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Two historical uncorrelated track (UCT) processing approaches have been employed using 
general perturbations (GP) orbit determination theory.  The Cuthbert-Morris algorithm 
clusters UCTs based on plane, drift rate of the right ascension of the ascending node, and 
period matching.  A pattern recognition tool developed by Lockheed Martin finds patterns in 
the trends of GP UCT element set parameters over time.  A new special perturbations (SP) 
hierarchical agglomerative clustering algorithm and SP track-oriented multiple hypothesis 
tracking (MHT) algorithm are considered for SP UCT processing.  Both SP UCT processing 
algorithms show improved performance over the GP UCT processing algorithms for a 
stressing test case. 

 
INTRODUCTION 
 
 Two historical uncorrelated track (UCT) processing approaches have been employed using 
general perturbations (GP) orbit determination theory.  The Cuthbert-Morris (C-M) algorithm clusters 
UCTs based on plane, drift rate of the right ascension of the ascending node, and period matching.  One-
track GP element sets are created from each UCT, and a plot program allows the user to visually see 
trends in the UCT element set parameters and to manually cluster UCTs together that potentially belong 
to the same object.  A pattern recognition tool developed by Lockheed Martin1 attempts to automate this 
manual process that the human eye performs from the plots of the UCT element set parameters.  A 
stressing test case for UCT processing is used to show the limitations of these GP approaches to UCT 
processing. 
 
 Two new special perturbations (SP) UCT processing algorithms are considered and evaluated 
against this stressing case.  The first SP UCT processing algorithm is a hierarchical agglomerative 
clustering algorithm.  Two clustering methodologies are considered, single-link and complete-link, 
which represent the two extremes of hierarchical agglomerative clustering methodologies.  The 
hierarchical agglomerative clustering algorithm with the single-link clustering methodology tends to 
form elongated clusters, whereas more spherical clusters are formed with the complete-link clustering 
methodology.  The hierarchical agglomerative clustering algorithm performs better with the complete-
link clustering methodology than the single-link clustering methodology on the stressing case.  The 
second SP UCT processing algorithm is an SP track-oriented multiple hypothesis tracking (MHT) 
algorithm.  Multiple tracks are updated with the same UCT and maintained in a tree structure.  Multiple 
hypotheses are formulated, followed by global-level track pruning.  Both SP UCT processing algorithms 
show improved performance over the GP UCT processing algorithms for this stressing test case. 
 
 
TEST CASE 
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 The stressing test case consists of three satellites, whose orbits are very close to each other.  The 
satellites are designated as objects 1, 2 and 3.  The term satellite is used in the generic sense to refer to 
any man-made object in orbit around the earth, including debris objects.  Figure 1 shows a plot of the 
operational GP element set parameters of these three satellites from day 212 to day 222 of year 2006.  
These satellites are very small debris objects and the tracking data is very sparse, particularly for object 
3.  Each track consists of three observations separated by 10 seconds.  The element sets are produced by 
a batch GP differential correction (DC) with an orbit determination interval of several days so that 
multiple tracks are used in each DC.  When a new track is received, the element set is updated with the 
new track of observations and all the observations in the sliding orbit determination interval.  These 
satellites represent the kind of objects that show up as UCTs, and in fact, were initially tracked as UCTs 
before they were cataloged.  There are linear trends in some of the element set parameters with good 
separation between the values.  For example, the period of object 1 is about 101.51 minutes, the period 
of object 2 is about 101.52 minutes, and the period of object 3 is about 101.55 minutes.  The drift rates 
of the right ascension of the ascending node (RANODE) are the same for the three satellites, but the 
right ascension of the ascending nodes are slightly offset from one another for a given time.  The 
inclinations of objects 1 and 2 are the same, but the inclination of object 3 is slightly larger than the 
inclination of the other two satellites. 
 
 Figure 2 is a subset of Figure 1, where three element sets were chosen for each satellite.  The 
epoch time between element sets is several days, which will stress the UCT processing algorithms.  The 
linear trends in some of the element set parameters are still evident in Figure 2 with good separation 
between the values. 
 
 Figure 3 shows a plot of one-track GP element sets for the same satellites in Figure 2.  Each 
element set is obtained by first performing an initial orbit determination using the Herrick-Gibbs2 
algorithm for each track of observations followed by a Simplified General Perturbations 4 (SGP4) DC to 
refine the element set.  Because each GP element set in Figure 3 is created from only one track of 
observations, there are more errors in the element set parameters in Figure 3 than in Figure 2.  The linear 
trends in Figure 2 are no longer present in Figure 3, and the values of the element set parameters can no 
longer be separated by satellite.  The test case consists of the tracks that are used in Figure 3, where the 
identity of the satellite for each track is hidden from the UCT processing algorithm.  The satellite tag on 
the observations of each track is changed to a 9xxxx satellite number so that each track has a different 
set of 9xxxx numbers.  This retagging of the observations from the original satellite numbers to 9xxxx 
numbers simulates UCTs and provides a test case where the true identity of the UCTs is known. 
 
 The Cuthbert-Morris algorithm is applied to this test case, but it produces just one cluster of 
three tracks corresponding to object 2.  This is not surprising given that the algorithm is GP-based, and 
the element set parameter values are not well separated by satellite.  The Lockheed Martin pattern 
recognition tool is also applied to this test case, but it produces no clusters.  These GP-based algorithms 
are limited in handling this stressing test case.  
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Figure 1   Operational GP Element Sets 
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Figure 2   Subset of Operational GP Element Sets 
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Figure 3   One-Track GP Element Sets 
 
CLASSIFICATION ALGORITHMS 
 
 Classification algorithms are applicable to the UCT processing problem.  Classification 
algorithms3 form a broad set of algorithms that have been applied to a diverse set fields, including signal 
processing and analysis, target discrimination, pattern recognition, biological taxonomy, and database 
mining, to mention a few.  Figure 4 shows a hierarchy of classification algorithms, which is not 
complete but only intended to illustrate the hierarchy.  The classification terminology among the various 
fields is not consistent, and the terms used in Figure 4 may not agree with what may be used in a 
particular field.  The first division indicates whether each object to be classified can be in only one 
group (exclusive) or in multiple groups (nonexclusive).  The Cuthbert-Morris algorithm is a heuristic 
algorithm that is nonexclusive.  Multiple hypothesis tracking algorithms are also nonexclusive.  The 
exclusive classification algorithms can be divided into unsupervised learning and supervised learning.  
The Lockheed Martin pattern recognition tool uses a supervised learning adaptive resonance theory 
(ART) algorithm, which mimics the human brain.  The Lockheed Martin pattern recognition tool must 
be trained on a data set for which the right answers are known. 
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Clustering algorithms4 can be divided into hierarchical and partitional.  The k-means algorithm is 
a very popular clustering algorithm, but it requires a priori knowledge of the number of clusters.  For 
the UCT processing problem, the number of real clusters (satellites) is unknown, so this algorithm is not 
suitable for this problem.  The hierarchical clustering algorithms can be divided into agglomerative and 
divisive.  The agglomerative algorithms work from the bottom up and start with every object in its own 
cluster.  The agglomerative algorithms combine clusters based on a proximity measure.  The divisive 
algorithms work from the top down and start with all objects in one cluster and iteratively divide 
clusters into smaller and smaller clusters.  The algorithms considered here for SP UCT processing are 
hierarchical agglomerative clustering and MHT. 
 

 
 

Figure 4   Hierarchy of Classification Algorithms 
 
HIERARCHICAL AGGLOMERATIVE CLUSTERING 
   
 Clustering algorithms4 have four components, pattern representation, proximity measure, 
clustering methodology, and cluster validation.  A simple example will illustrate the hierarchical 
agglomerative clustering algorithms.  Figure 5 shows four points on the real number line.  The pattern 
representation for this simple example is a real number.  The proximity measure is the distance between 
two real numbers.  Two clustering methodologies are considered, single-link and complete-link.  At 
each stage of the hierarchy, the single-link clustering methodology combines the two closest clusters, 
where the distance between two clusters is the minimum of the distance between all pairs of points from 
the two clusters.  At each stage of the hierarchy, the complete-link clustering methodology combines the 
two closest clusters, where the distance between two clusters is the maximum of the distance between 
all pairs of points from the two clusters. 

Figure 5 shows dendrograms for the single-link and complete-link clustering methodology.  Both 
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methodologies start with all four points in their own cluster.  The single-link clustering methodology 
first combines points labeled (1) and (2) into a new cluster because these two points are the closest with 
a distance of 2, which is the cluster proximity value on the dendrogram.  At this stage there are three 
clusters, (1) and (2), (3), and (4).  The next step is to compute the pair-wise distance between these three 
clusters.  According to the single-link clustering methodology, the distance between cluster (1) and (2) 
and the singleton cluster (3) is 3.  The distance between cluster (1) and (2) and the singleton cluster (4) 
is 7.  The distance between the singleton cluster (3) and the singleton cluster (4) is 4.  The minimum 
distance between the clusters is 3, which is the cluster proximity value, and cluster (1) and (2) is 
combined with the singleton cluster (3).  At this stage there are two clusters, (1), (2), (3) and the 
singleton cluster (4).  The last step combines these two clusters into one cluster of all four points with 
cluster proximity value 4. 

 
The complete-link clustering methodology also first combines points labeled (1) and (2) into a 

new cluster.  At this stage there are the same three clusters as in the single-link clustering methodology.  
According to the complete-link clustering methodology, the distance between cluster (1) and (2) and the 
singleton cluster (3) is 5.  The distance between cluster (1) and (2) and the singleton cluster (4) is 9.  The 
distance between the singleton cluster (3) and the single cluster (4) is 4.  The minimum distance between 
the clusters is 4, which is the cluster proximity value, and singleton cluster (3) and singleton cluster (4) 
are combined into a new cluster.  At this stage there are two clusters, (1) and (2), and (3) and (4).  The 
complete-link clustering methodology gives a different set of clusters at this stage than the single-link 
clustering methodology.  The last step combines these two clusters into one cluster of all four points 
with cluster proximity value 9. 

 
The hierarchy can be cut at any proximity value on the dendrogram to form a set of clusters with 

the number of vertical lines traversed corresponding to the number of clusters.  For this example, there 
is no right answer since the data was invented to illustrate the difference between the single-link and 
complete-link clustering methodologies.  For real-world data, there needs to be a way to determine 
where to cut the hierarchy somewhere between every object in its own cluster and all objects in one 
cluster.  Plotting the cluster proximity values versus the number of clusters formed gives insight into 
where to cut the hierarchy.  The slope of the plot of proximity values is constant for the single-link case 
in Figure 6.  Therefore, there is no natural place to cut the hierarchy for the single-link case.  The slope 
of the plot of proximity values increases significantly from two clusters to one cluster in Figure 7.  
Therefore, the hierarchy can be cut at two clusters in a reasonable sense for the complete-link case.     
   

For SP UCT processing, the pattern representation will be the SP state vectors created from 
UCTs.  An initial orbit determination is performed for each UCT using the Herrick-Gibbs algorithm, 
followed by an SP DC to create an SP state vector with covariance matrix.  The proximity measure is a 
distance (or distance squared) function between two SP vectors.  A possible proximity measure is the 
distance squared function given by 

 
(1) d2(x1, x2) = (x2 – x1)T(C1 + C2)-1( x2 – x1), 
 
where x1 and x2 are SP state vectors propagated to the midpoint of the epoch times, C1 and C2 are their 
propagated covariance matrices, respectively, and T denotes the transpose of the 6-dimensional column 
state vector.  The distance squared function is a Chi squared statistic with six degrees of freedom. 
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Figure 5   Single-Link and Complete-Link Clustering Methodologies 
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Figure 6   Single-Link Cluster Proximity Values Versus Number of Clusters 
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Figure 7   Complete-Link Cluster Proximity Values Versus Number of Clusters 

 
 It turns out that the propagated covariance matrix associated with a one-track SP state vector 
does not necessarily remain positive definite, and therefore the distance squared function in Eq. (1) can 
be negative.  Thus, Eq. (1) is not a suitable proximity measure.  Instead, 
 
(2)  d2(x1, x2) = (r2 – r1)T(R1 + R2)-1( r2 – r1) + (v2 – v1)T(V1 + V2)-1( v2 – v1) 
 
will be used as the proximity measure since it remains positive, where r denotes the positional part of 
the state vector, R the denotes the 3 x 3 positional part of the covariance matrix, v denotes the velocity 
part of the state vector, and V denotes the 3 x 3 velocity part of the covariance matrix. 
 
 Using the proximity measure in Eq. (2) with the single-link clustering methodology yields the 
hierarchical clustering given in Table 1.  The track numbers are color coded to agree with the color of 
the satellite numbers in Figure 3.  The algorithm has no knowledge of the association of track number to 
satellite number.  The plot of the cluster proximity values versus the number of clusters is given in 
Figure 8.  There is no natural place to cut the hierarchy based on the slopes in Figure 8.  The correct 
answer is 3 clusters, but column 3CL in Table 1 does not cluster the tracks based on the color of the 
track numbers.  Column 3CL clusters tracks 1, 2, 3, 4, 6, 7,  and 9 together, and track 5 is a singleton 
cluster, and track 8 is a singleton cluster.  Using the proximity measure in Eq. (2) with the complete-link 
clustering methodology yields the hierarchical clustering given in Table 2.  The plot of the cluster 
proximity values versus the number of clusters is given in Figure 9. 

Table 1 



 

 10

SINGLE-LINK HIERARCHICAL CLUSTERING WITH PROXIMITY MEASURE EQ. (2) 
 

TRK NO.  2CL  3CL  4CL  5CL  6CL  7CL  8CL  9CL 
1    1    1    1    1    1    1    1    1 
2    1    1    1    1    1    1    1    2 
3    1    1    1    3    3    3    3    3 
4    1    1    1    1    4    4    4    4 
5    5    5    5    5    5    5    5    5 
6    1    1    6    6    6    6    6    6 
7    1    1    1    1    1    7    7    7 
8    1    8    8    8    8    8    8    8 
9    1    1    1    1    1    1    9    9 

 

0

1

2

3

4

5

1 2 3 4 5 6 7 8

Number of Clusters

C
lu

st
er

 P
ro

xi
m

ity

 
Figure 8  Single-Link Cluster Proximity Values Versus Number of Clusters with Proximity Measure in Eq. (2) 

 
 
 
 
 
 
 

Table 2 
COMPLETE-LINK HIERARCHICAL CLUSTERING WITH PROXIMITY MEASURE EQ. (2) 
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TRK NO.  2CL  3CL  4CL  5CL  6CL  7CL  8CL  9CL 
        1    1    1    1    1    1    1    1    1 
        2    1    1    1    1    1    1    1    2 
        3    3    3    3    3    3    3    3    3 
        4    3    3    3    3    3    4    4    4 
        5    1    1    5    5    5    5    5    5 
        6    1    1    5    5    6    6    6    6 
        7    3    7    7    7    7    7    7    7 
        8    3    7    7    8    8    8    8    8 
        9    3    7    7    7    7    7    9    9 
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Figure 9  Complete-Link Cluster Proximity Values Versus Number of Clusters with Proximity Measure in Eq. (2) 

 
 The hierarchy could be cut at 2 or 4 clusters based on Figure 9, neither of which is the correct 
answer.  The correct answer is 3 clusters, but column 3CL in Table 2 does not cluster the tracks based 
on the color of the track numbers.  However, the clustering in column 3CL for the complete-link 
methodology looks better than the clustering in column 3CL for the single-link methodology.  The first 
error made in Table 2 is in column 6CL when track numbers 3 and 4 are clustered together.  Once an 
error is made in hierarchical agglomerative clustering, it propagates up the hierarchy.  This is one of the 
weaknesses of hierarchical agglomerative clustering. 
 
 The covariance obtained from one track of observations may not be very reliable, particularly 
when it is propagated for several days.  The problem with hierarchical agglomerative clustering may not 
be with the algorithm, but rather with the proximity measure used.  As an alternative to Eq. (2), consider 
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(3) d(x1, x2) = RMS, 
 
where RMS is the weighted root mean square from the SP DC using the two tracks of observations that 
created SP state vectors x1 and x2.  Table 3 shows the proximity matrix obtained from Eq. (3).  The 
matrix is symmetric with zeros on the diagonal.  The hierarchical agglomerative clustering algorithm 
only works with the upper triangular part of the proximity matrix, so only that part of the matrix is 
displayed in Table 3. 
 

Table 3 
PROXIMITY MATRIX FOR EQ. (3) 

 
Track No. 1 2 3 4 5 6 7 8 9

1 1.0025 1.3369 9.4411 2.1512 6.5489 8.9034 5.4633 1.0377
2 1.4738 1.5713 4.2136 3.3074 3.0339 2.8473 4.5877
3 3.8946 4.1595 7.5899 5.3098 9.8633 1.6652
4 0.9479 1.3976 21.1519 10.7266 2.6254
5 1.4924 10.4098 29.6113 4.1377
6 14.2618 18.4321 3.5756
7 0.9586 0.7473
8 0.9693
9  

 
 Using the proximity measure in Eq. (3) with the single-link clustering methodology yields the 
hierarchical clustering given in Table 4.  The plot of the cluster proximity values versus the number of 
clusters is given in Figure 10.  There is no natural place to cut the hierarchy based on the slopes in 
Figure 10.  The correct answer is 3 clusters, but column 3CL in Table 4 does not cluster the tracks based 
on the color of the track numbers.  The first mistake is made in column 4CL for 4 clusters.  The cause of 
the error is the small value in row 1 and column 9 of Table 3. 
 

Table 4 
SINGLE-LINK HIERARCHICAL CLUSTERING WITH PROXIMITY MEASURE EQ. (3) 

 
TRK NO.  2CL  3CL  4CL  5CL  6CL  7CL  8CL  9CL 

        1    1    1    1    1    1    1    1    1 
        2    1    1    1    1    2    2    2    2 
        3    1    1    3    3    3    3    3    3 
        4    4    4    4    4    4    4    4    4 
        5    4    4    4    4    4    4    5    5 
        6    4    6    6    6    6    6    6    6 
        7    1    1    1    7    7    7    7    7 
        8    1    1    1    7    7    8    8    8 
        9    1    1    1    7    7    7    7    9 
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Figure 10  Single-Link Cluster Proximity Values Versus Number of Clusters with Proximity Measure in Eq. (3) 

 
 Using the proximity measure in Eq. (3) with the complete-link clustering methodology yields the 
hierarchical clustering given in Table 5.  The plot of the cluster proximity values versus the number of 
clusters is given in Figure 11.  The hierarchy should be cut at 3 clusters based on Figure 11, which is the 
correct number of clusters.  Also, column 3CL in Table 5 clusters the tracks to the correct satellites. 
 

Table 5 
COMPLETE-LINK HIERARCHICAL CLUSTERING WITH PROXIMITY MEASURE EQ. (3) 
 

TRK NO.  2CL  3CL  4CL  5CL  6CL  7CL  8CL  9CL 
        1    1    1    1    1    1    1    1    1 
        2    1    1    1    1    2    2    2    2 
        3    1    1    1    3    3    3    3    3 
        4    1    4    4    4    4    4    4    4 
        5    1    4    4    4    4    4    5    5 
        6    1    4    6    6    6    6    6    6 
        7    7    7    7    7    7    7    7    7 
        8    7    7    7    7    7    8    8    8 
        9    7    7    7    7    7    7    7    9 
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Figure 11  Complete-Link Cluster Proximity Values Versus Number of Clusters with Proximity Measure in Eq. (3) 

 
MULTIPLE HYPOTHESIS TRACKING 
 
 Multiple hypothesis tracking5 usually considers the concept of a scan of observations and an 
observation-to-track association problem.  The concept of a scan of observations is not relevant to the 
UCT processing problem.  A scan interval of several days needs to be considered for the UCT 
processing problem instead of a scan of observations over a short period of time.  Also, a track-to-track 
association problem will be considered instead of an observation-to-track association problem.  It is 
assumed that all the observations in a UCT belong to the same satellite.  This is a fairly good assumption 
since space is very big and the density of satellites is very small.  We do not really have a multi-target 
tracking problem in the traditional sense with an observation-to-track association problem.  So for each 
new UCT received, the one-track SP state vector is created by the process described above.  The track-
to-track association problem is to determine how to associate a new UCT with any previously received 
UCTs.  The concept of gating can be applied, and MHT considers all possible associations that fall 
within some gating threshold.  Something similar to Eq. (1) or Eq. (2) could be considered for the gating 
criterion, but these equations did not perform well for the hierarchical agglomerative clustering problem.  
Something similar to Eq. (1) may be suitable for later stages in the MHT problem after several UCTs 
have been strung together in a longer track, but initially Eq. (3) will be used for the gating criterion.  The 
threshold for gating needs to be large enough to not exclude any true track-to-track associations, and not 
so large as to include too many false track-to-track associations.  
 
 All the values for Eq. (3) for the test case, which simulates the UCT processing problem, are 
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contained in Table 3.  An RMS value of 3.0 will be chosen as the gating threshold, which includes 6 
false track-to-track associations, namely (1, 5), (1, 9), (2, 4), (2, 8), (3, 9), and (4, 9).  The time order of 
the UCTs for the test case is 4, 1, 7, 5, 6, 2, 3, 8, and 9.  Using Eq. (3) as the gating criterion with 
threshold 3.0, we obtain the tree structure of associated UCTs in Figure 12.  There are seven separate 
trees with head nodes 4, 1, 7, 5, 2, 3, and 8. 
 
     4                    1           7     5     2     3   8   
5  6    2    9     5    2    3  9   8   9   6   3   8   9   9 
6     3   8        6  3   8  9      9           9   9  
      9   9           9   9 
 

Figure 12   Tree Structure of Associated UCTs 
 
 A pruning algorithm is needed to reduce the number of hypotheses represented by the tree 
structure in Figure 12.  First, prune all leaves in the trees that have a depth of 2 (only two UCTs).  Next, 
compute the SP DC for all leaves with at least a depth of 3, using only the first three UCTs if the depth 
is more than 3.  The RMS for these SP DCs is given in Table 6. 
 

Table 6 
MHT RMS 

 
UCTs RMS
4, 5, 6 1.5575
4, 2, 3 134.4647
4, 2, 8 157.4187
1, 5, 6 102.4522
1, 2, 3 1.9562
1, 2, 8 295.8171
1, 3, 9 671.3066
7, 8, 9 1.5503
2, 3, 9 271.6341
2, 8, 9 251.3571  

 
 From Table 6, the only leaves of the MHT trees that survive are the right answers, namely, 4, 5, 
6 corresponding to object 2; 1, 2, 3 corresponding to object 1; and 7, 8, 9 corresponding to object 3. 
 
CONCLUSIONS 
 
 GP UCT processing algorithms are limited in handling the stressing test case considered here.  
Two SP UCT processing algorithms, hierarchical agglomerative clustering, using the complete-link 
clustering methodology with the SP DC RMS as the proximity measure, and MHT with the SP DC RMS 
as the gating criterion, associate the UCTs in the test case with the correct satellites.  In general, it is 
very difficult to validate clustering algorithms, and there are no established validation methodologies.  
All clustering algorithms will group data into clusters, but the clusters may not represent any real or 
natural grouping of the data.  The validation of the clustering algorithm used here relies on a blind test 
in which the correct clusters are known. These SP UCT processing algorithms need to be tested on more 
test cases in which the correct answers are known to validate the algorithms.  The algorithms then need 
to be tested on true UCTs to validate the algorithms against real-world data.  
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