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The scaling of the capacitance with radius is explored in detail for neutral atoms, and it is
found that they behave much like macroscopic spherical capacitors. The quantum capacitances of
atoms scale as a linear function of the mean radii of their highest occupied orbitals. The slopes
of the linear scaling lines include a dimensionless constant of proportionality κ that is somewhat
analogous to a dielectric constant, but for individual atoms. The slope and κ assume discrete values
characteristic of elements in different regions of the periodic table. These observations provide a
different, electrostatics-based way of understanding the periodic behavior of the elements.

PACS numbers: 31.10.+z, 03.65.Sq, 31.25.-v, 31.90.+s

I. INTRODUCTION

There is widely perceived to be a dichotomy between
the classical behavior [1] of macroscopic electrical devices
and quantum behavior [2, 3] in the electrical properties
of atoms and molecules on the picometer and nanometer
scales. Here, however, we report on unexpected quasi-
classical regularities found in the electrical behavior of
neutral atoms. Specifically, we explore the variation or
“scaling” of the quantum capacitances for neutral atoms
as a function of the mean radii for their outermost or-
bitals. This quantum scaling behavior for atoms is seen
to resemble strongly the linear capacitance scaling be-
havior of macroscopic spherical conductors in classical
electrostatics.

These linear, quasi-classical regularities in the quan-
tum behavior of atoms provide a different, electrostatics-
based way of understanding the periodic behavior of the
elements. Also, the linear capacitance scaling relations
for atoms can be shown to establish a particularly sim-
ple quantitative relationship between an atom’s valence
electron detachment energies and its dimensions (i.e., the
mean radius for its outermost orbital).

The generally linear nature of capacitance scaling for
neutral atoms has been noted previously by Gazquez and
Ortiz [4], by Komorowski [5], and by Perdew [6]. How-
ever, here we explore the scaling using a different mea-
sure of the atomic radius than prior investigators, and
unexpected details emerge as a result.

Figure 1 plots experimentally derived atomic capaci-
tances versus the ab initio mean radii 〈r〉a of the highest
energy or “outermost” occupied atomic orbitals for 24
representative atoms. This plot reveals an unanticipated
variety of linear behaviors. Different classes of elements
fall on different lines, but some lines have the same or
nearly the same slope. Contrary to one’s initial expec-
tations from the scaling of isolated spheres in classical
electrostatics [1], for isolated atoms the capacitance scal-
ing lines extrapolate to nonzero intercepts C0 with the
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capacitance axis. As with the slopes, there are fewer val-
ues of C0 than there are scaling lines. The few discrete
ranges of values for the slopes and intercepts may be as-
sociated with the different angular momentum states (S
and P states) of the atoms plotted along the lines.

II. METHOD AND RESULTS

In this work, we follow Froese-Fisher [7] in employ-
ing as a measure of the atomic radius the mean radius
〈r〉a associated with the highest occupied Hartree-Fock
atomic orbital φa(r), where a=N for an N -electron atom.
Defining the electron density component ρa(r)= |φa(r)|2,

FIG. 1: Atomic Capacitance Scaling versus Mean Radius.
Atomic capacitances CI in fundamental units of positive
charge per Volt (+e/V), from Table I, are plotted vs. mean
radii 〈r〉a for the atoms’ highest occupied Hartree-Fock or-
bitals, as given by Froese-Fisher [7, 8]. Lines are fit to points
via linear regression, with fitting parameters listed in Table I.
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TABLE I: Accurate Atomic Capacitances and Atomic Radii. Capacitances CI in fundamental positive charges per Volt (+e/V)
for 24 neutral atoms are reported as a function of the mean radii [7, 8] 〈r〉a of their highest occupied Hartree-Fock (HOHF)
orbitals. CI was calculated using Eq. (1), based upon experimental ionization potentials (I’s) and electron affinities (A’s) for
the atoms [9–11], except as noted. Radii 〈r〉a+1 for the anions’ HOHF orbitals were calculated by the author from Clementi-
Roetti [12] anion orbitals, for species where they are given. Dashes signify that a quantity is not known with accuracy. With
+e/V as the unit for capacitance and pm for length, the permittivity of free space is ε0 = 5.526349 × 10−5 +e/V-pm.

Neutral Approx. Dielectric Angular
Group Atom Anion CI Linear Constant, Momen-

in Radius Radius if |A| Regression Parameters Slope tum
Periodic Atomic 〈r〉a 〈r〉a+1 I A CI v. small, for Plots of CI vs. 〈r〉a 4πε0 Term

Table No., Z Atom (pm) (pm) (eV) (eV) (+e/V) 1/I Slope Intercept, C0 R2 = κ Symbol
1st 5 B 117 193 8.30 0.280 0.125
Row 6 C 92 114 11.26 1.262 0.100 8.61 0.0231 0.990 1.24 P
P- 8 O 66 79 13.62 1.461 0.082 ×10−4

States 9 F 57 66 17.42 3.401 0.071
2nd 13 Al 182 241 5.99 0.433 0.180
Row 14 Si 148 171 8.15 1.390 0.148 8.43 0.0259 0.995 1.21 P
P- 16 S 110 123 10.36 2.077 0.121 ×10−4

States 17 Cl 98 107 12.97 3.613 0.107
7 N 75 93 14.53 −0.07 0.07

VA 15 P 123 144 10.49 0.75 0.10 7.13 0.0159 0.999 1.03 4S◦
3/2

33 As 133 154 9.79 0.81 0.11 ×10−4

3 Li 205 304 5.39 0.618 0.210
IA: 11 Na 223 320 5.14 0.548 0.218 6.89 0.0668 0.994 0.99 2S1/2

Alkali 19 K 277 394 4.34 0.501 0.260 ×10−4

Metals 37 Rb 298 389 4.18 0.486 0.271
4 Be 140 – 9.32 – – 0.107

IIA: 12 Mg 172 – 7.65 – – 0.131 6.66 0.0149 0.999 0.97 1S0

Alkaline 20 Ca 223 – 6.11 0.024 0.164 0.164 ×10−4

Earths 38 Sr 245 – 5.69 0.052 0.180 0.177
2 He 49 – 24.59 −0.22a 0.040

VIII: 10 Ne 51 – 21.57 −0.30a 0.046
Noble 18 Ar 88 – 15.76 −0.37a 0.062 5.63 0.0157 0.991 0.81 1S0

Gases 36 Kr 103 – 14.00 −0.42a 0.069 ×10−4

54 Xe 124 – 12.13 −0.45a 0.079

aNegative A extrapolated from experiment [13] by Zollweg [14].

the mean radius is calculated 〈r〉a =
∫ ∞
0

rρa(r)4πr2dr.
Canonical tables [8, 12, 15] are available of the ab initio
Hartree-Fock atomic orbitals, as well as of their mean
radii, and these tables were used in this work.

To evaluate the atomic capacitances given in Table I
and plotted in Fig. 1, we use a formula for quantum sys-
tems due to Iafrate et al. [16] and to Perdew [6]:

CI = 1/(I − A). (1)

This equation evaluates the capacitance for an N -
electron quantum system with total energy E(N) having
a first ionization potential I = E(N − 1) − E(N) and
an electron affinity A = E(N) − E(N + 1). Here, the
N -electron system is the lowest energy neutral state. Its
A is negative if its anion is not stable with respect to the
N -electron state, as for the Ne atom, for example.

Equation (1) differs from the one written by Iafrate et
al. by a factor of 1/e2. This unit transformation assumes
that the I’s and A’s are expressed in eV, the unit com-
monly used in tabulations [10, 11] of atomic and molecu-
lar electron detachment energies. Thus, Eq. (1) yields

the capacitances in atomic-scale units of fundamental
positive charges per Volt (which we symbolize here as
“+e/V”).

Equation (1) is applied to calculate CI for 24 atoms
from experimentally determined [9–11, 13, 14] I’s and
A’s for their neutral states. These detachment energies
and the resulting values of CI are presented in Table I.
For Be and Mg, it appears from a search of the literature
that there are no generally accepted values of the A’s,
which are thought to be negative [9] and probably are
small in magnitude. For those two atoms only, therefore,
we use CI ≈ 1/I. This approximation is tested in column
9 of the table and seen not to affect significantly values
of CI for the next two atoms in the same column of the
periodic table, for which A’s are known, but also small.

In Fig. 1, each of the 24 values determined for CI is
plotted versus the corresponding value of 〈r〉a, as deter-
mined in atomic Hartree-Fock calculations [7, 8]. Sev-
eral regression lines also are plotted for the (〈r〉a, CI)
points. The regression parameters are given in columns
10 through 12 of Table I.
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The atoms reported upon here were chosen as a result
of several steps in the research. Initially, CI was deter-
mined and plotted versus 〈r〉a for all of the atoms with
atomic numbers Z =2 to 18. Then, from inspection of
a CI versus 〈r〉a plot that was the precursor of Fig. 1,
it was determined that most of the atoms fell on two,
nearly overlapping regression lines. These are the two la-
beled in Fig. 1 as representing P states. However, some
atoms—esp., Be and Mg, N and P, as well as Ne and Ar—
generated points off those two lines, which are associated
with the filling of the 2p and 3p orbitals, respectively.

This led to the determination and plotting of the
(〈r〉a, CI) points for more atoms from each of the columns
on the periodic table—IIA, VA, and VIII—associated
with points that fell off the main lines. Points for atoms
from each of these columns then were seen to form lines
of their own, as shown in Fig. 1. Shortly, it was recog-
nized that all these atoms that were off the two primary
overlapping regression lines shared the characteristic that
they were S states. By contrast, most of the atoms then
remaining on the primary lines were P states.

The points for S-state atoms Li and Na actually could
be fit quite satisfactorily on regression lines for the first
and second row P -state atoms. However, with the real-
ization that slopes for the lines depend strongly upon the
total angular momentum quantum number L of the asso-
ciated atoms, the S-state (L=0) atoms Li and Na, along
with points added for K and Rb, were grouped separately
from the P -state (L=1) atoms. Then, a regression line
also was determined for these four Group IA atoms, as
seen in Fig. 1. As shown in Table I, all six regression lines
fit their respective data points with large R2 values, in-
dicating exceptionally strong linear correlations between
the atomic capacitances and atomic radii.

III. ANALYSIS

Any analysis of the atomic capacitance scaling results
presented above must begin by remarking how much they
resemble the results that would be expected if atoms sim-
ply were conducting spheres subject to the laws of classi-
cal electrostatics. The atoms seem to obey an analog of
the elementary classical equation [1]

C = 4πε0κ ra [1 − (ra/ra+1)]−1 (2a)
≈ 4πε0κ ra, if ra+1�ra. (2b)
≈ 4πε0κ ra

+4πε0κ[(ra)2/ra+1 + . . .], if ra+1
>∼ra. (2c)

This describes the capacitance C of a classical spherical
conductor of radius ra that is positioned within a larger,
concentric spherical conductor of radius ra+1. The pa-
rameter κ is the dielectric constant of the intervening
medium and ε0 is the permittivity of free space.

For the atom or “atomic capacitor” with quantum ca-
pacitance CI , an analog of the classical inner conductor
is the charge density ρa(r), having mean radius 〈r〉a. An

analog of the classical outer conductor is the charge den-
sity ρa+1 = |φa+1|2 for the highest occupied orbital φa+1

on the atomic anion, with mean radius 〈r〉a+1. Then,
the energy (I−A) in Eq. (1) is approximately that for
an electron on the neutral atom to undergo an a→a+1
transition. This places a charge −e on outer conductor
ρa+1 and leaves a “hole” with charge +e on inner conduc-
tor ρa, with potential V =(I−A)/e having been applied
to separate the charges. This separation includes adjust-
ment in ρ(N−1), the density for the atom’s other N −1
electrons. The analog of the dielectric in this atomic
capacitor model is the portion of the new ρ(N−1) that
“screens” the positive and negative charges in ρa and
ρa+1 from each other.

We observe above that the (〈r〉a, CI) points for the
atoms produce excellent fits to regression equations that
may be stated in a form analogous to the classical Eq. (2):

CI = 4πε0κ〈r〉a + C0. (3)

As above, C0 is the capacitance intercept at 〈r〉a = 0. Its
nonzero values have no analog in the classical Eq. (2b)
for an isolated spherical conductor. The nonzero inter-
cept does have an analog, though, in the equations for
a classical spherical capacitor if ra+1 is not very much
larger than ra, as in Eq. (2c), and if the sum there in
square brackets is nearly linear or constant in ra.

Such behaviors also are exhibited by several groups of
atoms and might help account for the atoms’ nonzero C0,
by analogy with Eq. (2c). From above, even on an iso-
lated atom, ρa+1 acts like an outer conductive sphere for
ρa. Also, 〈r〉a+1 is not very much larger than 〈r〉a, while
[(〈r〉a)2/〈r〉a+1] is nearly linear in 〈r〉a, at least for the
first four groups of atoms in Table I, as may be verified
from atom and anion radius data given there.

In Eq. (3), to emphasize the analogy to classical
Eqs. (2), we write 4πε0κ for the slope of the atomic ca-
pacitance scaling line, thereby defining a dimensionless
constant of proportionality κ that acts somewhat like a
dielectric constant for an atom. Then, for any atom along
the line κ = Slope/4πε0. Via this relation, κ is calculated
from the slopes of the regression lines for all six groups
of atoms and reported in column 13 of Table I. These
dielectric constants fall into three discrete sets: (1) P
states having κ≈1.2, (2) most of the S states with κ≈1,
and (3) the noble gas atoms (also S states) with κ = 0.81.

From Table I, the anomalously small value of κ for no-
ble gas S-state atoms arises partly because their I’s fall
off less rapidly with increasing Z (and increasing prin-
cipal quantum number for the valence electron) than do
I’s for other sequences of S-state atoms (cf. Group IIA).
This leads CI to grow more slowly for noble gas atoms
as they get larger. Also, though these atoms tend to be
smaller than the other S-state atoms, their radii grow
more rapidly with increasing valence principal quantum
number. Thus, κ ∼ (∆C/∆〈r〉a) is unusually small.

The large I’s and small size of the noble gas atoms are
due to their completely filled valence shells. This makes it
hard to add charge to them or to polarize their electrons.
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In classical electrostatics, such systems are said to have
low capacitances and small dielectric constants, just as
these atoms are seen to have here.

In Fig. 1, because regression lines with different slopes
or dielectric constants fit points for groups of atoms from
different parts of the periodic table, one might say that
the valence dielectric constant of an atom is a new char-
acteristic periodic property of the elements. The very
strong correlation of the atomic capacitances, κ, and C0

with the periodic table is evident if one compares the
lines in the figure to the columns on a periodic table.
The two bounding, upper and lower lines correspond to
the two bounding columns (the alkali metals and noble
gases, respectively) at opposite ends of the periodic table.
Other lines that connect these extreme lines correspond
to elements in rows that analogously connect the extreme
columns of the periodic table.

The accuracy of Eq. (3) in fitting values from Eq. (1)
suggests one may eliminate CI between Eqs. (1) and (3).
Then, after slight rearrangement, one obtains:

A = I − 1
4πε0 κ〈r〉a + C0

. (4)

This quantum equation shows a previously unappreci-
ated relationship among the valence electron detachment
energies and the mean dimensions of a many-electron
atom. In Eq. (4), the atomic dielectric constant mod-
ulates a constraint that determines some of the periodic
properties of an atom (e.g., the usually difficult-to-obtain
electron affinities A) in terms of others (e.g., the easier-
to-obtain ionization potentials I and mean radii). Equa-
tion (4) also provides a new explanation for the relative
magnitudes and signs of the electron affinities. As an
atom’s radius gets smaller, the absolute magnitude of
the second term on the right-hand side of the equation
gets large and the term makes an increasingly negative
contribution to A. This produces a smaller value of A
for the atom. A small dielectric constant amplifies this

effect, while a large one mitigates it.
If 〈r〉a is small enough, though, the second term on the

right becomes larger in absolute magnitude than I, and
a negative A results. A physical interpretation of this,
rooted in the analogy with classical electrostatics, is that
atoms like Be, N, or the noble gas atoms, with relatively
small dielectric constants and small mean radii, do not
have sufficiently polarizable electrons in the valence re-
gion, nor sufficient surface area on which to distribute an
additional electron to produce a stable anion.

In summary, it has been demonstrated in this paper
that the scaling of the quantum capacitances of atoms
with their mean radii exhibits quasi-classical regulari-
ties. Further, it has been shown that this scaling yields
a different qualitative perspective and quantitative per-
spective, via Eq. (4), on the periodic behavior of the ele-
ments. Equation (4), together with the similarity in form
of Eq. (3) for atomic capacitors to Eqs. (2) for classical
capacitors, also suggests a different, simple interpretation
for the quantum structure of atoms. This interpretation
is based upon an analogy with classical electrostatics,
rather than upon the usual analogy [2, 3] with classical
mechanics. This electrostatics-like approach to explain-
ing quantum behavior is to be explored further for both
atoms and molecules in several subsequent publications.
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