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ABSTRACT

We develop accurate and robust one-dimensional EXIT chart
methods to design Raptor codes with binary and higher-order
modulations on AWGN channels. We formulate the check-
node degree distribution optimization as a linear program that
directly accounts for the pre-code error correction capabil-
ity and simultaneously optimizes over any desired range of
rate operating points. The throughput curves predicted by the
analysis are easily compared across different pre-code rates
and pre-code error-correcting capabilities. For higher-order
modulations we employ BICM on a standard Gray-mapped
16-QAM constellation. We further enhance the optimization
by applying separate check-node degree distributions to the
mapped MSBs and LSBs, which results in significant gains
compared to a single check-node degree distribution.

1. INTRODUCTION

Fountain codes are a class of codes for which the encoder
produces a virtually endless stream of bits and the decoder
may use any unordered collection of channel bits to decode
a codeword. Fountain codes are rateless codes, i.e. they can
dynamically transmit any rate R = k/n, where k is the fixed
input block size and n is the number of bits transmitted. A
good rateless code is one that attains capacity of the chan-
nel without any prior knowledge of the channel parameters,
e.g.the channel SNR. Any rateless code does not necessarily
have the aforementioned fountain property, i.e. decoding can
be done on any unordered collection of bits. For example, an
incremental redundancy code is a rateless code that requires
that codeword bits be received in a specific order starting from
a particular start bit.

The fountain property is particularly useful in applications
where a receiver or multiple receivers listen to the channel
at different start times and/or intermittently. Fountain codes
were originally applied to digital networks subject to dropped
packets, for which the erasure channel model applies. In-
deed, raptor codes which are a class of fountain codes, have
been shown to approach the capacity of the erasure chan-
nel asymptotically. More recently fountain codes have been
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developed for wireless applications including rateless point-
to-point hybrid-ARQ; rateless multi-cast; distributed network
storage[1]; and collaborative relay networks [2].

Raptor codes have also been applied to the AWGN and
Rayleigh channels [3, 4], but there has been little progress
on universal design methods for these channels. Several pro-
posed methods are accurate only over a certain narrow range
of SNRs [3, 5, 6]. The Extrinsic Information Transfer (EXIT)
method originally introduced by ten Brink [7] has proven to
be a highly accurate and robust design tool for LDPC and
IRA codes [8]. The method has produced fixed-rate codes
with thresholds within 0.1dB of capacity. Raptor codes are
amenable to the same analysis and design [9]. Existing de-
signs for raptor codes have been limited to a fixed SNR, which
is at odds with the signature feature of fountain/rateless codes
that they operate over virtually any SNR/rate. Our contribu-
tion is to define the optimization problem using EXIT chart
analysis so that performance is optimized over any desired
range of SNRs/rates. Furthermore, we directly incorporate
the error-correcting capability of the pre-code into the op-
timization. We simulate the throughput of designed codes
and show improved performance compared to previous re-
sults. The throughput curves predicted by the analysis are
easily compared across different pre-code rates and pre-code
error-correcting capabilities and are useful for exploring vari-
ous design tradeoffs.

There have been some attempts at applying raptor codes
to higher order modulation with limited success [10]. Bit-
interleaved coded modulation (BICM) is a highly effective
method for coding over high-order constellations. We design
spectrally-efficient fountain codes using raptor-coded BICM
designed by our EXIT chart methods. We further enhance
the optimization by applying separate check-node degree dis-
tributions to the mapped MSBs and LSBs, which results in
significant gains compared to a single check-node degree dis-
tribution.

2. LT AND RAPTOR CODES

The Tanner graph for the raptor code is shown in Figure 1.
A raptor code is a pre-coded LT code. The payload bits are
encoded by the pre-code of rate Rpre to form what are called
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Fig. 1. Tanner graph of pre-code and LT code. Circles represent
variables and squares represent checks. The variable x(l) represents
the mutual information of the message passed from the check nodes
to the variable nodes at iteration l of sum product decoding.

input bits. The LT code draws d bits in a uniformly random
manner from the set of input bits and computes their parity.
The outputs of the parity checks are called output bits and they
are put on the channel. The value for d is drawn from a distri-
bution called the check-node degree distribution for each new
output bit. The more output bits that are put on the channel,
the lower the rate of the code. We see from Figure 2 that the
Tanner graph for the LT code is a bi-partite graph comprised
of bit nodes and check nodes, which makes it amenable to
sum-product decoding, similar to LDPC code decoding.

The check-node degree distribution is denoted Ωi, i =
1, 2, ..., dc, and it represents the probability that a check node
is degree i. A convenient representation of the distribution is
by the degree polynomial

Ω(x) =
dc∑

i=1

Ωix
i.

The check-node degree distribution can be defined with re-
spect to the nodes themselves as with Ω(x) or with respect to
the edges. We let ωi, i = 1, 2, ..., dc represent the check-node
degree distribution with respect to the edges, i.e., the proba-
bility that a given edge is of degree i. The degree polynomial
with respect to the edges is defined by

ω(x) =
dc∑

i=1

ωix
i−1.

Degree distributions are similarly defined with respect to
the input bit nodes. We denote by Λ(x) and λ(x) the de-
gree polynomials for the input bits with respect to the nodes
and the edges, respectively. Recall that the edges to the input
bit nodes are created by selecting bits in a uniformly random
manner. Etesami [3] proves that in the limit of a large number
of input bits k, we have Λ(x) = λ(x) = eα(1−x), where α is
the average degree of the input nodes. By Taylor expansion,
we see that Λ is Poisson distributed in this limit. We will be
assuming that Λ is Poisson distributed for the remainder of
this paper.

The formulas for converting between the node-view and
the edge-view distributions and vice versa are straighforward
to derive:

ωi =
iΩi∑
j jΩj

and

Ωi =
ωi/i∑
j ωj/j

. (1)

Letting RLT = k/n be the rate of the LT code where n is the
number of check nodes, we have

RLT =

∑
j λj/j∑
j ωj/j

(2)

=

∑
j jΩj∑
j jΛj

=
β

α
, (3)

where β denotes the average check node degree. The check
node degree distribution is fixed, and hence β is fixed. In
rateless mode therefore, from the perspective of degree distri-
butions, the rate of the LT code is reduced solely by increas-
ing the input node degree α. The rate of the raptor code is
R = RpreRLT

3. EXIT CHART TECHNIQUE

Iterative decoders pass extrinsic information messages between
constituent elements of the code. For turbo codes the mes-
sages are computed by the BCJR algorithm running on turbo
codes. For LDPC-like codes consisting of a bipartite graph
with bit nodes and check nodes – an LT code is one of these
– the messages are computed by the sum-product algorithm.

The sum-product algorithm is run in iterations, where l is
the iteration index. At each iteration, an input bit node uses
incoming messages from the output bits to compute an out-
going message on each of its edges to corresponding output
bits. For the ith input bit node of degree d we denote the out-
going message from the input bit to the output bit by m

(l)
i,o,

o = 1, 2, ..., d, where o is the outgoing edge index. The out-
going messages from the output bits to the input bits in round
l are denoted similarly by m

(l)
o,i. These outgoing messages are

computed as follows:

m
(l)
o,i = 2 tanh

tanh
(

Zo

2

)
·
∏
i′ 6=i

tanh

(
m

(l+1)
i′,o

2

) (4)

m
(l+1)
i,o =

∑
o′ 6=o

m
(l)
o′,i, (5)

where Zo is the log-likelihood ratio (LLR) of the output bit
determined from the channel measurement. At the last it-
eration l the input bit LLR is computed by

∑
o m

(l)
o,i. The

fundamental assumption of EXIT chart analysis is that the
messages passed between nodes have a symmetric Gaussian
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x(l)
(
x(l−1)

)
= 1−

dc∑
i=1

ωiJ

J−1
(
1− J

(
2/σ2

))
+ (i− 1)J−1

1−
dv∑

j=1

λjJ
(
(j − 1) J−1

(
x(l−1)

)) . (10)

distributionN (µ, 2|µ|) for some mean µ. A second important
assumption is that the bipartite graph for the LT code can be
represented by a tree graph. From (5) we see that for the bit
nodes, by the sum rule, symmetric Gaussian input messages
will yield symmetric Gaussian output messages.

At the check nodes, (4) does not indicate that input Gaus-
sian messages will create Gaussian output messages, and in-
deed this is not the case. However, empirically the Gaussian
approximation has proven to accurately model the mutual in-
formation I of the messages passed between nodes, i.e. the
mutual information between the message on an edge and a
channel input that is equally likely a zero or a one. EXIT
chart analysis views iterative decoding as an evolution of the
message mutual informations. When the mutual information
equals one, there are no bit errors.

For a symmetric Gaussian distribution, mutual informa-
tion J is parameterized by its mean µ > 0:

J(µ) =
1√
4πµ

∫ ∞

−∞
e
−(y−µ)2

4µ log2

(
1 + e−y

)
dy. (6)

Eq.(6) is monotonically increasing in µ and defines a one-to-
one mapping between any distribution and a symmetric Gaus-
sian distribution defined by µ. For the remainder of this paper
we will assume that all message distributions are symmetric
Gaussian.

We denote the mutual information on an edge incoming
to a node by IA and the mutual information outgoing from a
degree d node by IE(d). For a bit node, we see from the sum
rule in (5) that

IE(d) = J((d− 1)J−1(IA)). (7)

At the check nodes EXIT chart analysis employs the re-
ciprocal channel approximation (RCA), which states that from
a mutual information perspective we can view the check node
as a bit node with new incoming mutual informations 1− IA

and outgoing mutual informations 1 − IE [11]. Hence for a
degree d check node,from the RCA and (5) we have the rela-
tion

IE(d) = 1− J((d− 1)J−1(1− IA)). (8)

For both the bit nodes and the check nodes the mutual
information for any outgoing edge is the average mutual in-
formation over the degrees:

IE =
dv∑
i=1

λiIE(i) (9)

We denote by x(l) the mutual information outgoing from
the check nodes at iteration l (illustrated in Fig.1). Using the
RCA and equations (7)-(9) we have the mutual information
evolution equation for the LT code given in (10), where 2/σ2

is the mean LLR value off the channel of noise variance σ2.
We note that (10) is linear in the coefficients of ω(x).

We define the function φ(x) = x(l)(x). At any point x,
0 ≤ x ≤ 1, for which φ(x) = x, we have a fixed point in
the evolution. As long as x(l)(x) > x, 0 ≤ x ≤ x0 for some
fixed point x0, then we are assured that mutual information
will evolve up to x0. The evolution of mutual information
essentially follows a tunnel between the function φ(x) and
identity function x , 0 ≤ x ≤ x0. Figure 2 shows a plot of
φ(x) at a channel SNR that is 0.9 dB from capacity using

Ω(x) = 0.05x + 0.5x2 + 0.25x4 + 0.05x6 + 0.1x8. (11)

Note that the simulated mutual information trajectory for the
LT code tracks x(l)(x) remarkably closely, exhibiting the claimed
accuracy of the EXIT chart analysis.

The fixed point of the trajectory in Fig.2 is x(l) = 0.387 <
1,and yet the codeword is decoded without error. The reason
for this is that x(l) represents the extrinsic information for the
check bits. The process of summing messages at the bit nodes
amplifies the mutual information of the input bits, denoted
y(l) = γ(x(l)), where

γ(x) =
dv∑
i=1

iΛiJ
−1(x). (12)

For the scenario of Fig.2, y(l) = 0.919 at the end of the itera-
tions, which is enough mutual information for the pre-code of
rate-0.9 to decode without error. Based on the rate of the outer
code Rpre6, we can determine the required fixed point of the
iterations for x(l). Note that increasing the average input bit
degree α increases the amplification of (12), but decreases the
rate of the LT code.

We denote the precode mutual information decoding thresh-
old by t(Rpre), which is either determined by simulation or
EXIT chart analysis. The messages feeding the pre-code are
not necessarily Gaussian (although they are assumed to be)
and they are not identically distributed, so a mutual informa-
tion threshold may not necessarily be sufficient to guarantee
decoding, but we still make this reasonable assumption.
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Fig. 2. EXIT chart of Ω(x) = 0.05x+0.5x2 +0.25x4 +0.05x6 +
0.1x8: Rate 0.9 pre-code; k = 65000; n = 139100; SNR is 0 dB
which is 0.9 dB from capacity. The stair step trajectory is the output
of an actual LT simulation with these parameters.

4. LINEAR PROGRAMMING FORMULATION

Recall from (2) that for a fixed α the rate of the LT code is
inversely proportional to

∑
ωi/i. Moreover, φ(x) is a linear

function of the ωis. Thus for a fixed channel SNR and fixed α
we maximize the rate of the LT code by the following linear
program (LP):

maximize
dc∑

i=1

ωi/i (13)

subject to the constraints:

(C1)
∑dc

i=1 ωi = 1, ωi ≥ 0, ∀i

(C2) φ(x) > x + ε ∀x ∈ [0, θγ−1(t(Rpre))] for some ε >
0, 0 < θ ≤ 1

(C3) φ(x) > x ∀x ∈ (θγ−1(t(Rpre)), γ−1(t(Rpre))]

Condition (C2) is used to enforce a minimum tunnel spac-
ing ε for a fraction θ of the required tunneling interval. Note
that the condition at x = 0 is necessary to get the decoder
started. Condition (C3) is used to enforce the condition that
tunnel stay open over the remaining fraction of the required
interval. In contrast to (C2) there is no minimum tunnel sep-
aration enforced, which allows the tunnel to taper at the end
of the interval. Note that the LP in (13) is guaranteed to be
good only for a single SNR and rate, which is at odds with the
signature feature of fountain codes.

Let C
(
σ2
)

denote the BPSK channel capacity as a func-
tion of channel variance. We define a set of rates R̃ = {R̃j}

j = 1, 2, ..., J corresponding to a set of channel variances
S = {σ2

j } j = 1, 2, ..., J , defined by

σ2
j = C−1(R̃j)/∆

where ∆ > 1 is some fixed gap to capacity. The rates in R̃ are
essentially target rates for the optimization which returns the
actual rates R = {Rj} j = 1, 2, ..., J . The gap ∆ could be
a function of j but we usually consider a fixed gap between
0.5dB and 1.5dB, depending how close we think the raptor
code will be to capacity.

Once the check node distribution ω(x) is selected, it de-
fines the LT code and it applies to all rates and SNRs. It fol-
lows from this fact and (3) that α is inversely proportional to
R. We define the set A = {αj} j = 1, 2, ..., J where

αj =
β

RpreR̃j

=
β0

R̃j

, (14)

where β0 = β/Rpre is a free parameter. Indeed αj will be a
function of the actual rates Rj returned by the optimization,
but defining the αjs by (14) turns out to be very accurate.
We express the implicit dependence of the tunneling function
φ(x) on αj and σ2

j by the notation φj(x).
We define a global objective function f(R; R̃) subject to

maximization that treats low-rate codes and high-rate codes
equally by weighting the rates by the inverse of their target
rates:

f(R̃,R) =
J∑

j=1

Rj

R̃j

. (15)

Each term in the sum reduces as follows:

Rj

R̃j

=
Rpre

∑
i λj,i/i

R̃j

∑
i ωi/i

(16)

=
Rpre (1− e−αj )
R̃jαj

∑
i ωi/i

(17)

≈ Rpre

R̃jαj

∑
i ωi/i

(18)

=
Rpre

β0

∑
i ωi/i

, (19)

where (17) follows from∑
i

λi/i =
∫ 1

0

λ(x)dx =
1
α

(
1− e−α

)
(20)

for λ(x) = exp(α(1 − x)); (18) is a highly accurate approx-
imation by the fact that α is always greater than 3 for the
highest rates in empirical studies; and (19) uses (14).

From (19)we see that we are justified to use the slightly
modified objective function:

f̂(ω(x)) =
1∑

i ωi/i
, (21)
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φ (x) = 1−
dc∑

i=1

ωMSB
i J

J−1 (1− IMSB(SNR)) + (i− 1)J−1

1−
dv∑

j=1

λjJ
(
(j − 1) J−1 (x)

)
−

dc∑
i=1

ωLSB
i J

J−1 (1− ILSB(SNR)) + (i− 1)J−1

1−
dv∑

j=1

λjJ
(
(j − 1) J−1 (x)

) (24)

which turns out to be the same objective function used in (13).
Thus, the only modification to the LP is to the constraints:

(C′2) φj(x) > x + ε ∀x ∈ [0, θγ−1(t(Rpre))], for some ε >
0, 0 < θ ≤ 1, j = 1, 2, ..., J

(C′3) φj(x) > x ∀x ∈ (θγ−1(t(Rpre)), γ−1(t(Rpre))], j =
1, ..., J

We have observed empirically that the LP optimized objective
function is unimodal in the free parameter β0. Thus, we find
the globally optimal solution in a straighforward manner by
searching the LP optimized objective function over β0; each
beta0 requires the solution of new LP.

5. BIT-INTERLEAVED CODED MODULATION

In this section we extend our design tools to perform with
BICM. We focus on standard gray-coded 16-QAM, which
is equivalent to gray-coded 4-PAM mapped independently to
the I and Q components. The extension of this technique to
higher-order constellations and arbitrary mappings is straight-
forward. The bit pairs {01, 00, 10, 11} are mapped to the con-
stellation points {−3,−1,+1,+3}. We see that the MSBs
have more channel protection than the LSBs. Fig. 3 shows the
mutual information attained by the MSBs and by the LSBs –
IMSB(SNR) and ILSB(SNR), respectively – as a function
of SNR on the AWGN channel; the comparison shows the
dramatic effect of the unequal error protection. Using EXIT
chart analysis, we design separate check distributions for the
MSB output bits and the LSB output bits.

We define the degree polynomial

ω(x) = ωMSB(x) + ωLSB(x), (22)

where ωMSB(x) and ωLSB(x) are not valid degree polyno-
mials, because their coefficients do not add up to one. We
constrain ωMSB(x) and ωLSB(x) so that half of the check
nodes are MSBs and half are LSBs. Using (1) we have∑

i ωMSB
i /i∑

i ωi/i
=

1
2∑

i ωLSB
i /i∑

i ωi/i
=

1
2
,
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Fig. 3. Plots of IMSB(SNR) and ILSB(SNR). Their sum equals
the BICM capacity and is also plotted.

which yield ∑
i

ωMSB
i /i−

∑
j

ωLSB
j /j = 0 (23)

Again using the same objective function (21) that we have
been using throughout this paper, we develop an LP that max-
imizes it subject to new and old constraints. The only new
constraint is (23). In (24) we rewrite (10) to take into ac-
count the two polynomials ωMSB(x) and ωLSB(x) and the
differing channel mutual informations. We define φj(x) in
the same manner as above using the new definition for φ(x).
The LT proceeds by using constraints (C1), (C′2), (C′3),(C

′
4),

and (23).

6. SIMULATIONS

In this section we simulate fountain codes in rateless opera-
tion, and compute throughput curves as a function of channel
SNR. At any given SNR, the number of output bits n required
to decode varies from codeword to codeword. Throughput is
therefore computed as T = k/n̄, where n̄ is the average num-
ber of received output bits per codeword. We used k = 65000
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for all simulations and used 50 iterations for the LT code and
a maximum of 100 iterations for the LDPC code.

6.1. Binary codes

We simulated three raptor codes applied to the binary-input
AWGN channel. The pre-codes were (3,30), (3,15), (3,60)
regular LDPC codes with rates of Rpre = 0.9, Rpre = 0.8,
and Rpre = 0.95, respectively. The first two pre-codes were
used in [?] with an LT distribution given by (11), and we use
these raptor codes as a baseline against which to compare our
codes. To highlight the utility of our design technique we also
design our codes with a high outer code rate Rpre = 0.95, for
which (11) is ineffective.

The check distributions were optimized with the algorithm
developed in this paper for rates 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7
bits/dimension. The designed LT check distributions are as
follows:

Ω0.9(x) = 0.06756x + 0.38357x2 + 0.34884x3 +
0.00820x4 + 0.01266x8 + 0.17917x9,

Ω0.8(x) = 0.051x + 0.47x2 + 0.242x3 +
0.237x5,

Ω0.95(x) = 0.08627x + 0.36680x2 + 0.32288x3

+0.15562x7 + 0.02294x19 + .04548x20.

with β0 equal to 0.74, 0.54, and 0.87, respectively.
The throughput curves corresponding to the first two pre-

codes are shown in Figs.4 and 5, respectively. For compari-
son purposes, we also simulated the same pre-codes with the
check distribution given by (11), which was presented as a
heuristic design in [6]. Interestingly, for Rpre = 0.9 our re-
sults lie virtually on top of the heuristic design up to rate-0.7,
which we believe is an indication that the heuristic design is
a good one. Note that the performance of our code tails off
at higher SNRs/rates because the optimization was only per-
formed up to rate-0.7. The Rpre = 0.8 raptor code shows
significant throughput improvement over the heuristic design.

Fig. 6 shows the throughput curves for Rpre = 0.95 for
both the design and for the heuristic LT code given by (11).
The heuristic is clearly ineffective at these high pre-code rates,
as the performance is even worse than the Rpre = 0.9 case.
The design case has very minor improvement at medium and
low rates, but is clearly superior at high rates. We expect this
behavior at high rates as the high-rate precode system satu-
rates at a higher rate.

6.2. BICM

We simulated raptor-coded BICM with a gray-mapped 16-
QAM and a Rpre = 0.9 turbo code, the throughput results
for which are shown in Fig. 7. The reason for using a turbo
code was that it permitted easy encoding; one cannot transmit
the all-zeros codeword to obtain simulated throughput. As
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Fig. 4. Throughput simulation plot for raptor code on binary input
AWGN channel. Rpre = 0.9. k = 65000. Heuristic is from (11).
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Fig. 5. Throughput simulation plot for raptor code on binary input
AWGN channel. Rpre = 0.8. k = 65000. Heuristic is from (11).
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Fig. 6. Throughput simulation plot for raptor code on binary input
AWGN channel. Rpre = 0.95. k = 65000. Heuristic is from (11).

a comparison we also used the heuristic degree distribution
in (11) to code the BICM. We note improved throughput at
lower SNRs, but little or no improvement at high SNRs. We
postulate that the smaller effect at higher SNRs is due to the
fact that the LSB and MSB have little difference in mutual
information at high SNR.

7. CONCLUSION

We developed a highly accurate and robust design method
based on EXIT charts for designing raptor codes for BPSK
and BICM modulations. We derived computationally simple
linear programs that optimized rates over any desired range
of SNRs. We further generalized the algorithm to assign dif-
ferent distributions to different bits for higher-order modula-
tions.
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