
MTR06B0000016

MITRE TECHNICAL REPORT

Using Transcription and Replay in Analysis of
Groupware Applications

March, 2006

Seth Landsman, Ph.D., D580
Richard Alterman, Ph.D., Brandeis University

Sponsor: MITRE Contract No.:
Dept. No.: D580 Project No.: 03MSR309-A6

The views, opinions and/or findings contained in this report are those of
The MITRE Corporation and should not be construed as an official
Government position, policy, or decision, unless designated by other
documentation.

Approved for Public Release; Distribution Unlimited
Case #06-0687

©2006 The MITRE Corporation. All Rights Reserved.

Corporate Headquarters
McLean, Virginia

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 06-0687

Abstract
As corporations and organizations become more distributed enterprises, the use of groupware
applications as part of day-to-day activities becomes more prevalent. How to build groupware
applications so that they work as expected, both as the developer expects and the community of
users expect, is a challenge that must be addressed in order for groupware applications to be
adapted as part of daily business activities. In practice, assumptions made by the developer may
not match the expectations of the users.

This paper details a model for collecting a replayable transcript of online collaboration. This
transcript can then be used to study the interaction, through techniques such as ethnographic
analysis. We also present software frameworks that implement this model. An example of an
analysis is presented, as are two examples of experimental groupware applications that use this
model.

 iii

Table of Contents
1 Introduction 1-1

2 ANALYSIS OF GROUPWARE 2-3

2.1 Example Analysis 2-4

3 MODEL OF TRANSCRIPTION AND REPLAY 3-7
3.1 Transcription 3-7

3.2 Replay 3-9

4 ENGINEERING TRANSCRIPTION AND REPLAY 4-11

4.1 Transcription and Replay Requirements 4-11

4.2 Implementation 4-11

4.2.1 Transcription 4-12

4.2.2 Replay 4-14

5 APPLICATIONS 5-19
5.1 VesselWorld 5-19

5.2 CEDAR 5-20

6 CONCLUSIONS 6-21

7 ACKNOWLEDGEMENTS 7-23

8 REFERENCES 7-24

 v

List of Figures
Figure 1, Screenshot of the Online Research Assistant...2-3

Figure 2, an analysis session for the Online Research Application ..2-4

Figure 3, Collecting messages in a THYME application to build the transcript..........................4-13

Figure 4, SAGE Playback Controller...4-17

Figure 5, The VW-SAGE system...5-20

Figure 6, Spiral Lifecycle with Ethnographic Analysis...6-22

 vi

List of Tables
Table 1, Transcription Properties 3-9

Table 2, Replay Properties 3-10

 vii

1 Introduction
Collaborative processes are not fixed entities. There is a constant and considerable need to study
and evaluate how people work together and how group work can be improved to better fit a
community of users. A number of techniques and approaches have been explored in this area,
from the understanding of interaction (Clark 1996), distributed cognition (Hutchins 1996), and
ethnographic study of an artifact's use in group activity (Suchman and Trigg 1991).

A collaborative process that is mediated by a software application (i.e., groupware (Johansen
1984)) also needs to be studied and improved. External perspectives of activity, such as video
taping a user, become less useful as the interaction may be distributed and requires both context of
a user's activity and correlation between users' activities. Ethnographic analysis has been shown
to be effective in the study of off-line interaction (i.e., not mediated by software), and can be
applied to online behavior given the proper software support.

Ethnography for off-line collaboration generally captures the activity of the users (transcription)
and provides a mechanism for further review (replay). Our approach is to provide similar
capabilities for the analysis of online collaboration by collecting the activity of the users as they
collaborate into a continuous transcript. Review of the transcript is accomplished by a software
system that replays the transcript in the same context as the transcript was captured.

We have built several groupware applications to study collaboration and groupware issues. In
each case, the application produced complete, replayable transcripts. The replay of these
transcripts was used for a variety of tasks: as a basis for redesigning an application, as part of a
research study on online collaboration, as data that is used for teaching analysis techniques, and as
resource data for term projects. In addition to development of several groupware applications, we
have developed a pair of toolkits: THYME (Landsman 2006) and SAGE. THYME is used to
generate groupware applications that automatically produce complete, replayable transcripts.
SAGE provides the basis for constructing a replay application. Both toolkits have been used to
create numerous applications. The THYME toolkit was also used in an undergraduate HCI class.

This paper extracts a general model for building groupware applications that automatically
produce replayable transcripts. This model supports the transcription of user activity, both ``low-
level'' activity such as mouse clicks and ``task-level'' activity such as chat events. Replay of the
application occurs through the basis groupware application used to collect the transcript. The
model provides methods to enhance the replay of the transcript given the structured, introspectable
nature of the transcript, such as searching for types of events in the transcript and annotation of
interesting aspects of the transcript. The THYME and SAGE toolkits are an implementation of
this model.

The remainder of this paper starts with a simple example of how transcription and replay can be
used to support the redesign of a groupware application. This example shows some of the
capabilities of the model of transcription and replay. Following that, our model is detailed and the

 1-1

implementation is discussed. Some examples of other applications that use our analysis
techniques are then described. This paper concludes with a discussion of future work.

 1-2

2 ANALYSIS OF GROUPWARE
This section provides a simple, concrete illustration of the use of transcription and replay.

In the Fall of 2002, a Human-Computer Interaction (HCI) class held at Brandeis University
implemented synchronous groupware applications as part of their term projects. These students
were given access to the THYME groupware framework and only twenty-eight days of
implementation time. The class was divided into fourteen teams of 2 - 3 students per team.
Despite the short amount of implementation time, twelve out of the fourteen teams successfully
implemented a groupware application that could collect replayable transcripts of use.

One group in this class produced an application called the Online Research Assistant (ORA).
This application allows a more experienced researcher (such as a librarian) to help another
researcher locate information on the World Wide Web. This section details an example analysis
performed on a transcript collected using this application.

The ORA application contains several common groupware components, including a shared
whiteboard, a chat room, and a shared web browser; see Figure 1. The left side of the screen (see
1) is the web browser with a shared whiteboard in a transparent overlay. The browser is a relaxed
WYSIWIS (Stefik, Bobrow et al. 1987) component, in that the web browser context is
synchronized between users, but the scrolling of the web page is not. The right side of the screen
(see 2) is the chat room. The bottom of the screen (see 3) contains the tools used to manipulate
the shared whiteboard, including the palette of artifacts and button to toggle the whiteboard's
display.

Figure 1, Screenshot of the Online Research Assistant

From the ORA transcript, there are three types of task events: the Chat Event, Shared Whiteboard
Events (i.e., drawing a new artifact on the glass pane or manipulating an existing one), and Shared

 2-3

Web Browser Events (i.e., entering a new URL, and going forward and backwards in the history
of visited URLs).

From a comparison of the ORA replay application (Figure 2) and the basis ORA application
(Figure 1), it is clear that they share a common lineage. As shown in Figure 2, the center replay
window is a direct analogue of the ORA client screen, and contains individual components that
are leveraged from the basis application.

Figure 2, an analysis session for the Online Research Application

The top left object in Figure 2 is the replay controller. It allows basic playback of a transcript
through a VCR-like metaphor. The top buttons are recognizable as varying speeds of replay, both
forward and backward, as well as a button to stop the replay. Also of note is the Event Type field,
which allows the analyst to move forward or backward in the transcript to the next instance of a
specific type of event. More detail on how this controller operates is discussed later in this paper.

2.1 Example Analysis
We performed data collection and analysis on usage of the initial design of the ORA application.
The analysis is used to direct the further development of the application, allowing conclusions to
be drawn about how the application is to be used by the end-user. Based on these conclusions, the
development directions can be determined with a large degree of precision and accuracy,
responding to the elicited and observed needs of the community.

 2-4

In the example analysis shown, two users with the pseudonyms Tom and Bob, are using the
baseline version of ORA. Bob is an ORA developer and researcher who is assisting Tom in
finding papers relevant to a specific topic.

Throughout this discussion, we will emphasize how the analyst manipulated the replay application
by italicizing his actions. Figure 2 shows a segment from this analysis session.

 This analysis has three major stages:

1. Initial exploration of a university library, which fails because of limitations in the web
browser associated with the ORA application.

2. Transition to another citation database (the Citeseer database) and resynchronization of
the user's common ground

3. Successful competition of the task

The first part of the session starts with the interaction between Tom and Bob (taken verbatim from
the transcript):

Tom Hi. Can you help me to find articles or books on mutual belief? I am particularly
interested in representation and mutual belief. But first the general concept of
mutual belief

Bob sure. let's start in the library.

Tom wait what did you just do??

To obtain this dialogue, the analyst starts playing the transcript. By observing the replay, the
analyst can see that this exchange corresponds with Bob going to the library website. The page
loading gives no feedback to the user who did not initiate going to the new website. This
confusion as to what Bob is doing results in a question from Tom, which requires a repair.

The analyst continues to observe by playing until the next chat event. It becomes clear that the use
of the library does not yield any results. Bob moves on to the CiteSeer website. Again, because
of the lack of feedback to Tom as to what the web browser is doing, the following interchange
occurs:

Tom are you there? I can't see what you are doing.

Bob we will search through citeseer for the articles, since the library doesn't have
anything good.

Tom where are you? nothing is happening

Bob we're searching through citeseer for articles that contain the words mutual and
belief

Once Tom's second set of questions has been asked, the analyst performs a rewind until the
previous web browser event. Now the state of the replay is at the web browser event prior to

 2-5

Tom's question and the analyst can ascertain why Tom would not see any feedback from Bob's
actions. He continues to step forward, observing that Bob attempted to use the library website to
search for books, but the web browser component failed to interact with the custom JavaScript on
this website. He then plays until the next web browser event after Tom's last utterance, and can
see that Bob switched to the CiteSeer website.

Through the session, a number of desired features are specifically identified. For example:

Tom can I look at the pdf?

Tom any version of the paper?

Bob unfortunately, there is no PDF viewer built into this application. We can add it in
a few spirals.

In viewing the activity in the replay tool, a workaround is identified by Tom. By continuing to
play until web browser events, it is observed that Tom discovers that CiteSeer can display images
of papers, which worked sufficiently for this task.

Another request was made, to allow searching for specific subject matter of papers, which was
clearly not within the scope of this tool, and identified as such during the conversation.

Tom is there a way we can filter for philosophy and not ai papers?

Bob I do not think citeseer has that capability.

Bob I don't think any paper search engine has that capability, currently.

Bob how can you tell that a paper is philosophy, and not AI?

Based on the observations of use, pointing to the web page and aspects thereof was done
frequently, but the drawing tools, which existed to aid in the referencing of objects in the web
page, were not used. In fact, only 8 of 135 events were shared whiteboard events in this session,
as reported by the replay application. Because of how the drawing tools were implemented, in
that they required changing the application's mode of use from browsing to drawing, their use may
have been too cumbersome. It may also be that in this collaboration, which had only two users
and relatively manageable web pages, the pointing capabilities were not needed. As the
application is used further and more data is collected, the drawing mechanism may see more use
and will need to be refined.

 2-6

3 MODEL OF TRANSCRIPTION AND REPLAY
Transcription of the use of the online groupware application and the replay of this transcript
enable ethnographic analysis. Transcription is the mechanism that records the interaction that the
user has vis-à-vis the groupware application. As discussed in this section, there are a number of
vectors through which the transcription capabilities of the application can be described. How the
transcript is collected influences the available replay options, including the fidelity and precision
available to the analyst.

Similarly, there are several different properties associated with the replay application. Some
capabilities depend on the corresponding properties of the transcript, while others are inherent in
the replay application itself. We will discuss these properties and compare requirements for
online ethnographic analysis with the properties that have been achieved by other efforts.

3.1 Transcription
A transcript is the record of the user's activity, as mediated by the collaborative system. The way
a transcript is collected can have direct influence on the quality and quantity of replay techniques
available to analyze the system. Our set of identified properties include:

• Collection of Online and Off-line Activity: Transcripts may encode online behavior, which
is the activity that is directly mediated by the software system. They may also encode off-
line behavior, which may be part of the collaboration, but not directly mediated by the
software. Eye tracking, for example, is usually a collection of off-line behavior, where
mouse actions are online behaviors. While off-line behavior can add value to observation,
the quality of the online behavior collection is most important for our analysis techniques.

• Type of Online Information Encoded: There are two types of online information that a
transcript can encode:

o User Interface events (UI): UI events include direct manipulation events in the
user interface, such as mouse clicks and key presses.

o Task Events: Task event information refers to interaction that is mediated by the
groupware application. Where user interface events depict the users activities at
the level of point-and-click, task events depicts the users activities at the level of
plans and communication. The level of event structure is important because it
enables the analyst to review and replay the transcript in terms of the semantics of
the domain.

• Online Completeness: A complete transcript contains information sufficient to re-create
the state of the application at any given point in time. A transcript can be complete with
respect to user interface events or task events. A transcript that is complete with respect to
user interface events is not necessarily complete with regards to task events, and visa
versa. For example, a transcript can encode the sequence of keys that were tapped, but that

 3-7

information is not sufficient to reliably reconstruct whether the user's task was planning or
chatting without further context.

jRapture (Steven, Chandra et al. 2000), Playback (Neal and Simons 1983), and others
(Ronsse, Bosschere et al. 2003) provide complete transcripts of user interface events only.
jRapture replaces an application's underlying standard Java libraries with ones that
transcribe external interactions with the application. The Playback application captures
interface events by ``intercepting'' interaction at the device interface level.

Timewarp (Edwards and Mynatt 1997) and Chimera (Kurlander and Feiner 1992) provide
a complete transcript only with respect to an enumerated set of task events. They collect a
history of actions within the application by collecting the interaction with the groupware
application into a transcript. Chimera uses the transcript as a basis for end-user
programming of macros. Timewarp constructs a history of changes to a data object, e.g.,
a document. The user can then modify a historical data object, and thereby change all of
its descendants. Neither Chimera nor Timewarp provide replayable transcripts that could
be used for ethnographic analysis.

• Transitions or States: As the transcript is generated during a session of use, it can either
record transitions between states or individual states. The advantage of a transcript that
encodes data in terms of state is that it allows the replay tool to directly access any state;
the disadvantage is that collecting such a transcript is spatially and computationally
expensive. Storing transitions result in a smaller transcript and will be computationally
cheaper to collect, but at the cost of more expensive post processing and playback of the
transcript. Rewind may be costly if the transitions are not reversible. Commonly, the
application's state would need to be reset and the playback re-run from the start of the
transcript until it reaches the state the analyst chose to examine.

In addition to the two extremes of storing transitions or states, a hybrid approach of storing
checkpoints is also seen in some transcription implementations. Checkpointing is the
storing of occasional states of the application's execution as well as transitions between
those states. The resulting transcript allows for faster movement between positions in the
transcript and definitive points of coordination between different parts of a distributed
application. Examples of this technique are found in the BugNet application (Jones,
Barkan et al. 1987), as well as Chandy and Lamport's work (Chandy and Lamport 1985),
and in others (Satyanarayanan, Steere et al. 1992) (Yang and Marsland 1992).

Table 1 summarizes our discussion of prior efforts at transcription in the terms of the criteria we
have developed.

 3-8

Application Completeness Info Type Transitions Off-line

jRapture UI UI Transitions None

Playback UI UI Transitions None

Timewarp Task Task Transitions None

Videotape None N/A States Video

Table 1, Transcription Properties

3.2 Replay
Ethnographic analysis of online collaboration requires the ability to replay the transcript of system
use. Depending on how the transcript is collected, different capabilities become available to the
replay system. Which capabilities the replay system implements affects how the analyst can
interact and use the transcript, and include:

• Search: What kinds of events the analyst can use the replay tool to search for depends on
what kinds of events are in the transcript. For example, a transcript that only encodes
mouse clicks and key presses will not provide the basis for the analyst to use the replay
tool to search for chat events among users.

• Annotation: Annotations give the analyst the ability to annotate, tag, or otherwise mark the
transcript as the application session is replayed. In addition to providing information for
an analyst to refer to in later analysis sessions, they also provide additional information for
the replay tool to search for and notes for other analysts use.

The video tape solution provided by Suchman and Trigg (Suchman and Trigg 1991)
provides the means for annotating a video tape transcript during playback, allowing areas
of interest to be clearly marked for future reference.

• Precision: After the transcript is generated, the analyst can always annotate the transcript
noting events of particular interest that can later be returned to for further analysis.
Annotation is a time consuming and potentially inaccurate task for the analyst. Ideally,
the analyst can replay an unannotated transcript stopping at, for example, each chat event.
Precision is used to indicate that a transcript is sufficiently encoded with information such
that the replay application can accurately differentiate between different features of events.

A replay tool is precise with regards to time if the analyst can replay the transcript
(without annotation) to directly display an event that occurred at a specific timestamp. A
replay tool is precise with regards to task event if the analyst can replay the transcript to
display a task event of a certain type.

 3-9

The playback provided by jRapture and Playback, for example, allow for precision based
on the type of user interface event and the timestamp. However, they do not provide
precision based on the task event, since those do not exist within the transcript.

• Aggregate Information: Some replay tools allow the analyst to summarize and display
quantitative data of system use. For example, this data can include a count of window
events or a count of collaboration failures.

Applications such as CollabLogger (Morse and Steves 2000) are specifically designed to
allow for the collection of aggregate information. These applications collect transcripts
and analyze them to gather statistics as to how the application was used, how particular
participants performed as a measure of their interaction with the application, and other
similar measures.

Table 2 summarizes our discussion of prior efforts at playback in the terms of the criteria we have
developed. In particular, ethnographic analysis is best served by search, precision, and annotation
capabilities.

Application Search Precision Annotation Aggregate Info

jRapture No Time, UI None None

Playback No Time, UI None None

CollabLogger No None None Yes

Videotape No Time Yes None

Table 2, Replay Properties

 3-10

4 ENGINEERING TRANSCRIPTION AND REPLAY
To engineer online ethnographic analysis capabilities into an application and its development
lifecycle, the appropriate transcription and replay technologies must be put into practice. Our
implementation provides the feature set necessary to do the level of replay necessary for
ethnographic analysis. This section describes how we engineered this technology into our
groupware application framework.

4.1 Transcription and Replay Requirements
Many of the features of a replay tool depend on the quality of the transcript. Analysis is best
supported by a complete transcript, where each state of the collaboration can be reconstituted. It is
important that this transcript be complete for events that describe interaction with the user
interface, such as mouse clicks, and events that describe interaction with the task environment,
such as chat utterances, as both types of information can be critical to understanding the
collaboration process.

The technology we have developed produces a transcript that is complete and encodes both task
and user interface events. The transcript itself is encoded as additive transitions. Our framework
is based on a message-passing architecture, and collects information from both user interface and
task environment actions by collecting messages as they are generated within the application
during run-time.

The replay technology processes the transcript so that the analyst can view the collaborative
activity from a perspective similar to that of the users who generated the transcript. Our replay
tool allows the analyst to search an unannotated transcript for the next task event of a certain type.
The analyst can also step through the transcript one event at a time. Each of these features depend
on the completeness and level of information encoded in the transcript.

Because the transcripts encode task events, the transcripts can be used to do a quantitative analysis
of, for example, how much chatting the users did. Similar, they can also be used to perform
various kinds of quantitative analyses on user interface interaction with the application.

4.2 Implementation
Our transcription and replay techniques were realized in two complementary software libraries.
The first library, THYME, is a framework for building message-oriented groupware applications.
A groupware application constructed using the THYME framework automatically generate
transcripts of their use during the application's run-time. These transcript, as described above, are
complete, encode task and user interface events, and are transitional. They contain only online
user interaction.

The second framework, SAGE, provides the foundation for assembling replay applications. The
THYME application that was used to collect a replayable transcript is the basis for constructing
the replay application. The replay application that is assembled provides the necessary ``over-the-
shoulder'' perspective as to what the user was doing when the transcript was collected.

 4-11

Some implementations of replay, such as jRapture, use, without modification, the original
application to do replay, but at a cost. SAGE allows the replay application to better support the
analysts’ work. For example, a SAGE-produced replay application can include useful features
like rewind, filtering, and alternative views of shared representations. Thus, while the most basic
SAGE application will look identical to the groupware application on which it is based, the
underlying capabilities support the replay of the collected transcript.

4.2.1 Transcription
A THYME application is defined by a set of components and the messaging connections between
them. Components are grouped into structures called nodes, each of which has its own
namespace. These components communicate via messages, orchestrated by a per-node object
called the message router. A component sends an addressed message to the message router. The
message router will find the component the message is addressed to and deliver it. More details of
how THYME works and the types of groupware applications built using THYME can be found in
another work (Landsman 2006).

THYME's message-oriented architecture has several useful consequences for collecting a
transcript of use:

1. All communication between components happens through messages, so a THYME
application only needs to collect messages in order to generate a complete transcript.

2. Since all messages go through routing components, only the message routers need to be
accessed in order to record all the messages.

To collect the transcript for an application's session of use, the message routers collect all
messages at their point of origin, defined as the first message router that handles the message.
This approach ensures that every message is logged once and only once. As a router collects
messages, it sends the message to the transcript collector component. This component will store
all messages it receives, thereby building the transcript. This component forms a unified interface
to the transcription subsystem, abstracting the means by which the transcript is stored and
reconstructed and allowing different transcription formats and strategies to be used without
changing the application. Figure 3 illustrates the interaction of a THYME application with the
transcription subsystem.

 4-12

Figure 3, Collecting messages in a THYME application to build the transcript

Each transcribed event in the THYME framework is stored with two timestamps, when it is first
handled by a router, and again when it is actually transcribed. The two timestamps gives
sufficient data for clock skew correction to be performed, if necessary. The timestamp is the
discrete points in the timeline of the session, and is used to explicitly order messages as they get
injected into the replay application.

Within the THYME application, transcripts can be accessed during the run-time of the application
through a component called the transcript emitter. This component provides access to previous
transcribed messages in the current session of use. Transcript collection is ended when the session
of use is over, and archived so that it includes session summary information (called meta
information) in addition to the transcript of events. Archived sessions of use can be loaded into
the transcript emitter explicitly. A SAGE application makes use of the transcript emitter to
playback the messages contained in the archived transcript, in the order those messages were
generated by the participants in the archived session.

 4-13

In a THYME application, all changes to the application state occur through the reception and
processing of messages. A complete transcript is, therefore, the collection of all messages that are
sent between components. A transcript is represented as and represents the
transcript for all messages between

],[YXTTRANSCRIPT ∈

XM and YM inclusive. TRANSCRIPT(X) is used for referring
to the message XM that is stored in the transcript.
Given that a transcript is a collection of messages that is sent throughout the application, a
transcript can be shown to be complete if it captures all interaction throughout the application.
The set of messages captured in a transcript during the runtime of an application a is represented
as . If each instant of change that occurred during the runtime of a is contained
in , then is a complete transcript of the runtime of a.

aTRANSCRIPT
aTRANSCRIPT aTRANSCRIPT

The transcript collected contains both interface events and domain actions. Interface events can
be encapsulated as messages to an interface controller and thereby are collectable in the transcript.
Because messages between components are encoded in terms of the representation system of the
application, the information contained in the message includes domain action information. For
example, a message passed from one client's chat room component to another client's chat room
component contains information that the message is a chat message. Thus, during replay, the
analyst can run the replay until it comes to a chat message. Alternately, if users are collaboratively
constructing a plan in a shared window, messages between client planning components will
contain information that enable the precise replay of planning actions.

4.2.2 Replay
Replay of a transcript is enabled by the SAGE framework. The framework provides access to the
collected transcript and enables a replay application to rebuild the state of the basis application at a
precision level of individual messages. Additionally, these replay applications can be built
relatively cheaply by leveraging the basis application, yet still enjoy many of the expected
advantages of a customized replay application, such as reviewing past states and customized
views as warranted.

The state of the application is built from the application of messages. During a THYME
application's run-time, a message, M, is applied to a component C, resulting in a component C'.
Succinctly, this process is represented as CMC ′=)(. An application consists of a set of
connected components, . Therefore, applying a message M to an application A is
represented as , which is also written as

nCCC ,,, 10 K

AMA ′=)()(,),(),()(10 MCMCMCMA nK= .

Given a basis application A and a collected transcript T of size S replaying T on A is done by
applying the elements of the transcript on each component in the application. This is done as
follows:

)(;0:),0,,(11 iTAASiSTAREPLAY itti +=≤≤∀= −==

 4-14

Where the statement)(11 iTAA itt += −== is expanded to

))((;:)(111 iTCCACiTAA itCitt =⊂∀=+= −=−==

Where is the component C after T(x) has been applied. Replay to a specific message X is
done by applying all positionally previous events from the transcript, up to and including

xtC =

XM , to
the application.

Technically, SAGE only provides event-level precision. Time-level precision within a collected
transcript is limited to the instants of time that are collected in the transcript. While each message
has an associated timestamp that refers to when it was collected, the granularity is limited to the
points in time where the messages were actually collected. For example, if the time between a
message and is 10 minutes, there is no way to display any activity between those two
events. However, if the transcript is complete, it is possible to go to a specific point in time by
progressing to the last message that occurred before the requested timestamp. If, in the example
given, the transcript is complete, it can be deduced that no system activity occurred in the
intervening 10 minutes, so there is no real precision lost. From these conditions, it can be shown
that SAGE emulates time-level precision.

1−iM iM

Supporting user interface or task-level precision occurs through being able to search for specific
types of events. Given a transcript, the set of possible event types is represented by the set
EVENT-TYPES(T), which are mined from the transcript T. The available set of EVENT-TYPES is
related to the level of task information in the transcript. If the transcript only contains UI events,
then that level of granularity is available to the analyst through the replay tool. However, if the
transcript contains events that illustrate interaction with the task environment, such as chat
messages, then the replay tool can use those events to show event boundaries. This information
would allow the analyst to say ``skip to the next chat utterance'', for example.

4.2.2.1 Milestoning
The approach of encoding transitions between states is done for two major reasons. Encoding the
entire state at each change will take up a large amount of disk and processing resources and will
require a level of introspection and access to all aspects of the application that may not be easily
available. Instead, encoding transitions is accomplished through the use of the existing message
passing infrastructure, without needing information about the components, their state, and how
their state can be captured.

In encoding transitions, the ideal situation would have each transition reversible. That is,
Ct = i = Ct = i − 1+ Mi and Ct = i − 1 = Ct = i − Mi . However, messages in our framework, as is true in
the majority of message-passing frameworks, are not designed to be reversible, as doing so puts a
large burden on the developer to track state and limit actions on the application data. Without
reversible messages, actions such rewinding an application's state is difficult. A brute force
example of rewinding state could consist of selecting the desired point in the transcript, resetting
the application and applying all messages up to the newly desired timestamp. Early versions of
SAGE provided such a mechanism, which was quickly deemed unsatisfactory.

 4-15

Since the data that makes up a THYME application is stored in components, to implement a
proper rewinding mechanism for a transcript requires each component to be capable of rewinding
its state. To accomplish rewind across all types of components, SAGE provides a set of
component wrappers, based on a design pattern called mementos (Gamma, Helm et al. 1995). A
wrapper's internal state is actually a collection of milestones, which are indexed instances of the
component it is wrapping. Each index refers to a specific message number in the transcript.
Milestones are laid out so that to retrieve an instance that corresponds to a timestamp previous to
the current one, it is only necessary to find the component that is closest to, but previous to, the
desired timestamp. That component is then copied and any messages that exist between the
desired timestamp and the current component's timestamp are retrieved and applied. This process
is shown in Definition 1.

Given a component wrapper CW that wraps a component type C, upon receiving message M, which
is position I in transcript T, the following takes place:

1. if there is a milestone MI in CW that corresponds to CT = I , activate that milestone and exit

2. if there is no such milestone, find the milestone MIJ that has the closest index less than I

3. copy MIJ to a new component CT = I

4. apply every message MX where X > J ≥ I to CT = I

5. activate CT = I

6. if a new milestone is desired at I, store CT = I into a milestone MII

Definition 1, Milestoning process
The decision to store milestones depends on the application and storage needs. Generally,
milestones exist at increasing intervals. For example, the first milestones would be at t + 1 and t -
1, the second at t + 5 and t - 5, the third at t + 20 and t - 20.

The milestone process is related to checkpointing (Lorie 1977) a database to ensure consistency of
the database state. Milestones may, unlike checkpoints, change in number and temporal location
during execution. Global system snapshots (Chandy and Lamport 1985) (Yang and Marsland
1992), a technique used in distributed debugging, is also similar, in that it looks to collect a
consistent state across multiple systems. The milestones described here are not used to create a
unified system state, although they do that as a consequence because of the simple nature of the
SAGE application. Instead, milestones are designed to provide an accessor for a set of temporal
positions within a single model.

A component can implement its own state mechanisms so that it can provide its own reverse
functionality. The wrapper approach is a general solution if the component does not have this
capability already.

 4-16

4.2.2.2 Analysis Interface
Using the replay application, an analyst can perform precise analysis of the usage of the basis
application. The SAGE Playback Controller (shown in Figure 4) gives the analyst control over the
flow of the playback of the transcript. The playback controller has standard VCR-like controls:
play, rewind, fast forward, and stop (see 1 in the figure). The controller adds two other standard
movement controls: step forward and step back, which move one event forwards and backwards,
respectively. The controller also allows movement through the transcript by searching for types of
messages that are in the transcript's set of EVENT-TYPES (see 3). The list of types is populated
from the transcript at the run-time of the replay application. (Note that the message displayed in
this example is the Shared Browser message, more meaningful event names will be available in a
future version of the replay application.)

Figure 4, SAGE Playback Controller

The controller also provides the analyst feedback as to where he is in the session. The information
underneath the VCR controls (see 2) shows the current timestamp of the session, based on the
timestamp of the last event replayed. This number may be the standard Unix milliseconds-since-
epoch, or more a traditional format, showing time and date. Next to the time display is the current
message and the total number of events in the session. Movement within the session can also be
controlled via a slider (see 4), at the bottom of the window. The slider provides feedback as to
where in the session the current timestamp is, with the far left of the slider being the beginning of
the session and the far right being the end. The analyst can manipulate the slider, causing the
replay tool to go to the event closest to the timestamp selected.

The controller exposes six types of playback actions. They are:

• Step Forward: Move precisely one event forward in the transcript

 4-17

• Step Backwards: Move precisely one event backwards in the transcript

• Play: Step forward in the transcript until the end of the transcript or the analyst stops the
playback

• Rewind: Step backwards in the transcript until the end of the transcript or the analyst stops
the playback

• Play Until: Plays the transcript until a condition is met, such as an event type or timestamp
being reached

• Rewind Until: Rewinds the transcript until a condition is met

 4-18

5 APPLICATIONS
 The transcription and replay model has been successfully used in a number of projects.
This section shows two example projects that have successfully used this model to analyze their
use.

5.1 VesselWorld
 The first example of this model of transcript and replay was implemented in the
VesselWorld group problem solving system (Alterman, Landsman et al. 1998) (Landsman,
Alterman et al. 2001). The problem domain encoded in the VesselWorld application has three
participants engage in a computer-mediated problem solving session. To complete a set of tasks
in this simulated environment, the participants must communicate and jointly problem-solve. The
only avenue of communication is via the application client. Access to the environment, and
objects in the environment, is also mediated through representations provided by the software
application. The problem solving sessions require cooperation, coordination and collaboration.

 There have been multiple experiments run with the VesselWorld application (Alterman,
Feinman et al. 2001) (Feinman and Alterman 2003) (Introne and Alterman 2003), all of which
have leveraged the analysis capabilities of the application. The replay application associated with
VesselWorld can be seen in Figure 5. The replay of transcripts was used for both redesign tasks
and analysis of experimental data. Over the course of these experiments VesselWorld has been
modified several times to support different types of collaborative interactions and different types
of analysis. Over two hundred hours of VesselWorld data has been collected across these
versions of the VesselWorld application.

 5-19

Figure 5, The VW-SAGE system

5.2 CEDAR
A second application, CEDAR (Larusson and Alterman), was developed using THYME as a
collaborative WikiWikiWeb editor (Cunningham). It enables multiple users to research
information on the web and edit Wiki pages while in communication via both shared web-
browsers and a chat channel. Additionally, the web site structure is visible to all the users,
showing them the links between pages and groupings in the web site.

CEDAR was used in a class at Brandeis University to study collaboration in a cooperative task
environment. The class used CEDAR to collect transcripts of online collaboration; in all,
approximately fifty hours of data were collected. The replay of these transcripts were used to
teach analysis methods like conversation analysis, support discussion on theoretical topics like
awareness, and as a basis for student term projects.

 5-20

6 CONCLUSIONS
 This paper discussed our approach to online ethnographic analysis of groupware
applications. In the analysis of groupware applications, an ``over-the-shoulder'' perspective of the
user's activity is given to an analyst, allowing him to draw conclusions by observing how the
application was used. Contrasted to quantitative methods, this perspective allows insights to be
drawn that may not be otherwise available, especially in how collaborative breakdowns occur.
When paired with quantitative analysis of the transcript the after-execution analysis process can be
greatly enhanced (Feinman and Alterman 2003).

 With the availability of complete, replayable transcripts, ethnographic analysis can be
brought to bear throughout the software lifecycle of design, development, and deployment. A
modified version of the spiral software lifecycle (Boehm 1988), as shown in Figure 6, includes
both ethnographic and quantitative stage of analysis that feed into the risk analysis and
requirements stages.

 6-21

Figure 6, Spiral Lifecycle with Ethnographic Analysis

 If the development of the replay applications can be reduced to be a small part of the total
development costs of the application itself then analysis can be realized as part of the groupware
software lifecycle. In another work (Landsman 2006) we discuss some techniques in place to
allow SAGE to generate the majority of the replay application, based on a well-instrumented
THYME application. In order for these techniques to be truly incorporated as part of groupware
development, these application generation techniques need to be expanded and studied.

 6-22

7 ACKNOWLEDGEMENTS
This work was supported under ONR grants N00014-00-1-8965 and N00014-96-1-0440, NSF
grant EIA-0082393, and MITRE Innovation Grant 03MSR309-A6.

 7-23

REFERENCES
Alterman, R., A. Feinman, et al. (2001). Coordination of Talk: Coordination of Action, Brandeis

University.
Alterman, R., S. Landsman, et al. (1998). Groupware for Planning, Computer Science

Department, Brandeis University.
Boehm, B. (1988). "A Spiral Model of Software Development and Enhancement." IEEE

Computer 21(5): 61-72.
Chandy, K. M. and L. Lamport (1985). "Distributed snapshots: Determing global states of

distributed systems." ACM Transactions on Computer Systems 3(1): 63 - 67.
Clark, H. H. (1996). Using Language, Cambridge University Press.
Cunningham, W. WikiWiki.
Edwards, W. K. and E. D. Mynatt (1997). Timewarp: techniques for autonomous collaboration.

Proceedings of the SIGCHI conference on Human factors in computing systems, Atlanta,
Georgia, United States, ACM Press.

Feinman, A. and R. Alterman (2003). Discourse Analysis Techniques for Modeling Group
Interaction. Ninth Internation Conference on User Modeling.

Gamma, E., R. Helm, et al. (1995). Design Patterns, Addison-Wesley.
Hutchins, E. (1996). Cognition in the Wild, MIT Press.
Introne, J. and R. Alterman (2003). "Leveraging Collaborative Effort to Infer Intent." Ninth

Internation Conference on User Modeling.
Johansen, R. (1984). Teleconferencing and beyond: communications in the office of the future.

New York, NY, USA, McGraw-Hill, Inc.
Jones, S. H., R. H. Barkan, et al. (1987). Bugnet: A Real Time Distributed Programmng

Environments. SRDS.
Kurlander, D. and S. Feiner (1992). A history-based macro by example system. Proceedings of

the 5th annual ACM symposium on User interface software and technology, Monteray,
California, United States, ACM Press.

Landsman, S. (2006). A Software Lifecycle for Building Groupware Applications: Building
Groupware On THYME, Brandeis University.

Landsman, S., R. Alterman, et al. (2001). VesselWorld and ADAPTIVE, Dept of Computer
Science, Brandeis University.

Larusson, J. A. and R. Alterman Integrating collaborative technology into the interdisciplinary
classroom.

Lorie, R. A. (1977). "Physical integrity in a large segmented database." ACM Trans. Database
Syst. 2(1): 91-104.

Morse, E. and M. P. Steves (2000). CollabLogger: A Tool for Visualizing Groups at Work.
Proceedings of the IEEE Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises.

 7-24

Neal, A. S. and R. M. Simons (1983). Playback: A method for evaluating the usability of software
and its documentation. Proceedings of the SIGCHI conference on Human Factors in
Computing Systems, Boston, Massachusetts, United States.

Ronsse, M., K. D. Bosschere, et al. (2003). "Record/replay for nondeterministic program
executions." Communications of the ACM 46(9): 62-67.

Satyanarayanan, M., D. Steere, et al. (1992). Transparent logging as a technique for debugging
complex distributed systems. Proceedings of the 5th workshop on ACM SIGOPS
European workshop.

Stefik, M., D. G. Bobrow, et al. (1987). "WYSIWIS Revisited: Early Experiences with Multiuser
Interfaces." ACM Transactions on Office Information Systems 5(2): 147 - 167.

Steven, J., P. Chandra, et al. (2000). jRapture: A Capture/Replay tool for observation-based
testing. Proceedings of the International Symposium on Software Testing and Analysis,
Portland, Oregon, United States, ACM Press.

Suchman, L. and R. Trigg (1991). Understanding Practice: Video as a Medium for Reflection and
Design. Design at Work: Cooperative Design of Computer Systems. M. Kyng. Hillsdale,
New Jersey, Lawrence Erlbaum Associates: 65-89.

Yang, Z. and T. A. Marsland (1992). Global snapshots for distributed debugging. Fourth
International Conference on Computing and Information.

 7-25

	1 Introduction
	2 ANALYSIS OF GROUPWARE
	2.1 Example Analysis

	3 MODEL OF TRANSCRIPTION AND REPLAY
	3.1 Transcription
	3.2 Replay

	4 ENGINEERING TRANSCRIPTION AND REPLAY
	4.1 Transcription and Replay Requirements
	4.2 Implementation
	4.2.1 Transcription
	4.2.2 Replay
	4.2.2.1 Milestoning
	4.2.2.2 Analysis Interface

	5 APPLICATIONS
	5.1 VesselWorld
	5.2 CEDAR

	6 CONCLUSIONS
	7 ACKNOWLEDGEMENTS
	 REFERENCES

