there is a selector
theory with conversion rules useful for translating between caller and service
predicate vocabularies.

At this point it is possible to point out the differences between the service
idea and the prior related concepts of guarantees and subprotocols. First, guar-
antees are established logically, by inference from the caller’s local theory, while
the mechanism by which a service establishes its postcondition is not specified.
A service postcondition might result from any computation, or from a separate
protocol.

A service is different from a subprotocol because it might just be a local
computation, but even when it is a protocol, the calling mechanism is different.
A subprotocol call identifies a subprotocol with a known name and parameters,
while our services are selectable through a flexible matching mechanism that
can search through a list of many subprotocols to find one that can be made to
fit through a suitable parameter mapping.

1.5 Non-Disclosure Agreements

One way in which Figure 2 is incomplete is that it does not show that the
service may participate in a protocol that communicates with other principals.
Parameter values that it shares with the caller might be transmitted in protocol
messages. A caller might want to insist that some shared parameter values be
kept secret, either by not sending them out at all, or by sending them only
to (strands owned by) some designated principals. Specifications of this kind
must be provided by the caller requirement and by the service contract. Our
formulation of this kind of specification is an “NDA” and it will be discussed in
Section 4.

2 Abstraction-Binding Inferences

Our objective is not merely to define the call-by-contract relationship, but also
to describe a practical way to implement the selection mechanism that matches
services to requests. The selection mechanism takes advantage of Datalog, be-
cause we have already been using Datalog to support the rely-guarantee trust
management approach. It has been implemented as part of the runtime system
for a high-level protocol programming language, CPPL [8].

6

Datalog is a restricted form of first-order logic in which each formula is a
function-free Horn clause, and every variable in the head of a clause must appear
in the body of the clause. A clause that meets this condition is called a safe
clause.

Datalog [5] forms the foundation of many deductive database systems, as
well as at least one trust management language [12]. A Datalog literal has
the form predicate-symbol(t1, ..., tk), where each argument ti is either an arity-
zero function symbol (i.e., a constant) or a logical variable. The predicate
symbols and constants are application-specific, and begin with lower-case letters.
Variables begin with capital letters. In Datalog, a theory is a set of safe Horn
clauses of the form head :- body where the head is a literal and the body is a
(possibly empty) sequence of literals. A clause with an empty body is a fact,
and a clause with at least one literal in the body is a rule.

The conditions on asserted clauses guarantee that the set of all facts that can
be derived from a Datalog theory is finite, and there is a terminating algorithm
to find all provable instances of a given literal presented as a query. This is the
essential feature of Datalog for our purposes.

In order to apply Datalog to node formulas, we restrict ourselves to formulas
that are expressible as conjunctions of Datalog ground literals. We use Datalog
constants to represent atoms, both parameters and values.

To apply the Datalog engine, we may abstract a formula by replacing some
or all of its parameters with fresh, distinct variables. Other atoms are left
unchanged. The abstraction step can be represented with a substitution α,
with a domain given in context.

Now, suppose p and q are formulas, and T is a theory consisting of a set
of rules. We wish to check whether some instance of q follows from p in the
context of T . For now, assume that q is a single literal. The Datalog engine is
used as follows:

1. assert T and p;

2. present the abstracted literal qα as a query.

The engine will either fail (if no instance of qα is provable), or it will find
all variable bindings β such that qαβ is provable from T and p, that is,

T, p ` qαβ.

If we let σ = αβ, we see that we have found a substitution σ of parameters
into values such that

T, p ` qσ

The combination of these two steps is abstraction binding.
Recall that A = X ∪ C, and let A(φ) be the set of atoms occurring in

formula φ. Also let A(T) =
⋃
{A(φ)|φ occurs in T}. Abstraction binding has

the following property:

Proposition: Let T be a constant-free theory, consisting of rules such that

7

A(T) = ∅, and let p and q be formulas. Then abstraction-binding finds the set
of all substitutions σ on A(q) \A(p) into A(p) such that T, p ` qσ.

If q is a conjunction, we can achieve the same result by satisfying its conjuncts
sequentially, extending σ as needed. (One way to do this is to introduce a new
predicate name for q, and add a rule for it with the conjuncts of q serving as
the body.)

For convenience, we define the abstraction-binding AB relation as follows:

Definition: AB (T, p, q, σ) iff σ is a substitution on A(q) \A(p) into A(p) such
that T, p ` qσ.

AB relations are preserved by precondition substitutions.

Proposition (AB Substitution): If AB (T, p, q, σ) and τ is a substitution on
A(p), then AB (T, pτ, q, στ).

This conclusion is valid because T is constant-free, so the inference cannot de-
pend on particular choices for the parameters of p. Another way of thinking
about this is that the parameters of p are like Skolem constants, since they do
not occur in T . An inference that holds with them can be generalized to a
universal statement about variables in their places, which are then given values
by τ .

3 Selection: Call by Contract

In this section we begin by looking at a static specification of a successful service
call. In a protocol with a service call, the service role is represented by an
idealization of the service, in which only the initial and final nodes are present,
as in Figure 2. A bundle containing a service call instantiates the caller role rc
with some ground substitution σc, and the idealized service rs with a ground
substitution σs, which is defined only on the service parameters named in the
contract.

A request from a caller has a precondition formula pc and a postcondition
formula qc. Each service has a precondition ps and a postcondition qs. With
the substitutions and the condition formulas just defined, Figure 2 turns into
Figure 3.

In Figure 3, the input and output conditions do not have to match exactly,
but we want them to satisfy the implications summarized in this diagram:

Caller pcσc +3

��

qcσc

Service psσs +3 qsσs

KS

For any service, we assume that it satisfies its contract, expressed as a pre-

8

rcσc

��

rsσs

pcσc
call(~x) //________

��

psσs

��
qcσc

��

qsσs
return(~y)oo_ _ _ _ _ _ _ _

Figure 3: General service diagram

condition, postcondition pair (ps, qs). The contract assumes that the service
has been called with an assignment of values to input parameters, which are
the parameters in ps. If ps holds with these values, the contract promises to
find values for the output parameters (the parameters in qs that are not input
parameters) to satisfy qs.

Notation: For a precondition, postcondition pair (for either a service or a
caller), it is convenient to introduce symbols for its input parameters I = A(p),
its output parameters O = A(q) \ A(p), and all of its parameters P = I ∪ O.
Subscripts s or c will be applied as needed in context.

Definition: A service contract is a pair of node formulas (ps, qs) such that
Ps ⊆ X and, for all σ on Is into Z,

psσ ⇒ (∃τ) qsστ

where τ is on Os into Z.

Definition: A service contract (ps, qs) is independently selectable for caller re-
quest (pc, qc) if, for any input substitution σe : Ic → Z, there exist substitutions
σc : Pc → Z extending σe and σs : Ps → Z such that

1. T, pcσc ` psσs,

2. psσs ⇒ qsσs, and

3. T, qsσs ` qcσc.

The qualifier “independently” reflects the condition that the same service is
selectable regardless of which input substitution is chosen. Non-independent
selectability would mean that a service is selectable for some inputs but not
others. With a constant-free selector theory, we shall see that independent
selectability is not only possible, but it can be checked as soon as the service
contract and caller protocol are known.

9

3.1 From the Static to the Algorithmic View

The purpose of a selection mechanism is to test whether a given service, specified
by a contract, can satisfy a caller request specified by a precondition pc and
postcondition qc. Under the assumption that the selector theory is constant-
free, the answer can be given independently of the caller substitution σc in the
following sense. We can give conditions on σc for the existence of a service
substitution σs such that the caller request is satisfied. The values for the caller
precondition input parameters Ic can be arbitrary.

Theorem (Selection): Let T be a constant-free theory, and suppose that
pc, qc, ps, qs are node formulas such that Pc is disjoint from Ps. Assume that

1. σe : Ic → Z,

2. (ps, qs) is a service contract,

3. AB (T, pc, ps, σi), and

4. AB (T, qsσi, qc, σo).

Then (ps, qs) is independently selectable for (pc, qc). Then there exists a substi-
tution σr : Os → Z such that T, pcσe ` qcσoσeσr.

Proof: We will find σr : Os → Z from which we construct σc = σoσeσr and
σs = σiσeσr.

We apply the contract once and AB Substitution twice. Hypothesis 3 implies
that σi : Is → Ic, and hypothesis 4 implies that σo : Oc → Ps.

By AB substitution on hypothesis 3 with σe : Ic → Z, we get AB (T, pcσe, ps, σiσe).
This means that T, pcσe ` psσiσe. By construction, the first condition T, pcσc `
psσs is satisfied.

Applying the contract in hypothesis 2, we produce σr : Os → Z such that
qsσiσeσr holds. This satisfies the second condition psσs ⇒ qsσs by construction.

By AB substitution on hypothesis 4 with σeσr, we find that T, qsσiσeσr `
qcσoσeσr. This gives us T, qsσs ` qcσc.

The way the substitutions are linked can be traced in the diagram below.

Oc
σo //

σo

��

Os

σr

��
Is

σi // Ic
σe // Z

The Selection Theorem gives us more than just independent selectability, since
it shows that the caller and service substitutions can be factored through input
and output mappings σi and σo. This turns out to be important later when we
consider confidentiality constraints. The following definition names this result.

Definition: A service contract (ps, qs) is uniformly selectable for caller request

10

(pc, qc) if, for any input substitution σe : Ic → Z, there exist substitutions
σi : Is → Ic and σo : Oc → Ps such that independent selectability is satisfied by
σc = σoσeσr and σs = σiσeσr for some σr : Os → Z.

Corollary: Under the conditions of the Selection Theorem, (ps, qs) is uniformly
selectable for (pc, qc).

The contract selection algorithm implied by the Selection Theorem is to consider
each available service contract (ps, qs). To test acceptability of a contract, apply
abstraction binding to find σi, and if successful, apply abstraction binding again
to find σo. If successful again, the service is selectable. Backtracking or other
search methods can explore multiple candidates for σo and σi. If none work,
other contracts are tested.

Note that all of this can be done without knowing σe. At run time, the service
is invoked with the input substitution σiσe. When the service completes, caller
outputs are bound with σoσeσr.

When multiple (σi, σo) solutions exist, application preferences or constraints
can be used to guide the search order or otherwise choose among alternative
call mappings. The contract selection algorithm as stated does not yet consider
security constraints, which are discussed in the next section.

4 Separate Verification of Protocol Services

Our objective is to separate the verification as well as the design and specifi-
cation of services from that of calling protocols. We need to investigate the
conditions under which this is possible. In this section we provide some pre-
liminary issues and answers, though more research is advised to obtain broader
results.

In the context of the strand space approach, we are concerned with authen-
tication goals, as expressed in protocol rely formulas, and confidentiality goals,
either for their own sake, or to support authentication proofs.

Some issues regarding information flow are discussed first, then the general
question of protocol separation is considered.

4.1 Information Flow Through Services

The implementation of a service could affect the soundness of the protocol, if
it violates confidentiality assumptions. We need to know that the computation
implementing a service does not cause information flows from a secret input
parameter to an unprotected output parameter.

For example, suppose that a protocol role has a uniquely originated, fresh,
random nonce k that we want to keep secret. And suppose there is a service
with contract (true, copy(a,b)), where copy(a,b) does what it says, namely
to bind b to the value of a. If this service is called to obtain a postcondition

11

copy(k,m), and then the caller sends m as a message, the nonce k has obviously
been compromised.

If copy were just a predicate used as a guarantee, this problem would surface
routinely. The behavior of copy would have to be defined in the local theory.
The theory would include a rule like A = B :- copy(A,B), and any decent
security analysis would notice the consequences.

However, a copy service might be selected for a caller whose local theory did
not even possess an equality predicate. The caller might only have requested a
weaker postcondition like same length(k,m).

To use services safely, then, we need to provide a way for the caller to spec-
ify confidentiality constraints, and for services to advertise their confidentiality
promises. We also need a way to verify such promises, and to establish that the
constraints are sufficient to preserve the security properties of the caller.

Protocol analysis based on computational models can determine whether ser-
vices computed algorithmically leak significant partial information, even when
they do not actually lead to an equality relation. This kind of analysis is dis-
cussed, for example, in [1]. In this paper, we just point out that such techniques
exist, and our discussion on verifying confidentiality will focus on protocols and
subprotocols.

4.2 NDAs

As promised in Section 1.5, a confidentiality requirement or contract is expressed
as an NDA (non-disclosure agreement). An NDA associates a predicate on
message terms with each parameter of a role. The NDA ν(x) of a parameter x
expresses a constraint on the way x may be released. The predicate formula is
not necessarily restricted to the language of node formulas.

In this subsection, we leave open the semantics of ν(x). The way in which
an NDA is used will be presented, at first, just formally, and then in the next
subsection we provide a particular interpretation that justifies some security
conclusions.

Definition: A secure service request is a 4-tuple (pc, qc, σe, ν) of a caller precon-
dition, a caller postcondition, an input value substitution, and an NDA defined
on the caller parameters Pc. A secure service contract is a triple (ps, qs, ν) where
ν is defined on the service parameters Ps.

The contract (ps, qs, ν) is securely selectable for (pc, qc, σe, ν) if it is uniformly
selectable with parameter mappings σi, σo and

(1) if x ∈ Is then ν(x)σi ⇒ ν(xσi)σo and
(2) if y ∈ Oc then ν(yσo)σi ⇒ ν(y)σo.

Condition (1) says that the constraint on a service input is stricter than the
constraint on the caller input to which it maps. Condition (2) says that the
constraint on a service output is stricter than the constraint on any caller pa-
rameter mapped to it.

12

The parameter mappings applied to the ν sets are necessary to make them
comparable. This is easy to understand if one considers the way terms are
mapped to values. With uniform selection, a caller term t gets the value tσc =
tσoσeσr, and a service term t′ gets the value t′σs = t′σiσeσr. So if tσo = t′σi

then t and t′ are mapped to the same value.

4.3 Example: Binary NDA

Suppose that ν(x) is either true, meaning that x is releasable without restric-
tion, or false, meaning that x may not be released at all. There is a triv-
ial service contract (nonce(x), nonce(x)), and a selector rule copy(A,A) :-
nonce(A). The secure service request is (nonce(a), copy(a,b), σe, ν) where σe

is arbitrary and ν(a) = ν(b) = false. Note that Ic = {a}, Oc = {b}, Is = {x},
and Os = ∅. What should the NDA of the service be?

First, observe that the service is uniformly selectable with xσi = a and
bσo = x.

Applying the parameter mappings, the secure selectability conditions be-
come

(1) ν(a)σi ⇒ ν(a)σo and
(2) ν(x)σi ⇒ ν(b)σo.

Now apply the ν values for the caller. Condition (1) is just false = false.
Condition (2) is ν(x)σi = false. Hence we need ν(x) = false. The service is
being required to keep its input confidential.

There is a way to enforce binary NDA checking for free through the basic
functional selection mechanism. For each caller input x such that ν(x) is true,
add to the initial theory the assertion public(x). And if ν(x) is false, add the
assertion hidden(x). Now, for both caller and service, all public assertions
are added as conjuncts to preconditions, and all hidden assertions are added as
conjuncts to postconditions. Thus, if a service treats an input as public, that
will automatically be justified, as part of the selectability check, by checking
that the caller input it maps to is public; and if a caller believes that an output
is hidden, that will be justified by checking that the service treats the parameter
it maps to as hidden.

4.4 Services Implemented as Protocols

Many useful services are implemented as protocols that exchange messages with
a third party. For example, a service might check certificate revocation by
contacting a validation authority. The “third” party might also be a party
already participating in the main protocol, if the service performs some standard
negotiation. Figure 4 illustrates a protocol service that exchanges messages
m,m′ with an instance of a role rt. The dotted transitions indicate that the
service might go through several nodes before returning to the caller.

Ordinarily, a protocol soundness proof for a protocol that invokes a sub-
protocol would consider the protocol and subprotocol together, verifying the

13

rcσc

��

rsσs rtσt

pcσc
call(~x) //________

��

psσs

��
◦ m //

��

◦

��
◦

��

◦m′
oo

qcσc

��

qsσs
return(~y)oo_ _ _ _ _ _ _ _

Figure 4: Protocol Service Call

composition as a single larger protocol. However, we wish to take advantage
of prior work that identifies conditions under which protocol components may
be verified in isolation, preserving their security properties when they are com-
bined.

Protocols may be combined in two senses. One is by refinement, which is
close to the idea of a service: a protocol needs some function accomplished, and
the objective is to prove its correctness and security while treating the function
as a black box. Then the function is later expanded into a subprotocol, which
is verified separately. One thread of research that has taken this approach with
sufficient formality and attention to security in a Dolev-Yao modeling context
is represented by Datta, et al. [6] Their composition methodology, however,
requires one to identify invariants used in the proofs of different protocol com-
ponents, and check that each component satisfies the other’s invariant as well
as its own. This approach does not, in this general form, facilitate our objective
for independent design and verification of services and the protocols using them.

Protocols are also combined, in a sense, when they are run independently
in the same attacker environment, either concurrently or sequentially. Many
papers have noted that it is possible for protocols to interfere with one another,
invalidating security properties proved in isolation, when the same principal
(using the same long-term private keys) participates in more than one protocol.
Papers on this topic, with varying degrees of formality, go back at least to [11]
and include [4] and [9]. Universal composability [3] is a strong property in the
computational arena that can also lead, for some protocols, to preservation of
security in a multiprotocol environment.

How could we use independent composition to verify services? The idea is
to treat the caller request as a pair of guarantees, rather than as a guarantee

14

for the precondition and a rely for the postcondition. It can then be verified
separately. The service is a separate protocol anyway, its only dependence to
the caller being the choice of input values. However, some additional conditions
will be necessary to prevent interference that would undermine security. Those
conditions can be reflected in the choice of NDA and its semantics.

To give an example of a particular result along these lines, we apply the
protocol independence theorem from [9]. The definitions are reviewed here,
though [9] should be consulted for more details.

4.5 Review of Protocol Independence

The results concern a strand space Σ consisting of regular strands Σ1 of a pri-
mary protocol (think of this as the caller), regular strands of another secondary
protocol (from services), and penetrator strands. The following definitions are
needed.

Definitions: A strand space Σ is full if every atomic value a that originates on
any secondary strand in Σ also originates on a penetrator strand in Σ.

An atom a is private if it originates uniquely only in Σ1.

A term t occurs in a term t′, written t v t′, if it is a subterm, but not in the key
part of an encryption. A term occurs in a node if it occurs in its message. A
component of a non-pair term is the whole term, and a pair t, t′ has components
t and t′. A “new component” of a node is a term that has not occurred as a
subterm of a prior node (by ⇒) in the same strand.

Σ has disjoint outbound encryption if and only if the following holds. Let n1 ∈ Σ1

be a positive node, let n2 ∈ Σ2 be a negative node, and let a be a private atom
occurring in some encrypted term {h}K , where {h}K < n1 and {h}K < n2.
Then there is no positive n′2 such that n2 ⇒+ n′2 and a occurs in a new compo-
nent of n′2.

Σ has disjoint inbound encryption if, for any negative node n1 ∈ Σ1 and positive
node n2 ∈ Σ2 in which an encrypted term {h}k occurs, {h}k does not occur in
any new component of n2.

Two bundles over Σ are equivalent if they have the same Σ1 nodes. Σ1 is inde-
pendent of Σ2 if every bundle over Σ is equivalent to one with no Σ2 nodes.

Theorem (Protocol Independence, Prop. 7.2 in [9]): If Σ is full and has
both disjoint inbound and disjoint outbound encryption, then Σ1 is independent
of Σ2.

The significance of protocol independence is that any attack on an authenti-
cation property that is possible in the Σ multiprotocol strand space can, by
equivalence, be reproduced without Σ2 strands, and hence should have been
excluded by a verification of the primary protocol in isolation.

15

4.6 Application of Protocol Independence

The idea behind disjoint inbound and outbound encryption is that a secondary
protocol should not alter or repackage any encrypted term that either originated
in the primary protocol or could be received by it. It was observed in [9] (and
the idea was also suggested in other papers) that a protocol identifier could be
included in every encrypted term that was produced by a particular protocol,
so that a party that received a term encrypted by a confidential key would be
able to check that it was produced in its own protocol. All roles of the same
protocol would use the same identifier, but a different (secondary or service)
protocol would use a different identifier. Use of protocol identifiers in this way
would guarantee disjoint inbound and outbound encryption.

To apply the protocol independence theorem, we also need the “full” prop-
erty. The “full” condition requires that a confidential atom originating in the
primary protocol may not also originate in the secondary protocol. This is a
problem when the atom is passed as an input parameter to a service, since pa-
rameters that are not received in a message appear to originate in the service.
However, we can use an NDA to fix this.

If a parameter a is uniquely originating in the calling protocol, and it is
provided as an input to a service, we can list the encrypted terms in which it
occurs. Let ν(a) be a predicate that tests membership in that list. A service
with a compatible NDA for a parameter mapped to a recognizes a smaller list
of terms that will be mapped to the same ground terms. The semantics of the
NDA for service is the same: it specifies the set of “safe” terms in which a
confidential parameter may occur. This means that the confidential parameter
will be transmitted only in terms that can be traced back to terms originating
in the caller. The full property is then satisfied for those parameters.

The “full” condition also prevents a confidential value from being generated
by the service, since a confidential return parameter cannot be recognized as
“private”. This limits the applicability of the protocol independence result.

Note that, if we use protocol identifiers, use NDAs to limit private atom con-
texts, and refrain from generating confidential values in services to be returned
to the caller, the conditions for protocol independence apply between different
services as well as between the caller and its services.

To summarize:

Corollary: Under the following conditions, a calling protocol and its services
preserve authentication properties when verified independently:

1. each protocol (and service) includes a different protocol identifier in en-
crypted terms constructed by that protocol;

2. each service respects its promised NDA, in that each parameter x may
occur only in components of sent messages satisfying ν(x);

3. no service originates a confidential atom returned to the caller.

16

5 Conclusion

Call by contract is a way to specify and use interchangeable services in secure
protocols, so that protocols and services can be independently designed and
verified. The interface to a service is specified with a precondition and postcon-
dition as in an Eiffel contract. However, to facilitate independent design, the
calling protocol requests a service with its own precondition and postcondition.
The calling protocol need not know the name of the service or its parameter
list.

A selection algorithm is given to test whether a candidate service is uniformly
selectable. Uniform selection implies the existence of parameter mappings be-
tween the caller and service such that the preconditions and postconditions are
sufficient, independently of the particular input parameter values. The selec-
tion algorithm is based on a technique called abstraction binding, employing a
Datalog engine.

To facilitate independent security verification of the calling protocol and
its services, contracts and requests also provide an NDA. Informally, NDAs
are confidentiality constraints on parameters. Formally, NDAs of caller and
service are compared in a straightforward way for “secure” selectability. The
semantics of NDAs, and any proof that secure selectability enables independent
verification, are not fixed, and can be interpreted differently in different protocol
modeling contexts. We have given an example of NDA semantics that yields
some limited independence, but stronger results, and different interpretations
and results in other contexts, should be possible in the future.

We have an experimental prototype implementation of the service algorithm
to support CPPL, our protocol compiler that makes use of a Datalog runtime
engine. This prototype is still under development.

References

[1] M. Backes and B. Pfitzmann. Relating symbolic and cryptographic se-
crecy. In IEEE Symposium on Security and Privacy, pages 171–182. IEEE
Computer Society, 2005.

[2] M. Bartoletti, P. Degano, and G-L. Ferrari. Enforcing secure service com-
position. In 18th IEEE Computer Security Foundations Workshop, pages
211–223. IEEE Computer Society, 2005.

[3] R. Canetti. Universally composable security: a new paradigm for crypto-
graphic protocols. In Proc. IEEE FOCS, pages 136–145, 2001.

[4] R. Canetti, C. Meadows, and P. Syverson. Evironmental requirements for
authentication protocols. In Symposium on Requirements Engineering for
Information Security, March 2001.

17

[5] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you always wanted
to know about datalog (and never dared to ask). IEEE Transactions of
Knowledge and Data Engineering, 1(1), 1989.

[6] Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. A
derivation system and compositional logic for security. Journal of Computer
Security, 2005.

[7] Trusted Computing Group. Trusted platform module main specification,
version 1.2, 2006.

[8] Joshua Guttman, Jonathan Herzog, John Ramsdell, and Brian Sniffen.
Programming cryptographic protocols. In Symposium on Trusted Global
Computing, volume 3705 of Lecture Notes in Computer Science. Springer,
April 2005.

[9] Joshua Guttman and F. Javier Thayer. Protocol independence through
disjoint encryption. In Computer Security Foundations Workshop. IEEE
Computer Society, 2000.

[10] Joshua Guttman, F. Javier Thayer, Jay Carlson, Jonathan Herzog, John
Ramsdell, and Brian Sniffen. Trust management in strand spaces: A rely-
guarantee method. In European Symposium on Programming (ESOP),
2004.

[11] N. Heintze and J.D. Tygar. A model for secure protocols and their com-
position. IEEE Transactions on Software Engineering, 22(1):16–30, 1996.

[12] Ninghui Li, Joan Feigenbaum, and Benjamin Grosof. A logic-based knowl-
edge representation for authorization with delegation. In 12th Computer
Security Foundations Workshop, pages 162–174. IEEE Computer Society,
1999.

[13] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand
spaces: Proving security protocols correct. Journal of Computer Security,
7(2/3):191–230, 1999.

A Implementation Notes

Notes on our implementation of the selector algorithm follow. The imple-
mentation follows the algorithm in Section 3 except that it combines the two
abstraction-binding steps into a single Datalog query. This is facilitated by
adding rules expressing the contract.

Let S(φ) be a sequence of the parameters in formula φ. Each parameter in
S(φ) occurs once, and the parameters are ordered by their first appearance in
the formula. Let V (~X) be a sequence of distinct variables of the same length
as ~X. (V (~X) can be the ~X-length initial subsequence of a long fixed variable
sequence.) Let r :: ~X be the literal constructed from predicate symbol r and

18

the sequence of terms ~X. Let p[~X] be the formula in which each parameter
in ~X is replaced in p by its corresponding variable in V (~X). Thus, p[~X] is
an abstraction of p over a specific set of parameters. The concatenation of
sequences ~X1 and ~X2 is ~X1 · ~X2. The subsequence of ~X1 elements that are not
in ~X2 is ~X1 \ ~X2.

Note that, in general, a substitution σ on a set X can be represented with
respect to an ordering ~X by a result vector ~Y such that σ(x) = ~Y (~X−1(x)). We
write σ = ~Y / ~X. If substitutions σi = ~Yi/ ~Xi have disjoint domains, σ1 ∪ σ2 =
~Y1 · ~Y2/ ~X1 · ~X2. Also, (σ ◦ τ)(x) = σ(τ(x)) and (σ ◦ ~X)(i) = σ(~X(i)).

A contract in the implementation is a 5-tuple (ps, qs, ~Is, ~Os, s), where s is the
name of the procedure that implements the service. The service contract of s
is (ps, qs), the input parameter sequence of s is ~Is, and the output parameter
sequence of s is ~Os.

A caller provides a triple (pc, qc, ~Zc), where the caller’s pre- and postcon-
dition are (pc, qc), and the values associated with the parameters in S(pc) are
given by ~Zc. Thus, σe = ~Zc/~Ic for ~Ic = S(pc). A call is ill-formed if the length
of ~Zc differs from the length of ~Ic. Let ~Oc = S(qc) \ S(pc).

If the selector algorithm determines that a service s is selectable, and then
selects it, it invokes the service with a sequence of input values ~Zs and a sequence
of natural numbers ~Ns. ~Ns is defined below; it tells the service which values to
return, and in which order, corresponding to caller outputs.

The selector algorithm is the following.

1. Rename parameters in the service contract to ensure that service param-
eters do not occur in caller’s formulas.

2. Assert each literal in pc.

3. Recall that a formula is a conjunction of literals, and let φi be the i-th
literal. For each literal in qs[~Is], assert qi

s[~Is] :- ps[~Is]. If any clause is not
safe, the service s is not selectable. These rules represent the contract.

4. Let r be a fresh predicate symbol. Assert r::V (~Is· ~Oc):-ps[~Is· ~Oc], qc[~Is· ~Oc].
If the clause is not safe, the service s is not selectable.

5. If an instance of r :: V (~Is · ~Oc) is derivable, the service s is selectable.

Let r :: ~Is · ~Oc be a derived instance of r :: V (~Is · ~Oc). The input values ~Zs

required by the service are obtained as (~Zc/~Ic) ◦ (~Is/
~Is) ◦ ~Is. The number

sequence ~Ns given to the service is obtained as (~Is · ~Os)−1 ◦ ~Oc.
The service then executes and produces its own output values ~Zo. It then

produces the sequence of values for caller outputs as ~Zs · ~Zo ◦ ~Ns.

19

