
 
American Institute of Aeronautics and Astronautics 

 

1

Solving Probabilistic Airspace Congestion: 
Preliminary Benefits Analysis  

Jim DeArmon, * Craig Wanke,† Dan Greenbaum, Jr.,‡ Lixia Song,§  
Sandeep Mulgund,** Steve Zobell,†† and Neera Sood‡‡ 

The MITRE Corporation, Center for Advanced Aviation System Development (CAASD) 
7515 Colshire Drive, McLean, Virginia, 22102-7508 

In the U.S. National Airspace System (NAS) a function called traffic flow management 
(TFM) seeks a balance between resource capacities and the demands placed upon them by 
air traffic. In general, capacity cannot be manipulated, and it is necessary for demand to be 
altered to meet a reduced capacity. Typically, demand can be altered in time (via delay, i.e., 
slowing flights so that the number per unit time is reduced) or space (via rerouting, when 
specific airspace sector capacity is reduced, e.g., during severe en route weather). This paper 
discusses the use of probability modeling for assessing airspace capacity, and discusses 
comparison of three techniques for generating solutions to the problem of demand allocation 
during reduced airspace capacity caused by severe en route weather. 

Nomenclature 
ATC = Air traffic control 
ATM = Air traffic management 
GA = Genetic algorithm 
LAT = Look-ahead time 
MAP = Monitor/alert parameter 
NAS = National airspace system 
TFM = Traffic flow management 
TMU = Traffic management unit 

I. Introduction 
N the U.S. National Airspace System (NAS) a function called Air Traffic Management (ATM) consists of air 
traffic control (ATC) and traffic flow management (TFM). ATC provides separation services, keeping a minimum 

distance or altitude between proximate aircraft. By contrast, the purview of TFM is more strategic, seeking a balance 
between resource capacities and the demands placed upon them by air traffic. In general, capacity cannot be 
manipulated, and it is necessary for demand to be altered to meet a reduced capacity. Typically, demand can be 
altered in time (via delay, i.e., slowing flights so that the number per unit time is reduced) or space (via rerouting, 
when specific airspace sector capacity is reduced, e.g., during severe en route weather).  This paper discusses the use 
of probability modeling for assessing airspace capacity, and discusses comparison of three techniques for generating 
solutions to the problem of demand allocation during reduced airspace capacity caused by severe en route weather. 

A probabilistic approach to addressing air traffic flow problems is recognition of inherent uncertainty.  Until 
now, traffic flow management (TFM) decisions have relied on a simple verdict:  “At future time t, NAS resource A 
(e.g., a fix, sector, route segment, runway) is forecast to be over demand.”  However, modeling of the situation can 
be improved by explicit consideration of multiple future “states of nature,” i.e., forecast demand and capacity of 
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NAS resources.1,2 Through improved modeling, more efficient TFM solutions for airspace users may be expected.  
Alternatively, some situations would be better left alone, with TFM not intervening—these cases should also be 
more easily recognized with improved modeling.  Continuing improvements in weather forecast accuracy and flight 
trajectory modeling can also be used directly to improve decision-making. 

II. Managing Airspace Capacity/Demand 
  In today’s system, sector capacities are characterized by a Monitor/Alert Parameter (MAP), an aircraft count 

threshold. Though many factors determine true sector capacity, e.g., number of potential conflicts, number of flights 
in altitude transition, and traffic complexity, 
this scalar MAP value is used. And the use 
is fairly simplistic: a visual display (see  
Fig. 1) shows cells containing future 
quarter-hourly forecast aircraft counts per 
sector, and color-codes these cells, as 
follows: 

1) Green: no alert (predicted count 
below or equal to the MAP value) 

2) Yellow: total forecast count exceeds 
MAP value, but among them, active 
flights alone do not exceed the MAP 
value  

3) Red: alert—the forecast count 
contains active flights which, even 
without including inactive flights, 
exceed the MAP threshold  

Note that this scheme supports simple 
decision rules: green—do nothing; red—
examine the situation: intervention may be 
indicated; yellow—monitor the situation. 
The probabilistic approach seeks a more 
complete characterization of forecast 
information using statistical distributions.   

As a notional example, consider Figs. 2 
and 3.1  In Fig. 2, using weather forecasts, 
contours have been constructed to delineate 
regions of likelihood of severe en route 
weather, at levels > 50% and > 75% 
likelihood. Considering these impacts on airspace sector capacity and staffing, as well as expected air traffic 
demand, a probabilistic score can be associated with affected sectors, here > 50% and > 75% probability of 
congestion. Figure 3 shows the demand vs. capacity situation for Sector 2 over time. The blue boxes show capacity, 
expressed as an expected or mean value in the middle of the box, plus 50% error bounds at the top and bottom of the 
box. Green, yellow, and red boxes, corresponding to increasing probability of congestion, show expected demand, 
using the same format of mean and confidence interval bounds. (Boxes have mean lines not evenly splitting the 
vertical extent of the box, since the probability distributions are typically non-normal and even non-symmetric). A 
traffic flow manager could manage resources using an automation tool with a display as in Fig. 3, by reducing 
demand (either in time via delay or in space via alternate routing) until the red boxes become lower on the display 
(the color would thence become yellow), matching better the blue underlying capacity distributions. 

 

  
Figure 1. Sector monitor highlights sectors that may need 
intervention. 
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Given there is an improved characterization of capacity, the question remains how best to manipulate the 
demand to meet capacity. For the problem at hand, airspace capacity loss caused by severe en route weather, it 
would be some combination of ground delay, air delay, rerouting, and “do nothing” on a per-flight basis. In today’s 
system, flow managers assess the weather forecast, collaborate with air carriers, and then implement pre-stored 
routings from what is called the National Playbook. These routings are pre-coordinated among the various centers, 
and typically qualified to include some set of origin and destination airports. This solution approach is performed as 
a single action several hours before the weather event, with most affected flights still on the ground (implying that 
their pre-departure flight plan route is amended to comport with the TFM solution). As time moves on and the 
weather event becomes more predictable, adjustments may be performed on the original initiative.  In addition, local 
actions by the Traffic Management Units (TMUs) further fine-tune the plan. There have, in recent years, been 
improved visualization products and more automated communication with airlines’ flight planning systems, but the 
procedure is still mostly manual. 

III. Solution Approaches 
But looking ahead to the next wave of automation support for TFM, one can imagine greater harnessing of 

significant computing power and algorithms. This paper examines the potential benefits, by comparing today’s 
solution (hereafter called Manual Approach) with two variants using advanced computation systems: a Heuristic 
Approach and a Genetic Algorithm (GA) Approach. 

At the disposal of this analysis is a simulation platform for exploring prototype tools and ideas. This platform 
can represent airspace and its constraints, as well as 4-D trajectories of flights, and can evaluate future sector 
capacities probabilistically. To perform a comparison for benefits calculation, the three approaches—Manual, 
Heuristic, and GA—are executed, starting with an actual NAS traffic day and an actual severe en route weather 
event. (The input traffic data are actually taken from a different day—a good weather day when air traffic flew 
undeviated, since we want the competing approaches to begin with “pristine” intent data—what the airlines wish 
they could do, i.e., fly straight through the weather and expedite to the destination.  The solution approaches will 
deviate the traffic to meet reduced sector capacities associated with the weather event.)  Note that all three 
approaches implement a single action, a set of deviations for all affected flights.  More realistic modeling is certainly 
plausible—to solve part of the problem, wait a while for events to unfold, resolve the new problem situation, and 
repeat.  This approach being explored further by the authors. 

To compare approaches, ground delay and airborne delay (caused by circuitous routing) are converted to dollar 
costs and ranked to evaluate the relative merit of each approach.  In addition, metrics regarding the success in 
achieving target sector loading are compared. 

A. Manual Approach 
To represent the Manual Approach in our simulation system, daily logs of TFM actions were extracted for the 

bad weather day, and the Playbook routings for that day were used. For flights not put onto a Playbook routing, the 
Heuristic Approach was used, as described next.  
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Figure 2. A probabilistic airspace congestion 
forecast for three ATC sectors 
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B. Heuristic Approach 
The Heuristic Approach may be an improvement over the Manual approach. Its logic is characterized as a 

“greedy” algorithm,3 in that the first feasible option available for a flight is the one selected, without either look-
ahead or back-tracking to improve the solution. The logic is as follows (see Fig. 4): 

 

 
Figure 4. Overview of Heuristic Congestion Management Algorithm. 

 
The first step is to identify all of the flights that enter the weather region in the time of interest. All such flights 

that are eligible for reroutes and delays are sorted into a processing order that is based on increasing time of arrival 
to the weather region; each flight is then removed, in order, from counts in the sector tally, and then added back one 
at a time. If the original flight plan does not violate any congestion constraints (e.g., the maximum acceptable 
probability of congestion), then the original flight plan is accepted. If it does violate the constraints, reroute and 
delay options are examined to find the option that provides the earliest arrival time to the flight’s destination that 
satisfies the problem constraints. If no workable option is available, the flight is left on its original route.  
Alternative routings are selected from a database of historical routes between the appropriate origin and destination. 

As the algorithm proceeds, ever fewer “degrees of freedom” remain, and the inclusion of ground delay is 
increasingly necessary. Hence the classification of the approach as “greedy”—without any consideration of flights 
not yet assigned a route and a (possibly delayed) take-off time, the current flight set is locked into the current 
solution. 

C. Genetic Algorithm (GA) Approach 
A GA Approach may further improve overall results, because the myopia of the Heuristic Approach is 

overcome. In brief, a GA Approach mimics, in certain ways, genetic mechanisms in the real world. A solution to the 
problem is represented as a string of values (in the natural world, a chromosome comprised of genes). For the 
problem at hand, the values are possible route/delay solutions for each flight. For example (see Fig. 5), the string:  
0 6 4 2… means that flight #1 gets its solutions #0, flight #2 gets its solution #6, flight #3 gets its solution #4, flight 
#4 gets its solution #2…  So ultimately, some string will be selected as having the lowest cost (ground + air delay) 
among all strings examined, and will be the final result of the algorithm. This string is not limited to a single priority 
ordering, but instead is chosen to meet an overall performance metric. 

 
 
 
 
 

 
 

 

The selection and manipulation of strings mimics the natural world: a population of strings is generated using 
random assignment other appropriate method, so if there were 100 flights that required intervention, and each flight 
had a solution set of 15 possible delay/routing values, then a single member of the population would be a vector of 

  Figure 5. GA representation of potential solution. 
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length 100, containing integers valued 0 to 14. As the algorithm proceeds, new strings are created by cutting and 
splicing between pairs of strings (analogous to genetic recombination in the natural world). Offspring from the 
current generation can become parents in the next generation, subject to a fitness test. Fitness is evaluated using the 
cost function—low cost strings are selected as having the potential to generate ever-better solutions. The analogue in 
the natural world is the “survival of the fittest” notion. And, as in the natural world, a final step of mutation or 
random perturbation of some string values has the potential to further improve fitness. (See Fig. 6 for a pictorial of 
the generational transition—recombination and mutation.) The GA Approach has been shown in the literature4 to be 
a robust way to search complex spaces, and that is what is called for when the airspace congestion problem is 
sufficiently complex.   

 

IV. Earlier Results 
Several earlier analyses have been undertaken. Initial comparisons of Manual vs. Heuristic show promise—

Heuristic bests Manual for two different bad-weather days and three different randomly selected flight sets, using a 
simple cost function of dollar value of ground delay and airborne delay.5 

A comparison of Heuristic vs. GA6 on three test problems (5 to 35 manipulated flights) examined two solutions 
per problem—one solution was constrained to be delay-only, the other solution allowed both delay and re-routing.  
In summary, the study showed the following: 

1) Both Heuristic and GA were effective at solving the congestion problems, although Heuristic failed to find a 
feasible solution for one of the six (3 test problems × 2 solutions each). 

2) Heuristic was most effective with the delay-only solutions; GA generally performed better when re-routes 
allowed. 

The observation that GA sometimes did not best the Heuristic was initially surprising—it was initially assumed 
that GA should always best Heuristic, since it was a more elaborate approach, and was well suited to our problems, 
as described above.  It was concluded that the GA was not converging, and perhaps not even getting close to an 
optimal solution.  A new approach was considered— “seeding” the GA with the Heuristic solution.  This was 
thought to be reasonable, because it would force the GA to start searching in a fruitful neighborhood of the search 
space.  It would also guarantee that the GA would do no worse than the Heuristic. Initial experiments show promise.   

These results suggest that the benefits of an optimizing algorithm may be largest for congestion scenarios with 
many degrees of freedom, and mutual objectives such as cost and equity that must be balanced in arriving at a 
solution. This is the type of problem most likely encountered in actual practice.  In the following sections, a large, 
complex real-world problem is described and solutions are attempted by the three approaches. 

Figure 6. Recombination, mutation to make a new generation.  
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V. A Complex Real-World Problem 
A real-world problem was selected for comparing the three approaches described above. The day of May 31, 

2004 was selected as being a challenging bad en route weather scenario.  A line of thunderstorms hundreds of miles 
long, from Texas north to Ohio, formed and slowly moved east (see Fig. 7).  Because it was a well organized 
system, and was moving east at a steady pace, it was well suited to TFM solutions that involved ground delay and/or 
pre-departure re-route formulation.  The look-ahead time, per the activity logs of the TMU of the en route ATC 
facilities showed TFM initiatives being implemented a couple of hours before the weather event. Moreover, the 
TMU logs also reflected the complexity and demanding nature of the event—many local TFM initiatives were 
necessary to fine-tune the earlier strategic solutions as the day wore on, and the weather moved and morphed.  The 
problem was thus deemed appropriate for comparing our three approaches, especially for exercising the GA 
Approach, because we had conjectured that that approach would best show its mettle in solution of a complex 
problem. 

 

 
 To represent this problem for our computer-implemented algorithms, two geographic regions were identified.  
See Fig. 8 for a layout of the airspace sectors and overlays of the two regions. The inner region, circumscribed by a 
dotted line is the nominal estimate of the location of the severe en route weather (en route meaning that the weather 
is high-altitude, and interferes with flights at their cruise altitude.)  For simplicity, our scenario definition had the 
weather stationary and fixed in form, even though it moved and morphed in the real-world.  Within the inner region, 
sectors are subject to reduced capacity because of the weather—a rough estimate of capacity loss was made, using 
simply the area of coverage.  If a sector was 50% covered by the inner region of Fig. 8, then it was assumed that the 
sector had a 50% capacity loss resulting from severe weather. The outer region, inscribed by the bolder, dashed line 
is the “area of interest”—any flights whose good-weather flight plan path penetrates this region are subject to 
manipulation. All of the sectors covered by the outer region are monitored for load, and flight assignment for sector 
traversal is compared against the already assigned demand in the sector. Eight hundred twenty-eight flights 
penetrated the outer region, making the problem quite complex.  

Next, the three approaches to problem solution are described.  
 

 
 
Figure 7. En route weather at 11:00 GMT on May 31, 2004. 
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A. Manual Approach 
The Manual Approach was supposed to mimic the current-day solution of: 
1)  Selection of strategic Playbook routes to offload major demand components onto pre-stored and pre-

coordinated routes and 
2)  Local fine-tuning of the remaining demand via ground delay and tactical (shorter look-ahead) re-routing. 
To effect this, the TMU activity logs were examined, and the major Playbook routings of that day were 

considered.  As shown in Fig. 9, Playbook routings can go well wide of the actual weather location.  Note also in 
that figure the re-routes from Florida to the Nation’s Capital.  Because traffic diverted east of the weather would be 
interfering with the major flows north from Atlanta and Florida, it was necessary to move some Florida traffic even 
further east, even involving some tracks over the ocean. 

Playbook routings are along major existing airways, and are pre-coordinated, meaning that those facilities 
affected by the route have all agreed to the operational feasibility of the routing beforehand.  Even though there are 
scores of Playbook routes available, they cannot possibly route around all weather situations efficiently.  This 
phenomenon is one of the hypothesized benefits mechanisms at play—the Playbook routes are quick and easy to 
implement, but they can often involve an excursion away from the weather.  By utilizing a database of 
heterogeneous historical routes, the Heuristic and GA Approaches had the opportunity to gain efficiency over 
Playbooks two ways:  

1) By just skirting the weather region, avoiding costly excursions and  
2) By spreading traffic out, avoiding the bottlenecks resulting from many deviated flights taking the same re-

route. 
An open research question is the operational acceptability of a heterogeneity of flights in light of the uncertainties of 
the weather day. 

Using our off-line TFM planning facility, over 100 flights were put onto these routes.  The remainder of flights 
were assumed to have received more tactical actions—ground hold/delay and local re-routes with shorter look-
ahead, as time passed and the weather event neared.  To mimic the tactical TFM initiatives, the Heuristic Approach 
was applied to the flights not assigned to a Playbook route. 

 

 
Figure 8. Estimating effect of weather on sector capacity. 
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Figure 9. Playbook routing around severe weather. 

 

B. Heuristic Approach 
The Heuristic Approach was applied to the selected scenario.  Flights were sorted on their nominal unperturbed 

time of first encountering the weather system.  Then, one-by-one, a re-route/delayed take-off was assigned to each 
flight, on a “first-fit” basis.  That is, the first feasible re-route/delayed take-off combination was selected for a flight.  
As successive flights on the sorted list of eight hundred flights were handled, fewer degrees of freedom were 
available.  Flights near the end of the list might receive delay and routing that was extreme and likely not very 
acceptable to the air carrier, or, alternately, it happened that some flights could generate no feasible solution.  That 
is, there remained no option, in terms of ground delay and re-routing, that could still satisfy the goal of a fixed 
probability of sector congestion for all sectors in the outer region.  This situation was allowed, and was accounted 
for in the “probability of remaining congestion”-style metrics used to evaluate and compare the solution approaches. 

C. GA Approach 
 It was supposed that the GA Approach would do well on this large, complex scenario.  Given 828 flights needing 
manipulation, and 8 or 10 delay/route options for each, the sample space was vast and considerably non-smooth.  A 
GA is well suited to this situation—it efficiently searches large, ill-behaved sample spaces.  However, either because 
of insufficient run-time, or the challenge of setting the tuning parameters correctly, the GA Approach did not best 
the Heuristic Approach, as discussed below.  The idea of “seeding” the GA with results from the Heuristic approach 
are being pursued, but no results are yet available. 
 

VI. Results 
Four metrics were computed for the three solution approaches.  Figure 10 shows the delay costs in thousands of 
dollars, associated with the ground delay and re-routes (re-routes typically add time to a flight, because the 
undeviated path is generally very direct.)  Of the three approaches, Heuristic has the lowest cost, with the Best GA 
second lowest.  (For these metrics, several variant runs of the GA were undertaken, with varying parameter values.  
The best of these variant runs was used to represent the GA result.  Because no single GA solution generated the 
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four metrics values described in this section, it may be optimistic to assume that, with proper parameter settings, a 
single GA solution will be found that can exhibit the performance shown here.) 
 

 
 

 
  

 Figure 11 examines one aspect of congestion.  It shows the percent of sector/look-ahead-time combinations in 
which the probability of sector congestion was reduced to below 50%, given that the unperturbed probability was 
above 50%.  (Each sector of interest is examined at ten different look-ahead times: from 60 minutes to 3 hrs 15 
minutes.  Although there could easily be correlation in the results—if a sector is congested 60 minutes from now, it 
might similarly be congested 75 minutes from now—all of the sector/look-ahead-time combinations are evaluated 
on an equal basis.)  This metric measures the success in lowering the probability of congestion, for the sectors that 
need it, and a larger value is better.  In this case, Heuristic slightly bests the best GA solution. 

Figure 12 shows a metric that is somewhat the reverse of the prior one.  It shows the percent of sector/look-
ahead-time combinations in which the probability of sector congestion was increased to above 50%, given that the 
unperturbed probability was below 50%.  So, this is the amount of “trouble caused” by the approach, in its attempt to 
solve the congestion problem.  In this case, a smaller value is better, and the best GA solution is the winner. 
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  Figure 10. Delay costs, in thousands of dollars (smaller is better). 
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P(overage) reduced to < 50%, given that unperturbed P was > 50% 
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Finally, Fig. 13 shows the average change (over applicable sector/LAT combinations) in P(congestion), given 

that the unperturbed P was > 50%.  The most favorable result is a large negative value.  (Note the reversed sense of 
the Y-axis in the figure.)   Heuristic clearly bests the Best GA here. 
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Figure 12. Percent of sector/look-ahead time combinations wherein P(overage) 
increased to > 50%, given that unperturbed P was < 50% (smaller is better). 
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Figure 13. Average change (treatment minus unperturbed) in P(overage), 
given that unperturbed P was > 50% (large negative is better). 



 
American Institute of Aeronautics and Astronautics 

 

11

VII. Summary and Next Steps 
A large, complex real-world problem has been attempted using three algorithms.  The Manual Approach is a 

modeled representation of how today’s TFM system might handle a severe en route weather situation.  Two 
alternative, probability-based machine solutions, called Heuristic Approach and Genetic Algorithm Approach were 
also modeled and compared.  The problem was quite challenging – a large severe weather mass from Texas to Ohio, 
affecting hundreds of commercial flights. 

Four metrics were captured and compared to assess the three approaches, one metric on the dollar cost (to the air 
carriers) of flight deviations, and three metrics characterizing the “probability of sector congestion” criterion active 
in the model mechanisms. As a general ranking among the three approaches, Heuristic was best, GA was second, 
and Manual was last.  It is somewhat surprising for the Heuristic Approach to best the GA Approach – the GA is a 
more sophisticated approach, and should do well on the large complex problem. It is assumed that a combination of 
insufficient computer run time and ill-tuning of internal parameters are the causes of the GA Approach’s poor 
performance. 

A idea being pursued is the “seeding” of the GA initial population with final results of the Heuristic Approach.  
This may lead the GA to neighborhoods in the search space which are promising in terms of objective function. This 
stratagem has been successfully applied to smaller problems, and is being adapted to this one. 

Finally, the application of these solutions needs to be explored. Certainly they could be used as a “prescription” 
to alleviate a congestion problem, but they may also serve as the starting point for a collaborative solution process 
among FAA facilities and aircraft operators.  Appropriate mechanisms for this process are being explored. 
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