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Abstract 

En route airspace congestion, often due to 
convective weather, causes system-wide delays and 
disruption in the U.S. National Airspace System 
(NAS).  Today’s methods for managing congestion 
are mostly manual, based on uncertain forecasts of 
weather and traffic demand, and often involve 
rerouting or delaying entire flows of aircraft.  A 
new, incremental decision-making approach is 
proposed, in which prediction uncertainty is 
explicitly used to develop effective and efficient 
congestion resolution actions.  Decisions are made 
based on a quantitative evaluation of the expected 
delay cost distribution, and resolution actions are 
targeted at specific flights, rather than flows.   A 
massively-parallel simulation of the proposed 
method has been developed, and results for an 
operational-scale congestion problem are presented. 

Introduction 
En route airspace can become congested 

through either excessive demand or capacity 
reduction, the latter often due to convective 
weather.  Traffic managers in today’s U.S. National 
Airspace System (NAS) control congestion 
primarily through manual processes, relying on 
experience and limited traffic prediction data to 
develop congestion resolution strategies [1]. 

Figure 1 depicts a typical situation.  
Convective weather reduces sector capacity by 

reducing available airspace and by inducing flight 
deviations, which make the traffic patterns harder to 
manage.  Weather forecasts are inherently 
uncertain, making it difficult to forecast capacity.  
Traffic demand forecasts are also uncertain, due to 
changing flight schedules and pilot/airline choices.  
Predicting congestion, where demand exceeds 
capacity, is therefore also uncertain.  This 
complexity is compounded by the size of en route 
congestion problems, which often involve hundreds 
of flights. 

Because it is difficult for traffic managers to 
resolve en route congestion, conservative strategies 
are used, which induce excess flight delay and 
schedule disruption.  Also, resolution actions 
typically involve entire traffic flows, since no tools 
are available to produce more tightly-targeted 
solutions. 

Background 

Present-Day Congestion Management 
In the NAS, the Enhanced Traffic 

Management System (ETMS) provides demand 
predictions for most sectors in 15-minute bins, for 
prediction look-ahead times (LAT) of several hours 
[2].  This information is used to provide the 
congestion alerts shown in Figure 1.  Future aircraft 
trajectories are predicted based on filed flight plans 
or schedule data, wind forecasts, and for airborne 
flights, radar track reports.  The peak predicted 
count for each 15 minute period is compared to an 
alerting threshold called the Monitor/Alert 
Parameter (MAP). When the peak count is 
predicted to exceed the MAP for a sector, the sector 
is alerted in yellow or red. Red alerts indicate that, 
of the aircraft involved in the peak count, enough 
are already airborne to exceed the MAP even if pre-
departure flights are not counted. Otherwise, the 
alert will be yellow.1  This is a crude way to capture 
uncertainty, since departure time estimates are quite 
uncertain. 

The MAP value is set to represent a traffic 
level high enough to be of concern to the traffic 
manager. The nominal value can be manually 
changed to reflect the impact of weather or other 

                                                 
1 The alerts shown in Figure 1 are a composite of all 
predictions for the next 2 hours.  The 15-minute 
predictions can also be viewed as a matrix (Figure 8). 
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Figure 1. Weather-Related Airspace Congestion 
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adverse conditions, though it can only have a single 
value; it cannot have different values at different 
LAT.  It is not strictly accurate to refer to the MAP 
as a sector capacity, since there are many factors 
involved in sector workload beyond the number of 
aircraft present [3,4].  However, MAP is an easily-
understood abstraction of workload for alerting 
purposes. Thus, simply defined, congestion occurs 
when demand exceeds the MAP. 

In today’s NAS, these predictions are of 
limited use.  They are one data source for traffic 
managers who must develop ground delay or 
reroute initiatives to control congestion.  There are 
no decision-support tools currently available to test 
traffic management initiatives, though extensive 
work has been done to develop such tools [5,6,7].  
These initiatives typically affect flows of aircraft 
(e.g., rerouting all traffic between a pair of airports, 
or miles-in-trail spacing restrictions) rather than 
individual flights. 

Prediction Uncertainty  
A key limitation of present-day approaches is 

the uncertainty of traffic demand and sector 
capacity predictions.  At the timeframes required 
for en route congestion management (30 minutes to 
several hours), these uncertainties are significant. 

Traffic demand uncertainties arise from many 
sources.  Flight schedules undergo constant changes 
in response to daily events, and such changes often 
occur between the time of demand prediction and 
the time for which demand is predicted.  These 
include flight cancellations, departure time changes, 
and initiation of previously unscheduled flights.  
There are uncertainties in wind forecasting and 
aircraft performance modeling, and unforeseen 
changes in flight route and cruising altitude due to 
weather and air traffic control (ATC) intervention.  
The magnitude and characteristics of these 
uncertainties have been extensively described [8], 
measured [9], and modeled in the context of sector 
load forecasting [10,11,12].  The models developed 
by Wanke et al [12] were used in this study. 

Uncertainties also exist in predicting sector 
capacity.  While ETMS generates alerts based on 
constant aircraft count thresholds, it is widely 
accepted that the real capacity of sectors depends 
on traffic complexity and weather, and should also 
be treated probabilistically.  Research is underway 
to develop a probabilistic sector capacity prediction 
[13], but a practical form is not yet available. 

Probabilistic Decision Making 
One way to factor in prediction uncertainty is to 
present probabilities directly or indirectly on traffic 
management decision support displays, relying on 
the skill of the traffic manager (and some 

procedural guidance) to use such information 
appropriately.  A simple application is to replace 
the current point estimates of traffic demand with 
an estimate of known statistical properties, such as 
the median of the probability distribution. This 
would compensate for prediction bias without 
requiring the traffic manager to absorb any new 
information.  For example, ETMS predictions at 
longer look-ahead times (LAT) are more frequently 
too low than too high, since they cannot include 
flights that have not yet filed plans.  However, this 
gives little help to the traffic manager in 
determining when and how to start resolving a 
predicted congestion problem. 

Probabilistic predictions can also be used by 
decision-support automation.  Given detailed 
knowledge of demand and capacity prediction error 
distributions, standard decision analysis techniques 
can be applied to improve decision making. 
Numerous efforts are under way to incorporate 
uncertainty explicitly into air traffic management 
decision algorithms. Davidson et al [14] suggest a 
“probabilistic decision tree” approach for making 
large-scale ATM decisions, by estimating and 
continually adjusting the probability of the outcome 
of a set of alternate futures.  Mukherjee and Hansen 
[15] demonstrate a decision tree approach coupled 
with an optimization method, to planning arrivals to 
a single, weather-impacted airport. Nilim et al [16] 
have developed a method in which convective 
weather is modeled as a dynamic, probabilistic 
process, and flight-specific solutions are found via 
dynamic programming. Ramamoorthy and Hunter 
[17] have built a framework to estimate 
probabilistic TFM decision-making benefits at the 
NAS level.  Algorithms and an early prototype for 
solving en route congestion probabilistically in real-
time, at a single point, have been presented by 
Wanke et al [18,19].  However, the general problem 
of deciding both when and how to solve a specific 
en route congestion problem probabilistically has 
not been solved.  

Research Focus 
We aim to provide real-time decision support 

for en route congestion problems, explicitly 
accounting for uncertainty, and adapting to 
changing conditions as problems evolve over time.  
The decision-making process for congestion 
resolution is shown in Figure 2.  Traffic demand 
and sector capacity are predicted and compared to 
identify congestion problems.  In the context of 
other operational constraints, the decision maker 
must determine whether action is required.  If 
action is warranted, resolution strategies are 
constructed and executed to achieve the desired 
goal.  This is an iterative process, done today by 
humans with limited information. 
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Given the uncertainties in the traffic demand 
and sector capacity predictions, the timing of 
resolution actions is as important as the type and 
magnitude of the actions.  If action is taken early, 
unnecessary delays are likely to be incurred.  If 
action is taken late, required maneuvers may be 
more costly (e.g., rerouting airborne flights).  The 
challenge is to choose the correct set of actions at 
each point in time, to incrementally solve the 
congestion problem with the minimum overall 
impact on involved flights. 

Figure 3 illustrates an incremental decision-
making framework.  There are a series of candidate 
decision points over time, starting at the time at 
which a significant congestion problem is detected.  
At each point, there is a range of discrete options, 
ranging from doing nothing to “fully” resolving the 
congestion (i.e., matching the predicted demand 
directly to the predicted sector capacities). 

The method proposed here involves 
simulating the range of possible outcomes for each 
combination of current and future decision point 
options.  This is a stochastic simulation, producing 
a distribution of resolution impact for each decision 
path.  The best path is that which successfully 
resolves the congestion and incurs the most 
acceptable impact distribution (e.g., lowest 
expected value of total flight delays). 

The Incremental Decision-Making 
Simulation 

This process is difficult to simulate.  Although 
the target metrics of congestion and delay are 
aggregate values, the resolution actions require 
flight-specific maneuvers (ground delay, rerouting).  
Therefore, predictions and actual outcomes for 
individual flights must be simulated.  This rules out 
traditional closed-form methods such as dynamic 
programming, which require modeling the system 
as a Markov process.  Thus, a Monte Carlo 
simulation approach is used.   

The Decision Tree 
Figure 3 is an abstract representation of the 

decision options.  A concrete expression is needed 
for computation.  To this end, we have defined a 
resolution action in terms of a target maximum 
congestion probability.  It is assumed that at each 
decision point there exists a prediction of traffic 
demand, a prediction of sector capacity, and an 
estimate of the probability that the traffic demand 
exceeds the capacity.  The resolution strategy 
developer (Figure 2) is invoked to find flight-
specific actions (reroutes, delays), if needed, to 
reduce the probability of congestion over the 
airspace and time of interest to the target goal. 

An example of this tree is given in Figure 4.  
There are three options at the first two decision 
points.  A goal of 1.0 indicates that no resolution 
actions will be done, and progressively lower 
values will require more aggressive resolution 
actions to be taken.  A goal of 0.5 is roughly 
equivalent to matching the most likely value of 
demand to the most likely capacity, which is 
analogous to today’s deterministic demand/capacity 
management techniques.  Thus, a goal of 0.5 means 
“resolve all the anticipated congestion”.  The third 
option, 0.6, indicates a partial resolution. 

The final decision point contains a single goal: 
to resolve the remaining congestion, by reducing 
the exceedance probability to 0.5 as the congestion 
time is reached.  At this short time before the 
problem, the prediction uncertainty is small, so any 
actual MAP exceedance would likely be small.   

Each path through this tree is described by a 
sequence of maximum probability goals, and 
represents a single congestion management 
strategy.  The overall mean cost along a decision 
path is the sum of mean cost at each decision point 
along the path.  This sequence of options at discrete 
decision points is obviously an approximation of 
what is in reality a continuous process with many 
options.  The most general form of this problem is 
likely impractical to solve.  This approach provides 
a solvable approximation, and the number of 

 
Figure 2. Operational Concept for Probabilistic 

Congestion Management 

100%

50%

Initial
congestion
forecast for

time T

Do nothing, wait

Partial resolution

Full resolution

Decision
point 1:

T – 90 min

Traffic, weather 
situations evolve, 
forecasts change…

Decision
point 2:

T – 60 min

Time of
predicted

congestion
problem

Choose
goal

Choose
Goal

T

Congestion
probability

exceeds 50%;
Develop a plan

100%

50%

Initial
congestion
forecast for

time T

Do nothing, wait

Partial resolution

Full resolution

Decision
point 1:

T – 90 min

Traffic, weather 
situations evolve, 
forecasts change…

Decision
point 2:

T – 60 min

Time of
predicted

congestion
problem

Choose
goal

Choose
Goal

T

Congestion
probability

exceeds 50%;
Develop a plan  

Figure 3. Abstract Incremental Decision Tree 



- 4 - 

options and decision points can be increased at will, 
with only the cost of longer computation time. 

Traffic Modeling 
There are two traffic models required for the 

simulation.  The first is a traffic demand prediction 
uncertainty model, used to determine the 
probability of congestion given a standard 
deterministic prediction of future aircraft 
trajectories.  It only needs to predict the magnitude 
of the peak traffic counts, not specific flight 
uncertainty.  To meet this need, a closed-form, 
statistical uncertainty model for demand predictions 
was developed [18]. This model, the Aggregate 
Demand Model (ADM), is based on a 
comprehensive set of statistics on sector peak count 
prediction uncertainty compiled in prior research 
[9]. The model forecasts peak traffic demand 
distributions based on four variables: the look-
ahead time, the deterministic predicted peak count, 
the number of airborne flights in the peak count 
prediction, and the primary sector traffic type 
(departure, en route, arrival, mixed). This model is 
very fast to compute and can be used in either 
simulation or real-time applications. 

The second model is needed to simulate the 
range of possible traffic outcomes in a situation, 
given an initial prediction.  It must be flight-
specific, to allow resolution actions to be computed 

at each decision point.  A Monte Carlo model was 
developed for this purpose [19].  This model begins 
with a set of predicted flight trajectories, and based 
on empirically-derived distributions, determines a 
set of possible actual outcomes for that flight.  It 
models the following, for predicted flights: 

• Cancellations 
• Departure time estimation errors 
• Changes in route and cruise altitude  
• Flight progress estimation (speed) errors 

Also, the model will create and add a set of 
flights that have not filed at the time of the 
prediction but will appear before the time for which 
the prediction was made (“pop-ups”).   

Airspace Capacity Modeling 
As noted earlier, there are not yet accepted 

methods for sector capacity prediction, especially in 
the presence of weather.  For this study, the ETMS 
MAP was used as a baseline sector capacity, and 
the impact of weather on a sector was simulated by 
reducing the MAP over a time period.  Once a 
model for capacity prediction uncertainty is 
available, it will be incorporated into the 
simulation.  

Congestion Resolution 
For each option at each decision point, a 

resolution strategy must be developed to meet the 
desired maximum congestion probability.  The 
simulation uses a heuristic algorithm that can be 
rapidly computed [18], and has been shown to 
provide effective, though not optimal, flight-
specific solutions [20]. 

The resolution process begins by defining two 
airspaces.  The first, the Congestion Resolution 
Area (CRA), contains those sectors identified as 
being congested.  Flights that penetrate the CRA 
during the congestion period are candidates for 
resolution maneuvers.  The second, the Congestion 
Management Area (CMA), is a larger group of 
sectors surrounding the CRA. These sectors are 
monitored during the resolution development 
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process so that resolution maneuvers do not create 
additional congestion in the CMA. 

Figure 5 illustrates the process.  Candidate 
flights are subtracted from the CMA traffic count 
predictions.  Then, the flights are placed in priority 
order.  Airborne flights are first, sub-ordered by 
arrival time to the CRA.  Pre-departure flights are 
then added to the bottom of the list, also sub-
ordered by arrival time.  Next, a series of alternate 
route options are generated for each flight.  These 
are selected from a database of predefined and 
historically-flown routes, keyed by origin-
destination pair.  Pre-departure flights also have the 
option of taking ground delays up to a set 
maximum value. 

Resolution maneuvers are assigned in a single 
pass through the ordered candidate list.  First, the 
current flight trajectory is added to the CMA sector 
counts, and the ADM is used to evaluate the 
resulting congestion probabilities.  If the maximum 
congestion probability is not exceeded, then the 
flight is not rerouted or delayed.  If the maximum 
probability is exceeded, then predicted trajectories 
for all combinations of alternate routes and (if the 
flight is pre-departure) ground delays are 
constructed.  Of the trajectories that do not violate 
the congestion constraint, the one with the earliest 
arrival time at destination is chosen as the best 
option.  If no trajectories work, the flight is not 
modified, and the congestion probability goal will 
not be achieved.  

Flights that are early in the prioritized list tend 
to be easier to solve. As the processing reaches the 
end of the order, it is harder to find options that do 
not exceed the congestion threshold, so later flights 
may experience more severe reroutes and delays. 
This processing order is a key factor in determining 
the optimality and equity of a proposed solution, 
and it remains an area for experimentation to try 
other sorting approaches. The current 
implementation divides the overall list into those 
that can be ground delayed and those that cannot. 
Flights that cannot be ground delayed are processed 
first, since they have less flexibility in terms of 
actions that can be taken.  Also, rerouting airborne 
flights is generally more difficult and expensive 
than rerouting flights that have not yet departed.  

Prediction Evolution 
In order to capture the interesting features of 

probabilistic decision-making, it is not sufficient to 
simulate how actual traffic ensues from a given 
prediction.  We must also simulate how the state of 
knowledge (i.e., the updated prediction) changes as 
simulation time passes.  There is a single traffic 
prediction at the start of the simulation.  There are 
N Monte Carlo outcomes modeled from that 

prediction.  When simulation time is advanced to 
the next decision point, each of those outcomes will 
also have an updated prediction, and that prediction 
will reflect what has become known since the last 
decision point.  For example, if flight ABC123 is 
contained in the initial prediction, but in a particular 
outcome ABC123 is cancelled, then there is some 
time at which this becomes known.  If the flight is 
cancelled between the first and second decision 
points, then the prediction at the second decision 
point should not contain ABC123, and ensuing 
resolution actions will not attempt to delay or 
reroute that flight. 

For the initial simulation runs, a very simple 
model of prediction evolution was used.  Flights 
which cancel do so 15 minutes before their planned 
departure time.  Pop-up flights file 30 minutes 
before their planned departure time.  Flights which 
leave later than predicted are discovered to be late 
when their initial departure time passes.  Flights 
which are rerouted receive the new route at takeoff.  
These rules are simplistic, and will be replaced with 
more realistic, statistically-modeled behavior based 
on empirical studies.  But they are realistic enough 
to generate interesting results. 

Evaluating the Decision Tree 
Figure 6 illustrates the simulation flow.  This 

assumes that the congestion resolution and 
management areas has been identified (CRA and 
CMA), sector capacities are defined, and supporting 
data has been assembled (wind forecasts, Monte 
Carlo distribution parameters, etc.) The process 
begins with a predicted trajectory set, which is used 
as a basis by the Monte Carlo traffic simulation to 
generate a set of possible “actual” outcomes for the 
predicted flights.  These characterize the variety of 
ways that the situation can play out, based on the 
statistical model of flight-specific variations. 

Next, decision point 1 (DP1) is evaluated (see 
the large brown boxes in Figure 6).  For each 
option, the initial prediction is used to compute a 
resolution action that meets the desired maximum 
congestion probability.  The incurred cost is saved.  
A new prediction set is developed by substituting in 
the resolution maneuvers.  Finally, for flights 
modified by the resolution, the corresponding 
flights across the full set of actual outcomes are 
altered to capture the effect of the resolution 
maneuvers.  The Monte Carlo model is used again 
for this step.  If the resolution maneuver for a 
specific flight involves a ground delay, then new 
“actual” departure times are generated for that flight 
for each of the N traffic outcomes.  If the resolution 
maneuver includes a reroute, then the flight 
progress and route/altitude variability models are 
re-applied to that flight for all outcomes.  This 
maintains consistency. Flights that are not been 
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maneuvered at a decision point retain the same set 
of trajectory variations at the next decision point, 
and the combined unmodified and modified set 
represents the altered range of traffic outcomes 
resulting from the executed resolution maneuver. 

Once all options are calculated, time is 
advanced to DP2 (the large green boxes).  Each 
DP2 option must be calculated for each DP1 result, 
to fully explore each possible decision path.  The 
first step is to apply the prediction evolution rules 
described earlier to reflect the passage of time and 
increase in knowledge about the outcomes.  Then, 
new resolution maneuvers are calculated much the 
same as for DP1, with two important differences. 
First, there is now a different prediction associated 
with each actual outcome, so there will be N 
different resolution maneuvers calculated.  This 
produces a distribution of resolution cost, rather 
than a single value.  Second, flights that were 
maneuvered at a previous DP are exempted from 
further maneuvers, reducing flexibility.  This is to 
avoid making repeated schedule changes to the 
same flight, which is considered highly undesirable 
by airlines and pilots. 

This process continues through the DPs until 
all possible paths converge at the final DP, and the 
final resolution goal is computed. 

Statistical metrics are captured at each 

decision point along each decision path.  If a 
resolution strategy is applied, the number of flights 
affected, type and number of maneuvers generated, 
and the delays produced are saved.  Predicted post-
maneuver congestion probabilities are calculated to 
determine if the resolution strategy succeeded. 
“Actual” congestion probabilities, based on the 
modified Monte Carlo outcomes, are also saved. 

Implementation 
The simulation has been developed in Java, 

and is highly parallelized.  Because of the 
computational structure, groups of Monte Carlo 
outcomes can be independently carried through the 
decision paths.  Intermediate results are saved, and 
recombined for analysis after all parallel runs are 
complete.  The run described below for the sample 
scenario took approximately 30 minutes to 
complete on 8 dual-processor/dual-core systems. 

Example Congestion Scenario 
A realistic congestion scenario was developed 

by selecting traffic from a busy period of a clear-
weather day, and creating congestion by postulating 
sector capacity reductions due to weather.  This was 
done to avoid a situation where significant traffic 
management actions were actually taken in 
response to congestion, which would make it 
difficult to assess the performance of the proposed 
congestion management technique. 

The area of interest for this scenario comprises 
four laterally or vertically adjacent sectors in the 
Washington Air Route Traffic Control Center 
(ARTCC), denoted ZDC.  Three of the sectors 
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Figure 6.  Flowchart for Three Decision Points 
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(ZDC sectors 72, 16, and 36) are visible in Figure 
7; the fourth, ZDC14, is a low altitude sector below 
16 and 72.  It is assumed that these sectors have a a 
capacity reduction of 5 below their nominal MAP 
values for the period 1800 to 2000 UTC.  This area 
was designated as the CRA.  The CMA, composed 
of all sectors adjoining the CRA either laterally or 
vertically, includes 38 sectors. 

For this scenario, there is congestion predicted 
in the CRA sectors at 1700 UTC.  Figure 8 shows 
the median peak traffic counts and congestion 
alerts.  Each row of the matrix is a time-series 
prediction for one sector, at 15 minute intervals.  
The normal peak count threshold (MAP value) for 
each sector is next to the sector name.   The number 
in each cell indicates the median peak traffic count 
value from the ADM.  Red alerts indicate a greater 
than 0.75 probability that the actual demand 
exceeds the sector capacity.  Yellow alerts indicate 
a greater than 0.50 probability.  Thus, the period 
outlined in blue represents a serious congestion 
situation that needs to be resolved. 

The decision tree used in this scenario is 
nearly identical to that shown in Figure 4, with the 
exception that congestion actually starts 75 
minutes, rather than 90, after the first prediction 
(though the first red alert is 90 minutes later).  The 

system is tasked to resolve potential congestion 
from 1815 to 1915 UTC. Approximately 1500 
flights pass through the CMA during or near this 
period, 191 of which also penetrate the CRA. 

By studying the statistical features of the 
output distributions, it was determined that 250 
Monte Carlo outcomes were required to obtain a 
95% confidence that on the estimate of the mean 
number of aircraft affected by each resolution 
action was within one aircraft of the actual mean. 

Results 
The overall impact results from the nine 

decision paths are summarized in Table 1.  The 
metrics used are the mean number of flight affected 
(across all Monte Carlo outcomes), mean total 
positive delay (TPD), and the mean TPD per flight. 
Only positive delays were tabulated so as not to be 
cancelled out by negative delays (early arrival 
times).  While negative delays are desirable in some 
cases, they may also represent a disruption in other 
cases.  Therefore negative delays were treated as 
neutral in our analysis of decision path goodness. 

The first decision path 1.0-1.0-0.5 (in red) 
failed to produce a successful congestion solution 
in many of the outcomes, as observed from the final 
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predicted congestion probabilities.  Thus, the low 
number of flights and total delay values are 
misleading.  This path is the “wait until the last 
minute” solution, and it is not surprising that it can 
fail.  Also, the maneuvers generated were much 
longer per flight than for other paths.  The rest of 
the paths produced successful congestion 
resolutions for all runs.  In other words, after the 
final step, the remaining congestion probabilities 
for the CRA sectors were all 0.5 or less. 

Path 0.6-1.0-0.5, representing a moderate 
early maneuver followed by full resolution at the 
end, had the best overall performance.  48 flights 
were affected, with an average of 6.6 minutes of 
arrival delay per flight.   

The last three paths represent strategies which 
solve all the congestion at the first DP, and the next 
two DPs are used to ensure that the congestion 
stays solved.  These prove to be the most 
expensive.  The last path, where all the congestion 
is solved at all three points, has twice the impact of 
the best successful path. 

It is useful to examine some details of the 
solutions generated.  Table 2 breaks down the 
impact statistics by decision point for the best and 
worst strategies (paths 4 and 9, respectively).  
Values for DP2 and DP3 are means across the 250 
outcomes.  In both strategies, the mean reroute 
delay at DP1 is negative.  This is because reroutes 
chosen well in advance of the congestion can 
frequently be selected to arrive at the same time or 
earlier than the original route.   

An example reroute is shown in Figure 9.  
This flight from Atlanta to Washington was 
originally filed to penetrate several sectors of the 
CRA (highlighted in blue).  The resolver selected a 
predefined alternate route which, given the wind 
forecast on this day, was computed to have 
approximately the same arrival time as the original.  
It avoids the CRA and does not produce any new 
congestion in the CMA. 

Table 2 also shows that ground delays are a 
more prevalent part of the strategy at DP1 and DP2 
than at DP3.  This naturally follows from the 
composition of involved flights at the different DPs.  
At DP1, most flights involved in the predicted 
congestion are still on the ground, and the fraction 
of airborne flights in the congestion area increases 
as time advances.  In summary, resolving the 
congestion later requires longer and a higher 
proportion of reroutes, but because the prediction 
uncertainty has decreased, fewer flights need to be 
moved.  This is the essential tradeoff. 

Table 3 shows some statistics of the resolution 
distribution for the best strategy at DP3.  It is 
apparent from the standard deviations that there is a 
wide variation across outcomes.  The uncertainty in 
the traffic predictions at DP1 is quite high, and thus 
for this scenario it seems sensible to resolve part of 
the predicted congestion at DP1, and then wait as 
long as possible to identify and resolve the rest.  
More scenarios are needed to study this effect. 

These results are subject to a few caveats.  
First, it is a single problem.  The ADM and the 
Monte Carlo traffic models do not always agree, 
because the ADM is an aggregated model and the 

Table 1. Decision Path Impact Summary 

Decision 
Path 

Mean No. 
of Flights 
Affected 

Mean Total 
Positive 

Delay (min) 

Mean 
TPD per 

Flight 
1.0-1.0-0.5 29.5 271 9.2 
1.0-0.6-0.5 53.6 400 7.5 
1.0-0.5-0.5 71.1 557 7.9 
0.6-1.0-0.5 48 318 6.6 
0.6-0.6-0.5 58.6 392 6.7 
0.6-0.5-0.5 71.1 489 6.9 
0.5-1.0-0.5 83.6 643 7.7 
0.5-0.6-0.5 87.5 678 7.7 
0.5-0.5-0.5 93.3 752 8.1 

Table 2. Decision Path Impact Details 

Decision 
Path Metrics DP1 DP2 DP3 

No. of AC 31.00 0.00 16.98 

Rerouted 15.00 0.00 9.08 
Ground 
Delayed 21.00 0.00 9.84 
Reroute 
Delay(min) -33.88 0.00 101.76 
Ground 
Delay(min) 115.00 0.00 77.46 Best 

Strategy : 
0.6-1.0-0.5 

Positive RR 
Delay 7.92 0.00 117.59 

No. of AC 73.00 12.94 7.35 

Rerouted 34.00 6.77 4.72 
Ground 
Delayed 60.00 9.32 2.74 
Reroute 
Delay(min) -41.05 26.75 100.39 
Ground 
Delay(min) 430.00 104.28 23.56 Worst 

Strategy : 
0.5-0.5-0.5 

Positive RR 
Delay 44.35 44.37 105.08 

Table 3. Resolution Statistics Example 

Metric Mean Standard Deviation 
No. of AC 16.98 6.77 
Rerouted 9.08 6.18 
Ground Delayed 9.84 4.40 
Total Positive 
Delay (minutes) 179.2 76.6 
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Monte Carlo results are specific to the particular 
airspace and traffic situation.  Thus, more problems 
need to be simulated to draw good conclusions.  
Also, the statistics used to generate the Monte Carlo 
model are from a few months of data, and should be 
expanded and updated to get more useful results. 

Applications 
This simulation has several useful 

applications.  First, assuming computational power 
continues to increase, it represents a prototype of a 
real-time congestion resolution decision-support 
system.  Many issues would need to be addressed, 
including: automatic updating of probability 
models, cognitive engineering of the human-
computer interface, incorporation of probabilistic 
weather/capacity forecasts, and how to best allow 
airspace users to participate in resolution maneuver 
generation.  The last could be handled by allowing 
users to submit preferred resolution options for 
their flights (already being discussed in 
government/industry working groups), or perhaps 
by automated negotiation between the resolution 
generator and airline flight planning software. 

The second application is to develop heuristics 
for near-term congestion resolution tools and 
procedures.  We plan to run a matrix of interesting 
congestion problems, and analyze the results to 
derive rules for effective congestion resolution 
actions and timing. 

Thirdly, the simulation is useful for cost-
benefit analysis.  In the current form, the simulation 
is being used to evaluate the benefits of 
incremental, probabilistic decision-making, as 
compared to today’s approaches.  The baseline case 
includes probabilistic traffic forecasts, but is being 
extended to capture probabilistic capacity forecasts.  
This will provide a platform for evaluating the 
potential benefits from proposed probabilistic 
weather forecasting products.  If those weather 
products can be used to provide a probabilistic 
forecast of airspace capacity, then the utility of 
those forecasts for congestion resolution can be 
directly simulated and evaluated. 

Also, if a new technology is proposed that 
reduces uncertainty in demand or capacity 
prediction (e.g., a surface management system, 
which would reduce departure prediction 
uncertainty), then the delay reduction benefits can 
be estimated via simulation.   

Conclusion 
A Monte Carlo simulation technique for 

evaluating incremental, probabilistic decision-
making in en route congestion management has 
been developed.  It has been demonstrated using 

moderately-sized traffic congestion scenario, and 
used to examine a variety of possible congestion 
resolution strategies.  The simulation can be used to 
learn about when and how to solve a variety of 
airspace congestion problems, and to aid in cost 
benefit analyses of several types.  In particular, it 
can be used to evaluate the potential benefits of 
advanced, probabilistic aviation weather forecasts. 
It also represents a prototype of a future congestion 
management decision support system, in which 
probabilistic information is used directly to do more 
efficient en route traffic management. 
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