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ABSTRACT 

Embedded communications engineers are faced 
with numerous challenges as radio technology drives to-
wards Software-Defined Radio (SDR)-based heterogene-
ous compute platforms. The Joint Tactical Radio System 
(JTRS) program has attempted to ease development and 
porting costs by requiring the use of the Software Com-
munication Architecture (SCA) for SDR systems. The SCA 
is there to help understanding by providing a common 
framework; however,  communication engineers must 
work in an unfamiliar environment filled with system 
software concepts such as Object Oriented Programming 
(OOP), Portable Operating System Interface (POSIX), 
and middleware using Common Object Request Broker 
Architecture (CORBA). The addition of SCA to SDR de-
velopment is impacting design methods, work flow, test-
ing, and tooling. Understanding of these impacts, and 
how to best capitalize on the benefits of SCA, is impera-
tive to the success of any SCA-compliant develop-
ment. This paper will provide insights into SCA develop-
ment, work flow, testing, and tooling. This paper will also 
present an approach to leverage SCA as a means of ab-
stracting the radio management software from the radio 
functional software components and further parallelize 
system development. 

INTRODUCTION 

The mission of the JTRS program is to develop a family 
of affordable, high-capacity tactical radios to provide both 
line-of-sight and beyond-line-of-sight Command, Control, 
Communications, Computers and Intelligence (C4I) capa-
bilities to the warfighters. The cornerstone of JTRS is the 
development and deployment of Software-Defined Radio 
(SDR) technology through standardized, open software 
architecture - SCA. SDR is flexible, by virtue of being 
programmable, to accommodate various physical layer 
formats and protocols. Separating the software application 
from the hardware on which it is hosted (the radio plat-
form), provides significant advantages in application port-
ability, reduced development time, software reuse, and 
cost-effective utilization of Commercial Off-the-Shelf 
(COTS) technology.  Adhering to a common open system 
architecture – SCA provides further advantages of inter-

operability by allowing sharing waveform software be-
tween radios, even radios in different physical domains, 
advantages of life-cycle cost reduction, and new capabili-
ties through software upgrades. 

However, as a system specification, SCA introduces a 
new unfamiliar environment filled with system software 
concepts such as Object Oriented Programming (OOP), 
Portable Operating System Interface (POSIX), and mid-
dleware using Common Object Request Broker Architec-
ture (CORBA) to embedded communication engineers.  
SCA requires developers to have a certain level knowl-
edge of both the development and the deployment envi-
ronment. The SCA design strategies, work flow, testing 
and tooling are different from traditional embedded sys-
tem development. In SCA, the focus is on individual 
components; this provides a natural separation of con-
cerns for waveform functional logic. Furthermore, there is 
a level of abstraction from the hardware mandated by the 
SCA. This level of abstraction allows developers to work 
on components in isolation; build, test, and deploy com-
ponents with or without the business logic. 

This paper attempts to provide some insights into SCA 
development based on our experience. There are certain 
challenges faced in design, development and testing of 
waveform software due to the component-based architec-
ture of SCA and the natural separation this provides be-
tween the radio management software and the radio func-
tional software. 

EHF LITE CHALLENGES 

Higher bandwidth waveforms require Field Programma-
ble Gate Array (FPGA) and Digital Signal Processor 
(DSP) implementations to sustain the high data rate, and 
high speed signal processing requirements of such wave-
forms. The SCA was designed primarily for radios operat-
ing below 2 GHz where high-speed specialized processing 
was unnecessary and processing could be performed 
completely in General Purpose Processors (GPPs). Such 
processing implementations are not natively supported by 
the SCA Version 2.2 Specification [1]. The MITRE Pro-
grammable Radio Technology (PRT) laboratory was 
founded with a goal to investigate the challenges of im-
plementing SCA-compliant waveforms on software con-

1 of 7 

MASTRO
Text Box
Approved for Public Release; Distribution UnlimitedCase # 06-0825



figurable modems to meet the needs of the SATCOM 
community. EHF Lite is representative of high bandwidth 
SATCOM waveforms and incorporates elements such as 
Gaussian Minimum Shift Keying (GMSK) modulation, 
Turbo encoding, interleaving, and hop structuring.  

The SCA defines a set of rules that constrain the design of 
systems. To make our waveform application fully SCA-
compliant, we explicitly followed these rules. For the Op-
erating Environment (OE), we used Harris dmTK SCA 
Core Framework (CF) v2.2.2, Real-time CORBA TAO, 
and Real-time Operating System VxWorks on Spectrum 
Signal System SDR-3001. The Board Support Package 
(BSP) provided by Spectrum is running in conjunction 
with the SCA domain manager for the Core Framework 
and provides the target platform dependent support re-
quired to run SCA applications on SDR-3001.  

The purpose of this prototyping effort was to understand 
SCA portability, interoperability and overhead in the con-
text of development of bandwidth efficient, flexible and 
extensible waveforms. We pushed the “boundary” of SCA 
down into the internals of the modem and are inline with 
SCA 3.0 specification. We took the data source, encoder, 
interleaver and modulator, etc. as waveform components 
and made these components SCA Resources; see Figure 
1. With the individual components making up the infor-
mation processing pipeline of the modem, we are able to 
change parameters either at deployment, via the attributes 
for the components in the SCA deployment descriptors, or 
via a Java user interface that uses CORBA to communi-
cate with the SCA components and modify any writable 
(changeable) parameters on the fly. 

We are investigating the challenges of implementing a 
high speed SCA-compliant waveform including the ef-
fects of SCA on waveform timing requirements, portabil-
ity and extensibility; implementing waveforms with DSPs 
and FPGAs, and developmenting APIs to maximize wave-
form portability while minimizing negative impact. The 
implementation of the prototypical waveform follows the 
general approach outlined in the JTRS SCA Developer’s 
Guide. In addition, the waveform attempts to implement 
as many of the processing components as possible as SCA 
resources that can be swapped out and replaced with al-
ternative versions, in order to measure the performance 
impacts that differing implementations have on the wave-
form throughput. 

 
Figure 1 - Mapping Functions to Resources 
 

EHF Lite was the first SCA development effort for the 
MITRE PRT Lab team. A great deal of effort was spent 
digesting and understanding the SCA specification. 
Knowing we faced this challenge, we divided the devel-
opment effort up among three teams: communication en-
gineering, waveform function development, and SCA de-
velopment. The communication team developed the initial 
proof of concept, specification, and bit accurate models of 
the waveform. The waveform function development team 
worked closely with the communication team to take the 
specifications and implement waveform functions in 
C/C++ and VHDL with careful attention paid to portabil-
ity. The SCA development team developed the empty 
SCA components and interface, and later incorporated the 
waveform functional code into the SCA components. The 
development work flow can easily be surmised as three 
teams implementing, testing, and synchronizing wave-
form development, see Figure 2. With respect to portabil-
ity, we made every effort to limit RTOS system calls to 
POSIX interfaces, avoid the use of proprietary IP, and 
made use of Hardware Abstraction Layer Connectivity 
(HAL-C) for the FPGA. 
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Figure 2 - Development Work Flow 
 

For the embedded systems engineer without CORBA and 
OOP background, it could take several months to fully 
understand SCA. Early EHF Lite development activity 
focused around the communication team writing the 
waveform specification and creating a MATLAB model 

of the waveform. This provided a window of time for our 
waveform function developers to get familiar with the 
target, and the SCA developers to become familiar with 
the SCA. 

In our efforts to understand SCA we worked with exam-
ples provided by Spectrum Signal Processing. The exam-
ples were relatively easy to follow; however, when we 
defined our own set of SCA components, a great deal of 
time was spent creating and debugging domain profiles. 
The majority of the time was spent manually cross check-
ing consistency among the application XML files, source 
code, and vendor-provided Device Properties Descriptors. 
Inconsistency in these files could only be detected at run 
time. Run time errors were often vague and almost never 
referred to specific lines in XML files. Once consistency 
was achieved, a single change or addition to the XML 
would inevitably result in new errors. The waveform 
complexity increases the probability of errors in the XML 
files and increases the time to isolate any single error. 

Along our EHF Lite waveform development we found 
unit test and integration challenging. The waveform func-
tion team tested each modem function prior to integration 
with the SCA environment. The SCA development team 
tested the connectivity surrounding the modem function. 
Even though we performed unit test on each waveform 
functional block we were not immune to the challenges 
faced in classic real-time embedded systems. For exam-
ple, our interleaver and encoder initially resided on differ-
ent processors. The encoder and interleaver are connected 
via SCA ports that are CORBA based. The overhead as-
sociated with CORBA could not satisfy the required data 
rates and forced the collocation of interleaver and encoder 
on the same processor. To the credit of SCA this required 
only a change in the XML. 

When we implemented our SCA adaptors and modem 
function wrapper classes, we took a modular approach 
that would allow us to plug in new modem functions and 
dynamically (re)configure processing paths and compo-
nents. We observed that there is a trade off between the 
finer SCA implementation granularity with higher port-
ability and the coarse SCA implementation granularity 
with better performance. However, finer granularity com-
ponents can also be applied to a wider range of applica-
tions, providing a level of portability between waveforms. 

PRACTICAL SCA DESIGN STRATEGIES 

Traditional embedded system developers have a number 
of choices regarding the software execution model; spe-
cifically writing their own scheduler, or using a number of 
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available real and non-Real-Time Operating Systems. Re-
gardless of the “OS” choice the developer must divide the 
application into logical abstract parts, provide necessary 
synchronization, and then assign appropriate priorities and 
resources. This provides the developer a great deal of 
flexibility and control. 

In the SCA domain, logical abstract parts are put into 
SCA component containers. This is very different from 
traditional embedded system development. SCA compo-
nents are executed through the Object Request Broker as a 
single entity. Understanding the ORBs execution model 
and overhead are essential in developing reliable wave-
form applications. RT-CORBA is prevalent for a large 
number of the Operating Environments (OE) available 
today. However, SCA 2.2 has language in the specifica-
tion that suggests waveform applications adhere to the 
minimum outlined in the specification [1]. SCA’s mini-
mum required services for CORBA are represented by 
minimumCORBA. Although most ORBs used in SCA-
compliant targets are in fact RT-CORBA, the real-time 
features are rarely used in the developed waveforms due 
to this interpretation of the specification. There has been a 
great deal of discussion around RT-CORBA in the SCA 
community; it would be wise for developers to track this 
as the specification evolves.  

SCA can be difficult to grasp for those new to the domain. 
New developers are looking for very specific guidance 
and direction, however, the SCA aspires to not limit or 
impede design or implementation. SCA is best thought of 
as a minimum set of services to provide instantiation, con-
figuration, connectivity, and control of resources. SCA 
does not specify the roles and responsibilities of the re-
sources outside of these bounds. Therefore, it is up to the 
development team to decide the level of granularity they 
wish to apply to the waveform applications.  

The choice of SCA component granularity will affect sys-
tem performance and efficiency as seen in our EHF Lite 
development. For each SCA component, there is overhead 
associated with it being a CORBA object. CORBA ser-
vices will add overhead in program text space, stack, and 
heap. For fine grain waveform applications, this overhead 
can be significant.  

Performance costs are also associated with calls between 
CORBA Objects. When the two components are on the 
same system, this overhead is minimum, resulting in an 
additional function call. Even with such minimal impact, 
an extra function call multiplied by the number of compo-
nents in a real-time system can be significant. Thus, 

waveform software architects need to weigh all associated 
costs when considering the software granularity.  

Whether it is traditional waveform software development, 
or waveform software development utilizing SCA, an ap-
propriate reference model created in a high-level lan-
guage, such as MATLAB, is essential to the success of 
software radio development. It is both possible and desir-
able to create a waveform model prior to platform selec-
tion or specification. A good reference model will facili-
tate a greater understanding of platform resource 
requirements.  

Reference models are usually implemented in high-level 
languages without the constraints of meeting real-time 
requirements. It is not necessary to prototype all modes or 
features of a waveform. It is usually sufficient to imple-
ment the set of modes/features that represents the wave-
forms most resource intensive operations or highest risk 
with respect to implementation.    

Taking a lesson from the OMG PIM/PSM approach [3], it 
is desirable to define components in the implementation 
that have identical functionality as corollary components 
in the reference model(e.g. create components similar to 
the libraries found in MATLAB®, or functionality de-
fined by IT++ [4], or GNU Radio [5]). The benefit to this 
strong correlation between model and implementation can 
be realized in a number of ways. Identical data passed to a 
reference model component and its implementation coun-
terpart can verify correctness of the implementation com-
ponent. This is an excellent indication of completeness to 
the developer implementing components defined in the 
model. Validation of system components can help provide 
insight into correctness of the aggregate system. A dis-
crepancy between implementation and the waveform 
model will expedite problem isolation and resolution. This 
allows side-by-side comparison of developed software 
with the reference model for debugging, testing, and sys-
tem verification.  

When it comes to implementation, the functionality repre-
sented by the reference model must be implemented in a 
language that will allow the creation of artifacts appropri-
ate for execution on the target. As discussed in the last 
section of this paper, there are benefits to creating compo-
nents that have a counter part with identical functionality 
in the reference model. However, the final implementa-
tion will have additional management software, and pro-
vide greater flexibility in configuration and control which 
may not necessarily be present in the model. The SCA 
leverages CORBA in order to provide a platform-
independent, language-independent architecture for writ-
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ing distributed, object-oriented applications in heteroge-
neous systems. This allows radio system developers to 
wrap the waveform signal processing logic in platform 
independent containers. This approach naturally suggests 
the parallel development that allows developers to work in 
their own domain. 

SCA TOOLS 

In the early days of SCA, XML files had to be edited by 
hand. This is a tedious task which involves verifying 
lengthy arbitrary strings such as UUIDs. In attempts to 
reduce this burden, developers have employed scripting 
languages such as Perl or utilized XSLT transformation 
[6]. A few early development tools made strides to reduce 
some of the burden of XML editing but still left some te-
dious tasks to the user.  

Currently there are a few powerful SCA tools on the mar-
ket –such as CRC Scari Suite, PrismTech Spectra, and 
Zeligsoft Component Enabler– that present a visual model 
of the system, show component connections in a sche-
matic-like view, and drastically simplify XML generation. 
Competition in this market has pushed these tools beyond 
XML editing and generation; code and build artifact gen-
eration is now also featured. The tools also support target 
and deployment modeling.    

Perhaps most beneficial to waveform porting activity is 
the ability of these tools to reverse engineer existing 
waveforms and display a graphical schematic view. 
Unlike most generic code understanding tools, these tools 
only show the high-level abstraction defined by the wave-
form application XML files, a much preferred first view 
of the application before diving into details of the source 
code. 

SCA WAVEFORM COMPLIANCE 

SCA waveform compliance verification is handled 
through the Joint Tactical Radio System (JTRS) Technol-
ogy Laboratory (JTeL). The JTeL provides support and 
guidance for SCA verification and provides final assess-
ment and compliance recommendations to the JTRS Joint 
Program Office (JPO). Currently, the JTeL test proce-
dures and guidance are tailored for use with JTRS pro-
grams. The procedures are not well aligned with non-
JTRS developments which may also require SCA compli-
ance verification such as high bandwidth SATCOM 
waveforms and terminals. Thus, for SCA developments 
seeking compliance verification, it is advantageous to be-
gin the JTeL coordination process early in the develop-
ment cycle.  

Current JTeL procedures call for coordination to begin 
early with an assigned JTeL test director involved in pro-
gram milestones including SDR and PDR; these proce-
dures also call for waveform developers to be notified of 
their target platform by waveform CDR. However, with-
out early coordination, some of these test requirements 
may become problematic. For instance, there may be dif-
ficulty in identifying target platforms capable of running 
some high bandwidth waveforms. The focus of current 
JTeL efforts on JTRS programs increases the need for 
non-JTRS programs to begin coordination early in order 
to identify and resolve issues unique to individual pro-
grams. 

The SCA 2.2 specification [1] contains a total of 487 re-
quirements split between the waveform application and 
the Operating Environment (OE), with 192 requirements 
applying directly to the waveform as indicated in the 
Waveform SCA Test and Evaluation Plan (TEP). In order 
to facilitate the testing of SCA requirements, the JTeL has 
developed several software tools to aid in testing. These 
tools are not required for use in verification but are pro-
vided to aid in testing. Programs are allowed to utilize 
their own test suites; however, the verification approach 
must be coordinated with and approved by the JTeL. 

The Waveform Test Tool (WTT) version 2005 SP1 [7] 
and Data Reduction Parser (DRP) comprise the test soft-
ware supplied by JTeL to aid in waveform SCA compli-
ance testing. The JTeL also produces the JTeL Test Ap-
plication (JTAP) to assist in testing an Operating 
Environment for SCA compliance. The current versions 
of the tools only support testing to version 2.2 of the SCA 
specification. 

The JTeL Waveform SCA TEP divides waveform com-
pliance testing into three major categories: off-line, run-
time, and Application Program Interface (API) inspection. 
Of these, the WTT is designed to support the run-time test 
category while the DRP is designed to serve as a backup 
for some WTT verification while providing custom pars-
ing/search support for the off-line test category. The off-
line and API inspection portions cover the remainder of 
the SCA waveform requirements and utilize manual code 
inspections aided by COTS tools as well as custom pars-
ers and editors. 

The JTeL DRP was designed to assist with off-line SCA 
waveform compliance testing. The DRP does not require 
any connection to a representative set unlike the WTT. 
The DRP can be used in combination with the WTT to 
track the status of tool-assisted test results; however, its 
main purpose is to assist with manual off-line testing. The 
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DRP functions mainly as a test symbol generator and cus-
tom data parser/search tool. The DRP parses application 
code and locates relevant code blocks to allow for manual 
algorithm inspections. In addition, many of the supported 
tests function as back-ups to run-time requirements verifi-
cation supported by the WTT.  

Out of the 192 requirements identified in the Waveform 
SCA TEP, the WTT/DRP test suite addresses only 91 of 
those requirements. The remainder of the requirements 
must be verified manually with the aid of additional data 
parsers and search tools. Of the 91 tool supported re-
quirements, a majority also require additional manual 
verification. 

The WTT and DRP should succeed in reducing the over-
all effort required to perform waveform SCA verification. 
However, the tools support a limited number of the over-
all waveform requirements and manual testing is still re-
quired for many of the tool supported tests. So while the 
JTeL tools serve to reduce the work load, there is still a 
large level of effort in manual code inspection and verifi-
cation needed for compliance testing. This fact further 
supports the need for early program focus on SCA com-
pliance and coordination with JTeL. Commercial tools 
such as CRC Scari Suite, PrismTech Spectra and Zeligsoft 
CE provide developers with additional verification tools 
that have not been previously available. These tools are 
capable of verifying numerous SCA requirements through 
XML parsing and inspection and could replace or aug-
ment the JTeL-provided tools given specific program 
needs. However, any use of non-JTeL tools would require 
coordination with the JTeL. In addition, a majority of 
SCA requirements would still require manual inspection 
and testing.  

WAVEFORM PORTING 

One of the JTRS program objectives is the reduction of 
logistics cost through reuse of common software. Our 
SCA implementation is intended to verify reusability and 
portability. We performed a porting exercise on our EHF-
lite waveform. The source platform includes a Pentium 4 
PC running Windows 2000 and a Spectrum Signal SDR-
3001 using VxWorks RTOS, and Harris dmTK SCA Core 
Framework v2.2.2, Real-time CORBA TAO and Spec-
trum Signal Board Support Package running in conjunc-
tion with the SCA domain manager. The porting target 
platform is an embedded Pentium M PC running Fedora 
Core 3, CRC Scari++ Core Framework and RT-CORBA 
TAO with a PCMCIA Red River FPGA card. 

As with any embedded development, there is a fair 
amount of time required in preparation and training prior 
to porting to include (1) Evaluation of the source and des-
tination platforms resources; (2) Analysis of hardware and 
software dependencies, risk and mitigation; (3) Evaluation 
of possible functional allocation changes based upon the 
application requirements and hardware capacities; (4) Es-
timation of build and execution environment changes. The 
SCA adds to these, OE differences such as the ORBs, 
Core Frameworks, and device support for SCA.  

Through our exercise, we learned that the porting effort 
differs based on several factors. One is the complexity of 
the porting waveforms and the processing elements. For 
example, our modulation function resides on FPGAs for 
the SDR-3001 system with BSP provided by Spectrum 
Signal. On the porting platform, we had to create our own 
similar board support package for our embedded FPGA to 
support SCA. The portion of waveforms on the GPP is 
easier to port than on specialized hardware such as DSP, 
FPGA and ASIC due to the limited CORBA support and 
the lack of standard hardware abstraction for these de-
vices. Another factor is the level of the SCA compliance. 
Ideally, radio platforms, SCA Core Framework imple-
mentations, ORBs, RTOSs and waveforms should be 
SCA-compliant, but right now there are only a couple of 
hardware platforms, CFs and ORBs certified as SCA-
compliant. The design of a waveform is one major factor 
that affects SCA portability. It is possible to create a sin-
gle super SCA adaptor that is SCA-compliant. However, 
it could be a great deal of effort to port such a waveform 
to a new platform if repartitioning of functionality across 
multiple processing elements is required. With sufficient 
documentation, powerful SCA development tools, and 
knowledgeable SCA developers applying appropriate 
granularity, porting costs can be reduced. 

To increase SCA-compliant waveform portability, devel-
opers should use POSIX interfaces and avoid OS and plat-
form dependent libraries. Sometimes, such APIs have to 
be used, but should be confined in waveform functional 
software. For example, EHF Lite makes use of Spectrum 
Signal’s quickComm library to utilize rapid I/O for the 
higher data rate. However, it is mapped into a CORBA 
pushPacket interface and isolated from the SCA compo-
nents.  

The SCA specification is a system specification, not an 
implementation specification. SCA Core Framework im-
plementers might have different interpretations of the 
specification resulting in different implementation ap-
proaches. SCA developers should watch out for proprie-
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tary APIs provided by Core Framework implementations. 
These APIs could be utilities for threading, synchroniza-
tion and buffering, etc. The SCA Core Framework im-
plementers also have their own set of APIs for the SCA 
port connection and entry points for starting execution. 
All of these areas need to be modified if the porting target 
uses a different Core Framework. Separating the SCA 
components from their waveform business logic will ease 
later porting efforts. Fortunately, SCA development tools 
with code generation capabilities can be of assistance in 
these areas. 

NEXT STEPS FOR SCA 

The SCA provides an operating environment that strongly 
encourages portable software development, where port-
able is defined as the reuse of software for a given appli-
cation on two or more targets with minimal modification. 
This is possible since the SCA defines an Operating Envi-
ronment that is identical on each target. However, the re-
use of software components from one application by an-
other application requires that each of the applications 
have the same API for that component. In order to allow a 
broader reuse of software components between applica-
tions, it is necessary to define a set of standard compo-
nents and interfaces implemented in portable software. An 
excellent example of this approach is the GNU Radio pro-
ject [5]. Another noteworthy set of portable signal proc-
essing open-source software applicable to communica-
tions is the IT++ library [4]. 

The down side to standardizing on APIs is that it narrows 
the applicability of the SCA. The current SCA specifica-
tion is usable for a wide range of applications where dis-
tributed deployment, connection, configuration, and con-
trol are desired. Included in the SCA is a set of APIs that 
center around communication systems. In order to pre-
serve this broad range of applicability, the waveform de-
velopment APIs must remain apart from the SCA. Fur-
thermore, the focus of the SDR community needs to shift 
from the SCA to the waveform development API. Atten-
tion should only deviate from the waveform development 
API to the SCA when the operating environment fails to 
provide generic functionality required by communication 
systems engineers. An example of this would be for real-
time services. Real-time services are not limited to the 
needs of waveform developers; any number of applica-
tions could benefit from real-time services being included 

in the SCA. On the contrary, very few applications out-
side of the communication system domain would benefit 
from a Viterbi decoder. 

To date there is limited material available in the SCA 
community that allows would-be SCA developers an af-
fordable way to ramp up on the SCA in a short amount of 
time. There are a number of outstanding initiatives avail-
able such as the Open Source SCA Implementation: Em-
bedded (OSSIE) [8] by the Mobile Portable Radio Re-
search Group (MPRG) at Virginia Tech, and SCARI-
OPEN Reference Implementation from Communication 
Research Centre [9]; and recently the SDR Forum con-
tracted Mercury Computers Systems, Inc. to develop a 
reference waveform for SCA implementation. SCA-ready 
target choices are limited; however, core framework ven-
dors are often willing to help get an OE running on any 
number of targets. 

Within the SCA there are a number of observable design 
patterns such as Inheritance, Proxy, Delegation, Factory 
etc. A formal study of design patterns and how they best 
apply to Software Defined Radios and the SCA should be 
investigated. 
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