
STRATEGIES AND INSIGHTS INTO SCA-COMPLIANT WAVEFORM APPLICATION
DEVELOPMENT

Yun Zhang, Scott Dyer, Nick Bulat
The MITRE Corporation

Bedford, MA

ABSTRACT

Embedded communications engineers are faced
with numerous challenges as radio technology drives to-
wards Software-Defined Radio (SDR)-based heterogene-
ous compute platforms. The Joint Tactical Radio System
(JTRS) program has attempted to ease development and
porting costs by requiring the use of the Software Com-
munication Architecture (SCA) for SDR systems. The SCA
is there to help understanding by providing a common
framework; however, communication engineers must
work in an unfamiliar environment filled with system
software concepts such as Object Oriented Programming
(OOP), Portable Operating System Interface (POSIX),
and middleware using Common Object Request Broker
Architecture (CORBA). The addition of SCA to SDR de-
velopment is impacting design methods, work flow, test-
ing, and tooling. Understanding of these impacts, and
how to best capitalize on the benefits of SCA, is impera-
tive to the success of any SCA-compliant develop-
ment. This paper will provide insights into SCA develop-
ment, work flow, testing, and tooling. This paper will also
present an approach to leverage SCA as a means of ab-
stracting the radio management software from the radio
functional software components and further parallelize
system development.

INTRODUCTION

The mission of the JTRS program is to develop a family
of affordable, high-capacity tactical radios to provide both
line-of-sight and beyond-line-of-sight Command, Control,
Communications, Computers and Intelligence (C4I) capa-
bilities to the warfighters. The cornerstone of JTRS is the
development and deployment of Software-Defined Radio
(SDR) technology through standardized, open software
architecture - SCA. SDR is flexible, by virtue of being
programmable, to accommodate various physical layer
formats and protocols. Separating the software application
from the hardware on which it is hosted (the radio plat-
form), provides significant advantages in application port-
ability, reduced development time, software reuse, and
cost-effective utilization of Commercial Off-the-Shelf
(COTS) technology. Adhering to a common open system
architecture – SCA provides further advantages of inter-

operability by allowing sharing waveform software be-
tween radios, even radios in different physical domains,
advantages of life-cycle cost reduction, and new capabili-
ties through software upgrades.

However, as a system specification, SCA introduces a
new unfamiliar environment filled with system software
concepts such as Object Oriented Programming (OOP),
Portable Operating System Interface (POSIX), and mid-
dleware using Common Object Request Broker Architec-
ture (CORBA) to embedded communication engineers.
SCA requires developers to have a certain level knowl-
edge of both the development and the deployment envi-
ronment. The SCA design strategies, work flow, testing
and tooling are different from traditional embedded sys-
tem development. In SCA, the focus is on individual
components; this provides a natural separation of con-
cerns for waveform functional logic. Furthermore, there is
a level of abstraction from the hardware mandated by the
SCA. This level of abstraction allows developers to work
on components in isolation; build, test, and deploy com-
ponents with or without the business logic.

This paper attempts to provide some insights into SCA
development based on our experience. There are certain
challenges faced in design, development and testing of
waveform software due to the component-based architec-
ture of SCA and the natural separation this provides be-
tween the radio management software and the radio func-
tional software.

EHF LITE CHALLENGES

Higher bandwidth waveforms require Field Programma-
ble Gate Array (FPGA) and Digital Signal Processor
(DSP) implementations to sustain the high data rate, and
high speed signal processing requirements of such wave-
forms. The SCA was designed primarily for radios operat-
ing below 2 GHz where high-speed specialized processing
was unnecessary and processing could be performed
completely in General Purpose Processors (GPPs). Such
processing implementations are not natively supported by
the SCA Version 2.2 Specification [1]. The MITRE Pro-
grammable Radio Technology (PRT) laboratory was
founded with a goal to investigate the challenges of im-
plementing SCA-compliant waveforms on software con-

1 of 7

MASTRO
Text Box
Approved for Public Release; Distribution UnlimitedCase # 06-0825

figurable modems to meet the needs of the SATCOM
community. EHF Lite is representative of high bandwidth
SATCOM waveforms and incorporates elements such as
Gaussian Minimum Shift Keying (GMSK) modulation,
Turbo encoding, interleaving, and hop structuring.

The SCA defines a set of rules that constrain the design of
systems. To make our waveform application fully SCA-
compliant, we explicitly followed these rules. For the Op-
erating Environment (OE), we used Harris dmTK SCA
Core Framework (CF) v2.2.2, Real-time CORBA TAO,
and Real-time Operating System VxWorks on Spectrum
Signal System SDR-3001. The Board Support Package
(BSP) provided by Spectrum is running in conjunction
with the SCA domain manager for the Core Framework
and provides the target platform dependent support re-
quired to run SCA applications on SDR-3001.

The purpose of this prototyping effort was to understand
SCA portability, interoperability and overhead in the con-
text of development of bandwidth efficient, flexible and
extensible waveforms. We pushed the “boundary” of SCA
down into the internals of the modem and are inline with
SCA 3.0 specification. We took the data source, encoder,
interleaver and modulator, etc. as waveform components
and made these components SCA Resources; see Figure
1. With the individual components making up the infor-
mation processing pipeline of the modem, we are able to
change parameters either at deployment, via the attributes
for the components in the SCA deployment descriptors, or
via a Java user interface that uses CORBA to communi-
cate with the SCA components and modify any writable
(changeable) parameters on the fly.

We are investigating the challenges of implementing a
high speed SCA-compliant waveform including the ef-
fects of SCA on waveform timing requirements, portabil-
ity and extensibility; implementing waveforms with DSPs
and FPGAs, and developmenting APIs to maximize wave-
form portability while minimizing negative impact. The
implementation of the prototypical waveform follows the
general approach outlined in the JTRS SCA Developer’s
Guide. In addition, the waveform attempts to implement
as many of the processing components as possible as SCA
resources that can be swapped out and replaced with al-
ternative versions, in order to measure the performance
impacts that differing implementations have on the wave-
form throughput.

Figure 1 - Mapping Functions to Resources

EHF Lite was the first SCA development effort for the
MITRE PRT Lab team. A great deal of effort was spent
digesting and understanding the SCA specification.
Knowing we faced this challenge, we divided the devel-
opment effort up among three teams: communication en-
gineering, waveform function development, and SCA de-
velopment. The communication team developed the initial
proof of concept, specification, and bit accurate models of
the waveform. The waveform function development team
worked closely with the communication team to take the
specifications and implement waveform functions in
C/C++ and VHDL with careful attention paid to portabil-
ity. The SCA development team developed the empty
SCA components and interface, and later incorporated the
waveform functional code into the SCA components. The
development work flow can easily be surmised as three
teams implementing, testing, and synchronizing wave-
form development, see Figure 2. With respect to portabil-
ity, we made every effort to limit RTOS system calls to
POSIX interfaces, avoid the use of proprietary IP, and
made use of Hardware Abstraction Layer Connectivity
(HAL-C) for the FPGA.

2 of 7

SCA Work Flow for Component Development

Waveform
Functional

Development
Team

SCA Development
Team

Communications
Team

Implement
Model

Component

Test

Correct?

No

Synchronize
with Functional
Development

Team

update

Update
Model

End

Yes

Implement

Verify
against
Model

Correct?

No

Model
Changed?

YesYes

End

No

Synchronize
with SCA Team

Obtain
Model

Component
Architecture

Implement
empty

components and
interfaces

Test
instantiation

and
connection

in OE

Get Component
Functional Code

Correct?

No

Yes

update

Verify
against
Model

Correct?

No

End

Yes

Figure 2 - Development Work Flow

For the embedded systems engineer without CORBA and
OOP background, it could take several months to fully
understand SCA. Early EHF Lite development activity
focused around the communication team writing the
waveform specification and creating a MATLAB model

of the waveform. This provided a window of time for our
waveform function developers to get familiar with the
target, and the SCA developers to become familiar with
the SCA.

In our efforts to understand SCA we worked with exam-
ples provided by Spectrum Signal Processing. The exam-
ples were relatively easy to follow; however, when we
defined our own set of SCA components, a great deal of
time was spent creating and debugging domain profiles.
The majority of the time was spent manually cross check-
ing consistency among the application XML files, source
code, and vendor-provided Device Properties Descriptors.
Inconsistency in these files could only be detected at run
time. Run time errors were often vague and almost never
referred to specific lines in XML files. Once consistency
was achieved, a single change or addition to the XML
would inevitably result in new errors. The waveform
complexity increases the probability of errors in the XML
files and increases the time to isolate any single error.

Along our EHF Lite waveform development we found
unit test and integration challenging. The waveform func-
tion team tested each modem function prior to integration
with the SCA environment. The SCA development team
tested the connectivity surrounding the modem function.
Even though we performed unit test on each waveform
functional block we were not immune to the challenges
faced in classic real-time embedded systems. For exam-
ple, our interleaver and encoder initially resided on differ-
ent processors. The encoder and interleaver are connected
via SCA ports that are CORBA based. The overhead as-
sociated with CORBA could not satisfy the required data
rates and forced the collocation of interleaver and encoder
on the same processor. To the credit of SCA this required
only a change in the XML.

When we implemented our SCA adaptors and modem
function wrapper classes, we took a modular approach
that would allow us to plug in new modem functions and
dynamically (re)configure processing paths and compo-
nents. We observed that there is a trade off between the
finer SCA implementation granularity with higher port-
ability and the coarse SCA implementation granularity
with better performance. However, finer granularity com-
ponents can also be applied to a wider range of applica-
tions, providing a level of portability between waveforms.

PRACTICAL SCA DESIGN STRATEGIES

Traditional embedded system developers have a number
of choices regarding the software execution model; spe-
cifically writing their own scheduler, or using a number of

3 of 7

available real and non-Real-Time Operating Systems. Re-
gardless of the “OS” choice the developer must divide the
application into logical abstract parts, provide necessary
synchronization, and then assign appropriate priorities and
resources. This provides the developer a great deal of
flexibility and control.

In the SCA domain, logical abstract parts are put into
SCA component containers. This is very different from
traditional embedded system development. SCA compo-
nents are executed through the Object Request Broker as a
single entity. Understanding the ORBs execution model
and overhead are essential in developing reliable wave-
form applications. RT-CORBA is prevalent for a large
number of the Operating Environments (OE) available
today. However, SCA 2.2 has language in the specifica-
tion that suggests waveform applications adhere to the
minimum outlined in the specification [1]. SCA’s mini-
mum required services for CORBA are represented by
minimumCORBA. Although most ORBs used in SCA-
compliant targets are in fact RT-CORBA, the real-time
features are rarely used in the developed waveforms due
to this interpretation of the specification. There has been a
great deal of discussion around RT-CORBA in the SCA
community; it would be wise for developers to track this
as the specification evolves.

SCA can be difficult to grasp for those new to the domain.
New developers are looking for very specific guidance
and direction, however, the SCA aspires to not limit or
impede design or implementation. SCA is best thought of
as a minimum set of services to provide instantiation, con-
figuration, connectivity, and control of resources. SCA
does not specify the roles and responsibilities of the re-
sources outside of these bounds. Therefore, it is up to the
development team to decide the level of granularity they
wish to apply to the waveform applications.

The choice of SCA component granularity will affect sys-
tem performance and efficiency as seen in our EHF Lite
development. For each SCA component, there is overhead
associated with it being a CORBA object. CORBA ser-
vices will add overhead in program text space, stack, and
heap. For fine grain waveform applications, this overhead
can be significant.

Performance costs are also associated with calls between
CORBA Objects. When the two components are on the
same system, this overhead is minimum, resulting in an
additional function call. Even with such minimal impact,
an extra function call multiplied by the number of compo-
nents in a real-time system can be significant. Thus,

waveform software architects need to weigh all associated
costs when considering the software granularity.

Whether it is traditional waveform software development,
or waveform software development utilizing SCA, an ap-
propriate reference model created in a high-level lan-
guage, such as MATLAB, is essential to the success of
software radio development. It is both possible and desir-
able to create a waveform model prior to platform selec-
tion or specification. A good reference model will facili-
tate a greater understanding of platform resource
requirements.

Reference models are usually implemented in high-level
languages without the constraints of meeting real-time
requirements. It is not necessary to prototype all modes or
features of a waveform. It is usually sufficient to imple-
ment the set of modes/features that represents the wave-
forms most resource intensive operations or highest risk
with respect to implementation.

Taking a lesson from the OMG PIM/PSM approach [3], it
is desirable to define components in the implementation
that have identical functionality as corollary components
in the reference model(e.g. create components similar to
the libraries found in MATLAB®, or functionality de-
fined by IT++ [4], or GNU Radio [5]). The benefit to this
strong correlation between model and implementation can
be realized in a number of ways. Identical data passed to a
reference model component and its implementation coun-
terpart can verify correctness of the implementation com-
ponent. This is an excellent indication of completeness to
the developer implementing components defined in the
model. Validation of system components can help provide
insight into correctness of the aggregate system. A dis-
crepancy between implementation and the waveform
model will expedite problem isolation and resolution. This
allows side-by-side comparison of developed software
with the reference model for debugging, testing, and sys-
tem verification.

When it comes to implementation, the functionality repre-
sented by the reference model must be implemented in a
language that will allow the creation of artifacts appropri-
ate for execution on the target. As discussed in the last
section of this paper, there are benefits to creating compo-
nents that have a counter part with identical functionality
in the reference model. However, the final implementa-
tion will have additional management software, and pro-
vide greater flexibility in configuration and control which
may not necessarily be present in the model. The SCA
leverages CORBA in order to provide a platform-
independent, language-independent architecture for writ-

4 of 7

ing distributed, object-oriented applications in heteroge-
neous systems. This allows radio system developers to
wrap the waveform signal processing logic in platform
independent containers. This approach naturally suggests
the parallel development that allows developers to work in
their own domain.

SCA TOOLS

In the early days of SCA, XML files had to be edited by
hand. This is a tedious task which involves verifying
lengthy arbitrary strings such as UUIDs. In attempts to
reduce this burden, developers have employed scripting
languages such as Perl or utilized XSLT transformation
[6]. A few early development tools made strides to reduce
some of the burden of XML editing but still left some te-
dious tasks to the user.

Currently there are a few powerful SCA tools on the mar-
ket –such as CRC Scari Suite, PrismTech Spectra, and
Zeligsoft Component Enabler– that present a visual model
of the system, show component connections in a sche-
matic-like view, and drastically simplify XML generation.
Competition in this market has pushed these tools beyond
XML editing and generation; code and build artifact gen-
eration is now also featured. The tools also support target
and deployment modeling.

Perhaps most beneficial to waveform porting activity is
the ability of these tools to reverse engineer existing
waveforms and display a graphical schematic view.
Unlike most generic code understanding tools, these tools
only show the high-level abstraction defined by the wave-
form application XML files, a much preferred first view
of the application before diving into details of the source
code.

SCA WAVEFORM COMPLIANCE

SCA waveform compliance verification is handled
through the Joint Tactical Radio System (JTRS) Technol-
ogy Laboratory (JTeL). The JTeL provides support and
guidance for SCA verification and provides final assess-
ment and compliance recommendations to the JTRS Joint
Program Office (JPO). Currently, the JTeL test proce-
dures and guidance are tailored for use with JTRS pro-
grams. The procedures are not well aligned with non-
JTRS developments which may also require SCA compli-
ance verification such as high bandwidth SATCOM
waveforms and terminals. Thus, for SCA developments
seeking compliance verification, it is advantageous to be-
gin the JTeL coordination process early in the develop-
ment cycle.

Current JTeL procedures call for coordination to begin
early with an assigned JTeL test director involved in pro-
gram milestones including SDR and PDR; these proce-
dures also call for waveform developers to be notified of
their target platform by waveform CDR. However, with-
out early coordination, some of these test requirements
may become problematic. For instance, there may be dif-
ficulty in identifying target platforms capable of running
some high bandwidth waveforms. The focus of current
JTeL efforts on JTRS programs increases the need for
non-JTRS programs to begin coordination early in order
to identify and resolve issues unique to individual pro-
grams.

The SCA 2.2 specification [1] contains a total of 487 re-
quirements split between the waveform application and
the Operating Environment (OE), with 192 requirements
applying directly to the waveform as indicated in the
Waveform SCA Test and Evaluation Plan (TEP). In order
to facilitate the testing of SCA requirements, the JTeL has
developed several software tools to aid in testing. These
tools are not required for use in verification but are pro-
vided to aid in testing. Programs are allowed to utilize
their own test suites; however, the verification approach
must be coordinated with and approved by the JTeL.

The Waveform Test Tool (WTT) version 2005 SP1 [7]
and Data Reduction Parser (DRP) comprise the test soft-
ware supplied by JTeL to aid in waveform SCA compli-
ance testing. The JTeL also produces the JTeL Test Ap-
plication (JTAP) to assist in testing an Operating
Environment for SCA compliance. The current versions
of the tools only support testing to version 2.2 of the SCA
specification.

The JTeL Waveform SCA TEP divides waveform com-
pliance testing into three major categories: off-line, run-
time, and Application Program Interface (API) inspection.
Of these, the WTT is designed to support the run-time test
category while the DRP is designed to serve as a backup
for some WTT verification while providing custom pars-
ing/search support for the off-line test category. The off-
line and API inspection portions cover the remainder of
the SCA waveform requirements and utilize manual code
inspections aided by COTS tools as well as custom pars-
ers and editors.

The JTeL DRP was designed to assist with off-line SCA
waveform compliance testing. The DRP does not require
any connection to a representative set unlike the WTT.
The DRP can be used in combination with the WTT to
track the status of tool-assisted test results; however, its
main purpose is to assist with manual off-line testing. The

5 of 7

DRP functions mainly as a test symbol generator and cus-
tom data parser/search tool. The DRP parses application
code and locates relevant code blocks to allow for manual
algorithm inspections. In addition, many of the supported
tests function as back-ups to run-time requirements verifi-
cation supported by the WTT.

Out of the 192 requirements identified in the Waveform
SCA TEP, the WTT/DRP test suite addresses only 91 of
those requirements. The remainder of the requirements
must be verified manually with the aid of additional data
parsers and search tools. Of the 91 tool supported re-
quirements, a majority also require additional manual
verification.

The WTT and DRP should succeed in reducing the over-
all effort required to perform waveform SCA verification.
However, the tools support a limited number of the over-
all waveform requirements and manual testing is still re-
quired for many of the tool supported tests. So while the
JTeL tools serve to reduce the work load, there is still a
large level of effort in manual code inspection and verifi-
cation needed for compliance testing. This fact further
supports the need for early program focus on SCA com-
pliance and coordination with JTeL. Commercial tools
such as CRC Scari Suite, PrismTech Spectra and Zeligsoft
CE provide developers with additional verification tools
that have not been previously available. These tools are
capable of verifying numerous SCA requirements through
XML parsing and inspection and could replace or aug-
ment the JTeL-provided tools given specific program
needs. However, any use of non-JTeL tools would require
coordination with the JTeL. In addition, a majority of
SCA requirements would still require manual inspection
and testing.

WAVEFORM PORTING

One of the JTRS program objectives is the reduction of
logistics cost through reuse of common software. Our
SCA implementation is intended to verify reusability and
portability. We performed a porting exercise on our EHF-
lite waveform. The source platform includes a Pentium 4
PC running Windows 2000 and a Spectrum Signal SDR-
3001 using VxWorks RTOS, and Harris dmTK SCA Core
Framework v2.2.2, Real-time CORBA TAO and Spec-
trum Signal Board Support Package running in conjunc-
tion with the SCA domain manager. The porting target
platform is an embedded Pentium M PC running Fedora
Core 3, CRC Scari++ Core Framework and RT-CORBA
TAO with a PCMCIA Red River FPGA card.

As with any embedded development, there is a fair
amount of time required in preparation and training prior
to porting to include (1) Evaluation of the source and des-
tination platforms resources; (2) Analysis of hardware and
software dependencies, risk and mitigation; (3) Evaluation
of possible functional allocation changes based upon the
application requirements and hardware capacities; (4) Es-
timation of build and execution environment changes. The
SCA adds to these, OE differences such as the ORBs,
Core Frameworks, and device support for SCA.

Through our exercise, we learned that the porting effort
differs based on several factors. One is the complexity of
the porting waveforms and the processing elements. For
example, our modulation function resides on FPGAs for
the SDR-3001 system with BSP provided by Spectrum
Signal. On the porting platform, we had to create our own
similar board support package for our embedded FPGA to
support SCA. The portion of waveforms on the GPP is
easier to port than on specialized hardware such as DSP,
FPGA and ASIC due to the limited CORBA support and
the lack of standard hardware abstraction for these de-
vices. Another factor is the level of the SCA compliance.
Ideally, radio platforms, SCA Core Framework imple-
mentations, ORBs, RTOSs and waveforms should be
SCA-compliant, but right now there are only a couple of
hardware platforms, CFs and ORBs certified as SCA-
compliant. The design of a waveform is one major factor
that affects SCA portability. It is possible to create a sin-
gle super SCA adaptor that is SCA-compliant. However,
it could be a great deal of effort to port such a waveform
to a new platform if repartitioning of functionality across
multiple processing elements is required. With sufficient
documentation, powerful SCA development tools, and
knowledgeable SCA developers applying appropriate
granularity, porting costs can be reduced.

To increase SCA-compliant waveform portability, devel-
opers should use POSIX interfaces and avoid OS and plat-
form dependent libraries. Sometimes, such APIs have to
be used, but should be confined in waveform functional
software. For example, EHF Lite makes use of Spectrum
Signal’s quickComm library to utilize rapid I/O for the
higher data rate. However, it is mapped into a CORBA
pushPacket interface and isolated from the SCA compo-
nents.

The SCA specification is a system specification, not an
implementation specification. SCA Core Framework im-
plementers might have different interpretations of the
specification resulting in different implementation ap-
proaches. SCA developers should watch out for proprie-

6 of 7

tary APIs provided by Core Framework implementations.
These APIs could be utilities for threading, synchroniza-
tion and buffering, etc. The SCA Core Framework im-
plementers also have their own set of APIs for the SCA
port connection and entry points for starting execution.
All of these areas need to be modified if the porting target
uses a different Core Framework. Separating the SCA
components from their waveform business logic will ease
later porting efforts. Fortunately, SCA development tools
with code generation capabilities can be of assistance in
these areas.

NEXT STEPS FOR SCA

The SCA provides an operating environment that strongly
encourages portable software development, where port-
able is defined as the reuse of software for a given appli-
cation on two or more targets with minimal modification.
This is possible since the SCA defines an Operating Envi-
ronment that is identical on each target. However, the re-
use of software components from one application by an-
other application requires that each of the applications
have the same API for that component. In order to allow a
broader reuse of software components between applica-
tions, it is necessary to define a set of standard compo-
nents and interfaces implemented in portable software. An
excellent example of this approach is the GNU Radio pro-
ject [5]. Another noteworthy set of portable signal proc-
essing open-source software applicable to communica-
tions is the IT++ library [4].

The down side to standardizing on APIs is that it narrows
the applicability of the SCA. The current SCA specifica-
tion is usable for a wide range of applications where dis-
tributed deployment, connection, configuration, and con-
trol are desired. Included in the SCA is a set of APIs that
center around communication systems. In order to pre-
serve this broad range of applicability, the waveform de-
velopment APIs must remain apart from the SCA. Fur-
thermore, the focus of the SDR community needs to shift
from the SCA to the waveform development API. Atten-
tion should only deviate from the waveform development
API to the SCA when the operating environment fails to
provide generic functionality required by communication
systems engineers. An example of this would be for real-
time services. Real-time services are not limited to the
needs of waveform developers; any number of applica-
tions could benefit from real-time services being included

in the SCA. On the contrary, very few applications out-
side of the communication system domain would benefit
from a Viterbi decoder.

To date there is limited material available in the SCA
community that allows would-be SCA developers an af-
fordable way to ramp up on the SCA in a short amount of
time. There are a number of outstanding initiatives avail-
able such as the Open Source SCA Implementation: Em-
bedded (OSSIE) [8] by the Mobile Portable Radio Re-
search Group (MPRG) at Virginia Tech, and SCARI-
OPEN Reference Implementation from Communication
Research Centre [9]; and recently the SDR Forum con-
tracted Mercury Computers Systems, Inc. to develop a
reference waveform for SCA implementation. SCA-ready
target choices are limited; however, core framework ven-
dors are often willing to help get an OE running on any
number of targets.

Within the SCA there are a number of observable design
patterns such as Inheritance, Proxy, Delegation, Factory
etc. A formal study of design patterns and how they best
apply to Software Defined Radios and the SCA should be
investigated.

REFERENCES
[1] JTRS JPEO, SCA version 2.2, http://jtrs.spawar.navy.mil/sca/

[2] JTRS JPEO, SCA Specialized Hardware Supplement version 3.0,
http://jtrs.spawar.navy.mil/sca/

[3] Object Management Group, PIM and PSM for Software Radio
Components, 1

st
FTF Convenience Document, dtc/2005-04-02, April

2005

[4] IT++, Welcome to IT++! ,
http://itpp.sourceforge.net/latest/index.html

[5] GNU Radio, GNU Radio - The GNU Software Radio,
http://www.gnu.org/software/gnuradio/
[6] Wikipedia, XSL Transformations,
http://en.wikipedia.org/wiki/XSLT

[7] JTRS Technology Laboratory (JTeL), Products,
https://jtel.spawar.navy.mil/products.asp

[8]The Mobile and Portable Radio Research Group (MPRG) at Vir-
ginia Tech, OSSIE Open Source SCA, http://ossie.mprg.org/

[9] Communications Research Centre (CRC), SCARI – OPEN,
http://www.crc.ca/en/html/crc/home/research/satcom/rars/sdr/products/
scari_open/scari_open

7 of 7

http://jtrs.spawar.navy.mil/sca/
http://jtrs.spawar.navy.mil/sca/
http://itpp.sourceforge.net/latest/index.html
http://www.gnu.org/software/gnuradio/
http://en.wikipedia.org/wiki/XSLT
https://jtel.spawar.navy.mil/products.asp
http://ossie.mprg.org/
http://www.crc.ca/en/html/crc/home/research/satcom/rars/sdr/products/scari_open/scari_open
http://www.crc.ca/en/html/crc/home/research/satcom/rars/sdr/products/scari_open/scari_open

