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Abstract 

SpatialML is an annotation scheme for marking up references to places in natural language. It 

covers both named and nominal references to places, grounding them where possible with geo-

coordinates, and characterizes relationships among places in terms of a region calculus. A freely 

available annotation editor has been developed for SpatialML, along with several annotated 

corpora. Inter-annotator agreement on SpatialML extents is 91.3 F-measure on a corpus of 

SpatialML-annotated ACE documents released by the Linguistic Data Consortium. 

Disambiguation agreement on geo-coordinates on ACE is 87.93 F-measure. An automatic tagger 

for SpatialML extents scores 86.9 F on ACE, while a disambiguator scores 93.0 F on it. Results 

are also presented for two other corpora. In adapting the extent tagger to new domains, merging 

the training data from the ACE corpus with annotated data in the new domain provides the best 

performance. 
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1. Introduction 

The problem of understanding spatial references in natural language poses many interesting 

opportunities and representational challenges. In this paper, we address the problem of extracting 

information about places, including  both ‗absolute‘ references (e.g., ―Rome‖, ―Rochester, NY‖, 

―southern Kerala district of Cudallah‖), as well as relative references (―thirty miles north of 

Boston‖, ―an underpass beneath Pushkin Square‖, ―in the vicinity of Georgetown University").  

Our focus is on grounding such references, where possible, to precise positions that can be 

characterized in terms of geo-coordinates.  We have developed an annotation scheme called 
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SpatialML1 that addresses this problem, along with tools to automatically construct such an 

annotation.  

 

Prior research in natural language semantics and artificial intelligence has attempted to map the 

various ways in which languages conceptualize space to formal, computable representations. The 

conceptualizations found in natural language descriptions of places involve aspects such as the 

sizes and shapes of places, as well as their positions and spatial relationships.  These relationships 

can involve topological relations that connect objects to each other, including one being included 

in the other. Relationships such as ―beneath‖, ―to the left‖, etc., involve orientation relations that 

hold between a primary object and a reference object (Clementini et al. 1997); the relations are 

based on frames of reference, either centered at the reference object, the viewer, or an external 

frame of reference (such as a coordinate system based on a geodetic model).   

 

While there has been a great deal of interest in geographical language from the perspective of both 

Natural Language Processing and Geographical Information Systems (see Bateman (2008) for an 

overview), there has been a dearth of annotation schemes and guidelines for annotating linguistic 

data with precise quantitative representations such as geo-coordinates or qualitative 

representations involving topological and orientation relations. The main goal of SpatialML is to 

mark places mentioned in text (indicated with PLACE tags) and map them to data from gazetteers 

and other databases. SpatialML also models topological relations between places, such as 

inclusion or contact between regions. The SpatialML guidelines indicate language-specific rules 

for marking up SpatialML tags in English, as well as language-independent rules for marking up 

semantic attributes of tags. The scheme has been applied to annotated corpora in English as well as 

Mandarin Chinese.  

 

From a theoretical standpoint, the advantages of taking an annotation-based approach are that the 

spatial representational challenges are put to an empirical test, and the performance of annotators 

can be measured. The creation of SpatialML-annotated corpora allows one to explore in great 

detail the mapping of individual natural language examples to the particular set of precise spatial 

representations used in SpatialML, allowing for assessments of existing theories. Further, such 

annotated corpora can eventually be integrated with formal reasoning tools, testing how well these 

tools scale up to problem sets derived from natural language. The recording of topological and 

orientation relations by the annotator provides a first step to support such further inference. In 

addition to these potential theoretical advantages, there are two practical benefits offered by 

SpatialML: (i) the annotation scheme is compatible with a variety of different annotation 

standards, and (ii) most of the resources and tools used are freely available. For pragmatic reasons, 

our focus is on geography and culturally-relevant landmarks, rather than other domains of spatial 

language.  

 

                                                 
1http://sourceforge.net/projects/spatialml 
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We discuss the annotation scheme in Section 2, followed, in Section 3, by an account of the 

expressiveness of the scheme. In Section 4, we illustrate the annotation editor, and describe the 

annotated corpora. In Section 5, we describe our overall system architecture. Section 6 discusses 

the accuracy of our tools along with inter-annotator agreement. Section 7 concludes. 

 2. SpatialML Annotation Scheme 

2.1. Annotation Model 

The SpatialML annotation model consists of locations, marked by PLACE tags around each 

location mention, and links between them. Locations can have geo-coordinates; these are recorded 

in a latLong attribute of the PLACE tag. Locations can also be restricted by orientation relations; 

accordingly, the PLACE tag has a mod attribute whose value is also drawn from a small inventory 

of placeholders for orientation. The form of reference in the location mention is also recorded in 

the PLACE tag: either a proper name (a form attribute of type NAM in the PLACE tag) or a 

nominal (a form attribute of type NOM).  

 

Links come in two varieties: the first are relative links (implemented by non-consuming RLINK 

tags) that relate relative locations to absolute ones, recording any orientation and distance relations 

stated between them (via direction and distance attributes on the RLINK). The direction attributes 

have values drawn from the inventory of placeholders for orientation. The frame of reference for 

the orientation relation is also captured, via the frame attribute on the PLACE tag, whose value can 

be VIEWER, INTRINSIC, or EXTRINSIC. The other type of link relates locations to each other 

while recording the type of topological relation involved, using a set drawn from the Region 

Connection Calculus (Randell et al. 1992, Cohn et al. 1997), or RCC. This is implemented using 

non-consuming LINK tags. Finally, the portions of the text that license a link are marked in a 

SIGNALS tag; these have no formal status, and can correspond in the case of an RLINK to a 

phrase expressing a distance or direction, or in the case of a LINK to a preposition indicating a 

relation such as inclusion.  

2.2. XML Examples 

The following example has the place marked as being a named place, and in addition, latitude and 

longitude are filled in, along with the country code for Taiwan. 

<PLACE id=“4” country=“TW” form=“NAM” latLong=“22◦37’N 

120◦21’E”>Fengshan</PLACE>  

 

In the next example, we see a mention that has been tagged as a nominal reference. 

a <PLACE id=“1” form=“NOM”>building</PLACE>  

 

Here is an example of the use of the mod attribute: 

the southern <PLACE mod=“S” country=“US” form=“NAM”>United States</PLACE>. 
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Consider an example of an RLINK tag, which expresses a relation between a source PLACE and a 

destination PLACE, qualified by distance and direction attributes.  

a <PLACE id=“1” form=“NOM”>building</PLACE>  

<SIGNAL id=“2” type=”DISTANCE”>5 miles</SIGNAL>  

<SIGNAL id=“3” type=”DIRECTION”>east</SIGNAL> of   

<PLACE id=“4” country=“TW” form=“NAM” latLong=“22◦37’N 

120◦21’E”>Fengshan</PLACE>  

<RLINK id=“5” source=“4” destination=“1” distance=“2” direction=“E” frame=“VIEWER” 

signals=“2 3”/> 

  
Here is an example which illustrates the use of LINK tags. The SIGNAL licensing the LINK is 

indicated. 

a <PLACE id=“1” form=“NOM”>well</PLACE> 

<SIGNAL id=“2”>in</SIGNAL> 

<PLACE mod=“W” country=“IQ” id=“3” form=“NAM”>West Tikrit</PLACE> 

<LINK source=“1” target=“3” signals=“2” linkType=“IN”/>. 

 

The set of LINK types are shown in Table 1. We will discuss these in more detail in Section 3.2. 

TABLE 1: LINK Types 

2.3. Annotation Guidelines 

In order for humans to carry out SpatialML annotation without considerable training, the 

annotation scheme is kept fairly simple, with straightforward rules for what to mark and with a 

relatively ―flat‖ annotation scheme. The tag extents are kept as small as possible. As we have just 

seen, the extents of modifiers, as expressed by the mod attribute, are not tagged. Pre-modifiers 

such as adjectives, determiners, etc. are not included in the extent unless they are part of a proper 

name. For example, for ―the river Thames,‖ only ―Thames‖ is marked, but, for the proper names 

―River Thames‖ and ―the Netherlands,‖ the entire phrase is marked. There is no need for tag 

embedding, since we have non-consuming link tags.  

 

In annotating spatial information, the guidelines allow for the annotator to consult gazetteers to 

decide, for example, on a place‘s country and its geo-coordinates, where applicable.  This is 

Link Type Example 

DC (disconnection) the [well] outside the [house] 

EC  (external connection) the border between [Lebanon] and [Israel] 

EQ (equality) [Rochester] and [382044N 0874941W] 

PO  (partial overlap) [Russia] and [Asia] 

IN (tangential and non-tangential proper parts) [Paris], [Texas] 
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necessary since humans do not typically know geographical details for most places. However, the 

annotator is not to use specialized knowledge, such as personal experience from having lived at 

that location.  The annotator must rely solely on the information in the text and in the gazetteer in 

order to keep the annotation more representative of general geospatial knowledge, and therefore 

more consistent with the work of other annotators.   

 

Non-referring expressions, such as ―town‖ and ―city‖ in ―a small town is better to live in than a big 

city.‖ are not tagged. In contrast, when ―city‖ does refer, as in ―John lives in the city‖ where ―the 

city‖ in context, must be interpreted as referring, for example, to Baton Rouge, it is tagged as a 

place and given the coordinates of Baton Rouge.  Deictic references such as ―here‖ and pronouns 

are not tagged. The reason we do not tag ―there‖ in ―John lives there‖ or ―it‖ in ―It has a great 

climate‖ is because of annotation efficiency; it is tedious for an annotator to consider every 

occurrence of ―it‖ to decide if it is pleonastic or referential, and whether the referential meaning is 

geographic or not. While each individual mention of a location is tagged, without any coreference, 

the latter can be determined post hoc in cases where geo-coordinate or gazetteer information is 

recorded in the PLACE tag.  

 

Natural language allows facilities, vehicles, and other objects to be coerced into places, as in ―I 

arrived at the station.‖ SpatialML, unlike ACE, is ontologically permissive, annotating such 

entities as PLACEs even when there is no coercing environment. SpatialML also does not concern 

itself with referential subtleties like metonymy. These simplifications are introduced for practical 

reasons: (i) determining when these extended senses are intended can be difficult for the annotator 

(ii) even if these extended, non-locative senses of PLACEs are intended, location information 

about the basic locative sense (e.g., where ―Paris‖ is)  is still relevant. 

3. Expressiveness 

SpatialML is not by any means intended to address all of spatial language; the focus here is on 

references to places and semantic relations between them in the context of geographic language. 

We first examine how SpatialML compares to other proposed annotation schemes, and then 

discuss the adequacy of SpatialML to support formal reasoning. 

3.1. Comparison with other annotation schemes 

SpatialML leverages ISO (ISO-3166-1 for countries and ISO-3166-2 for provinces), as well as 

various proposed standards towards the goal of making the scheme compatible with existing and 

future corpora.  We also borrow ideas from the Toponym Resolution Markup Language of Leidner 

(2006), the research of Schilder et al. (2004) and the annotation scheme in Garbin and Mani 

(2005).  The SpatialML guidelines are also compatible with existing guidelines for spatial 

annotation and existing corpora within the Automatic Content Extraction2 (ACE) research 

                                                 
2http://projects.ldc.upenn.edu/ace/annotation/2005Tasks.html 
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program. In particular, we exploit the English Annotation Guidelines for Entities (Version 5.6.6 

2006.08.01), specifically the GPE, Location, and Facility entity tags and the Physical relation tags, 

all of which are mapped to SpatialML tags. In comparison with ACE, SpatialML uses a 

classification scheme that is closer to information represented in gazetteers, thereby making the 

grounding of spatial locations in terms of geo-coordinates easier. SpatialML also addresses relative 

locations involving distances and topological relations that ACE ignores. The ACE ‗GPE‘, 

‗Location‘, and ‗Facility‘ Entity types can be represented in SpatialML, as are ACE ‗Near‘ 

Relations. However, SpatialML, unlike ACE, is a ‗flat‘ annotation scheme. Instead of grouping 

mentions into classes (called ―entities‖ in ACE), SpatialML simply annotates mentions of places. 

As we have seen, the possibility (considered by ACE) that a location mention is being used 

metonymically is ignored. 

 

SpatialML can be in addition mapped to the Guidelines for Electronic Text Encoding and 

Interchange described by the Text Encoding Initiative (TEI)3. While there are numerous points of 

similarity between the TEI scheme and SpatialML, there are three main differences: (i) TEI has 

two variety of tags (placeName and geogName), with the former classified into four types; in 

contrast, SpatialML is generally more fine-grained, and has (although not discussed here) 20 

PLACE types. While settlements, regions, and countries are distinguished by both, the TEI further 

distinguishes districts (subdivisions of settlements), which SpatialML ignores, and blocs (regions 

with more than one country), which SpatialML treats as a region. (ii) TEI allows for embedded 

tags, so that a relative place name such as ―an X y miles from Z‖ is marked with a single tag; as we 

have seen, SpatialML uses only atomic tags but exploits non-consuming linking tags such as 

LINK and RLINK. (iii) the TEI scheme allows for the representation of spatial relations, but does 

not annotate any particular ones, whereas, as we have seen, SpatialML represents certain 

topological and orientation relations.  
 

The SpatialML annotation scheme can also be integrated with the Geography Markup Language4 

(GML) defined by the Open Geospatial Consortium (OGC). This integration, which includes the 

mapping, in an XML layer, of PLACE tag ids with GML tag ids, allows SpatialML to defer details 

of geographical representation  to GML, which is a very rich specification  language for structured 

geographic data. For example, SpatialML allows the latLong feature in a PLACE tag to be any 

string, including strings with or without decimals that can be parsed into GML coordinates along 

with appropriate coordinate systems. Likewise, a distance expression tagged with a SIGNAL tag 

(of type DISTANCE) can be mapped to units of measure specified in GML. Mappings have also 

been implemented from SpatialML to Google Earth‘s Keyhole Markup Language (KML), and 

from the output of a commercial geo-tagging tool, MetaCarta, to SpatialML. 

 

                                                 
3http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ND.html#NDGEOG 
4http://www.opengis.net/gml/ 
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Finally, SpatialML has also been mapped to the Generalized Upper Model5 (GUM) ontology 

developed at the University of Bremen. The GUM concepts that are relevant to SpatialML fall 

under SpatialDistanceModality (both QualitativeDistance, namely ‗near‘ and ‗far‘, and 

QuantitativeDistance, including CardinalDirectional), as well as RelativeSpatialModality 

(including Connection, Parthood, and ProjectionRelation). For example, the GUM 

ProjectionRelation called AboveProjectionExternal maps to the RLINK attribute direction with 

value ABOVE (―above the house‖), while AboveProjectionInternal maps to the PLACE tag‘s mod 

attribute TOP (―the top of the mountain‖, discussed earlier).  

3.2. Adequacy for Formal Reasoning 

SpatialML represents topological relations between places which are viewed as topological 

regions. These relations are captured in the LINK types, which we now discuss further. DC, EC, 

EQ, and PO are from the RCC calculus version known as RCC8. IN is not RCC8, but collapses 

two RCC8 relations, TPP and NTPP (tangential proper part and non-tangential proper part, 

respectively). IN is in fact the PP ―proper part‖ relation in RCC5. The reason for the collapsing is 

that it is often difficult for annotators to decide whether the ―part‖ touches or does not touch the 

including region's border. We also do not include the remaining RCC8 inverse links TPPi and 

NTPPi, since these can be represented in annotation by swapping arguments, and are in addition 

likely to confuse annotators.  These annotation efficiency considerations leave one with a hybrid 

calculus involving relations drawn from RCC5 and RCC8.  For this reason, the annotation does 

not use existing XML markup schemes for RCC8 such as SpaceML from Cristiani and Cohn 

(2002). Nevertheless, RCC was preferred to more expressive representations such as the 9-

intersection calculus of Egenhofer and Herring (1990), which has separately been mapped to 

natural language in the experiments of Rashid et al. (1998). That is because our annotators felt 

more comfortable dealing with RCC based on familiarity with annotating temporal relations in 

TimeML (Pustejovsky et al. 2005) using the analogous temporal interval calculus of Allen (1984).  

 

The collapsing of TPP and NTPP means that in SpatialML, the boundaries of subsets of points 

interior to a region cannot be distinguished, while the preservation of DC and EC allows external 

boundaries to be distinguished. Further, SpatialML is also limited in the general representation of 

borders. While SpatialML can represent the fact that Lebanon has a border (via the PLACE tag for 

Lebanon having a mod attribute with value BORDER), it cannot support reasoning about the 

border, since mods aren‘t connected via LINKs; the border itself cannot be tagged as a place, as 

we are treating places as regions in RCC. However, SpatialML can represent the fact that Lebanon 

and Israel have a common border, i.e., are EC. To combine qualitative reasoning about regions 

(e.g., a city being in a state) with metric constraints, such as geo-coordinates for the city, the 

reasoning will have to incorporate region representations that are minimum bounding rectangles 

(Papadias et al. 1995). From the standpoint of reasoning, further research can determine whether 

this hybrid calculus has any interesting formal properties. 

                                                 
5http://www.ontospace.uni-bremen.de/linguisticOntology.html 
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SpatialML also represents a limited number of orientation relations commonly encountered in the 

geographical language corpora, captured in the values of the RLINK direction attribute and in the 

PLACE tag‘s mod attribute. The coverage here is uneven, but adding a more substantial set of 

orientation relations to fully cover the distinctions in GUM is clearly possible, for example, 

mappings for GUM classes such as LateralProjection-External, as in ―to the left of the sofa‖, as 

well as GeneralDirectional, such as ―inside the house‖. However, these orientation relations are 

not tied to any formal calculi, and when captured by the mod attribute, the relations are treated as 

unary predicates. Using other link tags would be preferable to the use of mod, so that binary 

relations can be expressed. 

 

There are other major lacunae in terms of expressiveness; for example, sets of places (―the 

Americas‖) and complex modification (―subtropical and temperate regions of …‖) are not handled 

as yet in SpatialML. Addressing the former is feasible, while the latter requires a substantial 

revision to the way mod attributes are represented. 

4. Annotation Environment and Corpora 

We have annotated documents in SpatialML using the freely available Callisto6 annotation editor 

(Figure 1) which includes the SpatialML task extension. 

 

 

FIGURE 1: Callisto Editing Session 

 

The gazetteer used is the Integrated Gazetteer Database (IGDB) (Mardis and Burger 2005) 

(Sundheim et al. 2006).  IGDB integrates together place name data from a number of different 

resources, including NGA GeoNames7, USGS GNIS8, Tipster, WordNet, and a few others. It 

contains about 6.5 million entries. The Alexandria Digital Library (ADL) Gazetteer Protocol9 is 

used to access IGDB.   

 

                                                 
6http://callisto.mitre.org 
7http://gnswww.nga.mil/geonames/GNS/index.jsp 
8http://geonames.usgs.gov/pls/gnispublic 
9http://www.alexandria.ucsb.edu/downloads/gazprotocol/ 
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Four corpora have been annotated in SpatialML, chosen because they can either be shared freely, 

or are sharable under a license from the Linguistic Data Consortium (LDC).The first corpus 

consists of 428 ACE English documents from the LDC, annotated in SpatialML. This corpus, 

drawn mainly from broadcast conversation, broadcast news, news magazine, newsgroups, and 

weblogs, contains 6338 PLACE tags, of which 4,783 are named PLACEs with geo-coordinates. 

This ACE SpatialML Corpus (ASC) has been re-released to the LDC, and is available to LDC 

members as LDC2008T0310. The second corpus consists of 100 documents from ProMED11, an 

email reporting system for monitoring emerging diseases provided by the International Society for 

Infectious Diseases. This corpus yielded 995 PLACE tags. The third is a corpus of 121 news 

releases from the U.S. Immigration and Customs Enforcement (ICE) web site12.  This corpus 

provides 3,477 PLACE tags. The fourth corpus is a collection drawn from the ACE 2005 

Mandarin Chinese collection (LDC2006T06).  So far, 298 documents have been annotated, with 

4194 PLACE tags. The lack of multilingual gazetteers makes the annotation task challenging, 

given that the annotator tries to lookup a place name in Mandarin Chinese native script. So far, the 

main language-specific annotation issue that has come up is the need to have sub-word tags in 

SpatialML, as postpositions can be incorporated into the verb; e.g., ―飞往‖ is a single word 

meaning ―flies towards‖, calling for a sub-word SIGNAL tag. 

5. System Architecture 

5.1 Overview 

The annotated data is used (Figure 2) to train a statistical Entity Tagger and a disambiguator. Both 

these tools are built on top of the freely available Carafe13 machine learning toolkit.  The Entity 

Tagger uses a Conditional Random Field learner to mark up PLACE tags in the document, 

distinguishing between PLACES and non-PLACEs. The features weighted by the learner include 

contextual features as well as a feature which checks for membership in a list of place names. For 

PLACEs, the Entity Tagger also indicates the syntactic form of the mention, i.e., named or 

nominal (NAM or NOM, respectively). Entity Tagging is a crucial first step, given that 

distinguishing place names from other kinds of names such as person or organization names can 

severely reduce the ambiguity early in the pipeline. At this stage, the PLACE tag, even it is a 

NAM, does not contain geo-coordinates, and nor is it known whether that PLACE is in the 

gazetteer; these latter decisions are left to the next stage involving the disambiguator.  

 

                                                 
10http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2008T03 
11http://www.promedmail.org (we are investigating the possibility of sharing this corpus). 
12http://www.ice.gov/ (this data can be shared). 
13http://sourceforge.net/projects/carafe 
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FIGURE 2: System Architecture 

 

The disambiguator (discussed below) looks up tagged PLACE mentions against the gazetteer, 

using a log linear learning model to rank the potential candidates from the gazetteer. Features 

associated with the PLACE mention as well as those associated with the gazetteer entry are 

weighted by the learner.  The Relations Tagger then computes LINKs and RLINKs between 

PLACEs. The overall pipeline can process any document (including Web documents in HTML, 

which are converted to XML using TagSoup14), generating SpatialML output. Finally, the 

SpatialML output can in turn be mapped to KML for display in Google Earth. 

5.2 Disambiguator 

For each training document, the disambiguator constructs the cross-product of each PLACE tag 

occurrence (i.e., mention) and all applicable gazetteer candidates for that mention. Feature vectors 

are constructed for each combination in the cross-product, with the feature vector being labeled as 

positive if the gazetteer candidate is found in the annotated training document. The features consist 

of document features, gazetteer features, and joint features. The document features consist of the 

document id, the mention string, a window of 10 words on each side of the PLACE mention, and 

an indicator for whether the mention is the first one in the document. The gazetteer features 

include the gazetteer id for the particular gazetteer candidate, the PLACE type, State, and Country, 

and its latitude and longitude. Joint features include the number of gazetteer candidates for the 

mention, and whether the parent (likewise, a sibling) of the gazetteer entry (e.g., the country if the 

gazetteer entry was a capital) is in the document features.   

 

For disambiguation, a statistical ranking model is computed, so that for each gazetteer candidate Gi 

for PLACE mention M, a weight vector for Gi is normalized against all other candidates for M. 

This is used to compute Pr(Gi|M). More precisely, letting wk be the weight of feature fk, and 

Gaz(M) be the set of all candidate gazetteer entries for M derived by automatic lookup, we have: 
                                                 
14http://ccil.org/~cowan/XML/tagsoup/ 

© The MITRE Corporation. All rights reserved



 

11 

)(

)(*

)(*

,

,
)|Pr(

MGazj

j

i

i

G

MGfw

MGfw
MG

e
e

k
kk

k
kk

 

 

 

 

 

At decode time, given a mention M and a set of gazetteer entries for M, the decoder finds the Gi 

that maximizes Pr(Gi|M).  A threshold is used to determine if we have sufficient confidence in the 

best-ranked sense to provide it as output.   

5.3 Relations Tagger 

The Relations Tagger tags RLINKs and LINKs. It uses a rule-based component that takes a 

document with SpatialML PLACE tags and locates signals, directions, and distances based on a 

pre-determined list of common syntactic patterns.  It then tags RLINKs and LINKs based on 

finite-state patterns based on lexical items as well as syntactic chunks. One problem here is data 

sparseness—we have relatively few RLINKs in our current collection of annotated data. 

6. Evaluation 

6.1 Entities 

We first discuss the accuracy of human annotation of entities in the ASC and ProMED corpora. 

These are shown in Table 2, in the row marked ‗Extent‘ and the columns marked ‗Human‘. In 

evaluating extents, the start and end offsets of the tag must match exactly across annotators. The 

study of agreement on ProMED was carried out early in the project with a single pair of 

annotators. The agreement study on ASC was carried out much later in the project by three 

annotators, with the results being an average of their agreement. The ASC results thus reflect 

improved training as well as guideline maturity. Disagreements stemmed mainly from the 

guidelines and performance errors; they included (for ProMED) cases such as an annotator failing 

to mark discourse-dependent references like ―the state‖, as well as specific references like ―area‖, 

and incorrectly marking generic phrases like ―areas‖ or ―cities‖, among others.   

 

Table 2 also shows the F-measure of the MIPLACE Entity Tagger in the row marked ‗Extent‘ and 

the columns marked ‗MIPLACE‘, along with Precision and Recall shown in brackets. The Entity 

tagger is trained using the perfect tag extents in the training data. The much poorer performance on 

ProMED is due to the lack of domain-specific pre-processing, such as specialized handling of title, 

header and signature blocks, as well as the failure to expand abbreviations. Another problem on 

ProMED is the tendency of the Entity Tagger to tag place names inside disease-names or other 

names, e.g., ―West Nile Virus‖, ―Nashville Warbler‖. 
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TABLE 2: F-Measure [Precision, Recall] of MIPLACE and Human Annotators 

 

6.2 Disambiguation 

Table 2 (the row marked ‗LatLong‘ and the columns marked ‗Human‘) indicates the inter-

annotator agreement in disambiguation on ASC and ProMED. LatLongs have to agree within two 

meters of distance along the earth‘s surface, and discrepancies in units (decimal versus degree-

minute-seconds) are treated as errors15.  

 

One source of disagreement between annotators is the granularity of the gazetteer. Gazetteers often 

include multiple entries for a place, with slightly different geo-coordinates depending on whether 

the place is viewed, say, as a town versus an administrative region. This problem is exacerbated in 

IGDB, which integrates several gazetteers; annotators differed in which entry their picked. 

Another source of error involves mistyping a gazetteer reference. In addition, Callisto lacks the 

ability to carry out inexact string matches for text mentions of places against IGDB entries, 

including adjectival forms of names (e.g., ―Rwandan‖) and different transliterations (e.g., 

―Nisarah‖ vs. ―Nisara‖). The annotator also has to be creative in trying out various alternative 

ways of looking up a name (―New York, State of‖ vs. ―New York‖). There was no evidence of 

disagreements arising due to an annotator making use of specialized knowledge.   

 

It is worth pointing out that the level of agreement on disambiguation depends on the size of the 

gazetteer. Large gazetteers increase the degree of ambiguity; for example, there are 1420 matches 

for the name ―La Esperanza‖ in IGDB. A study by (Garbin and Mani 2005) on 6.5 million words 

of news text found that two-thirds of the place name mentions that were ambiguous in the USGS 

GNIS gazetteer were ‗bare‘ place names that lacked any disambiguating information in the 

containing text sentence.  

 

Let us turn to the MIPLACE Disambiguator. The Disambiguator is trained based on perfect 

extents using the disambiguated information in the training data. It is evaluated as follows: for 

each (perfect extent) mention M, given a gold standard gazetteer entry Gr(M) in the human-

                                                 
15In the ProMED study, which was conducted early in the project, LatLongs had to agree exactly as strings, 
with leading or trailing zeros treated as errors. This scoring accounts for some of the lower performance on 
ProMED. 

 ASC ProMED 

 MIPLACE HUMAN MIPLACE HUMAN 

Extent 86.9 [97.3, 78.5] 91.3 [91.86,  90.73] 67.54 [90.35, 53.93] 92.3 [89.32,  95.4] 

LatLong 93.0 87.93 [87.76, 88.06] 85.0 71.85 [96.51,  57.22] 
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annotated data for M, the disambiguator ranks the gazetteer entries in Gaz(M). The top-ranked 

entry Gi(M)  in Gaz(M) is compared against Gr(M). This evaluation guarantees that Gr(M), if it 

exists, is always ranked. It is possible to instead evaluate without such a guarantee; for example, 

the lookup may fail to retrieve Gr(M) due to problems with transliteration, qualified names, 

adjectival forms, etc. However, such an evaluation, while more end-to-end, is less insightful, as it 

would not distinguish classifier performance from the performance of the database interface for 

gazetteer lookup.  

 

The Disambiguator performance shown in Table 2 (the row marked ‗LatLong‘, the columns 

marked ‗MIPLACE‘). The precision and recall are discussed below in Figure 3.  The better 

performance of MIPLACE compared to the human is due in part to the difference in tasks: in the 

case of MIPLACE, the ranking of gazetteer candidates, including the correct one, from the 

automatic lookup in Gaz(M), versus the larger search space for the human selecting the right place, 

if any, in IGDB.  The poorer MIPLACE disambiguation performance on ProMED compared to 

ASC is due to the smaller quantity of training data as well as the aforementioned errors such as 

zoning and abbreviations affecting the Disambiguator.  

 

We now discuss the impact of different thresholds on Disambiguator performance on the ASC 

corpus. Two ―confidence‖ measures were computed for selecting a cutoff point between 0 and 1. 

For each measure, the top gazetteer candidate would be selected provided that the measure was 

below the cutoff.  That is, lower confidence measures were considered a good sign that the top 

choice was effectively separated from sibling choices. The measure One is 1 minus the probability 

Pr(top) for the top item, i.e. the portion of probability associated with the non-selected items. The 

measure Prop (for ‗Proportion‘) is the reciprocal of the product of Pr(top) and the number of  

candidates, i.e., a low top probability with many choices should be counted the same as a high 

probability among few choices. The effect of these two confidence measures on the Precision and 

Recall of the Disambiguator is shown in Figure 3. It can be seen that precision increases slightly as 

the threshold is raised, but that recall drops off sharply as the threshold is raised beyond 0.9.  

 

 

 

 

 

 

 

FIGURE 3: Precision and Recall of Confidence Measures on ASC 

 

Figure 4 shows the Predictive Accuracy of the loglinear model (LogLin) in comparison to various 

baseline approaches. ParentInText gives a higher prior probability to a gazetteer candidate with a 

‗parent‘ in the text, e.g., for a given mention, a candidate city whose country is mentioned nearby 

in the text. FirstCand selects the very first candidate (profiting from 37% of the mentions that have 
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only one gazetteer candidate). Random randomly selects a candidate. TypePref prefers countries to 

capitals, or first-order administrative divisions to second-order. These baselines do not fare well, 

scoring no more than 57. In comparison, LogLin scores 93.4.  

 

 

 

 

 

 

 

 

 

FIGURE 4: Disambiguator Predictive Accuracy on ASC 

6.3 Entity Tagger Across Domains 

When we applied the MIPLACE tool to other domains, our first observation was that results on the 

other corpora were lower than on ASC. We have already mentioned some problems with 

MIPLACE on ProMED. Overall, the cost of annotating data in a new domain is generally high. 

We therefore investigated the extent to which taggers trained on the source ASC data could be 

adapted with varying doses of target domain data (ProMED or ICE) to improve performance. 

Information from source and target datasets might be aggregated by directly combining the data 

(Data Merge), or combining trained models (Model Combination), or else by preprocessing the 

data to generate ―generic‖ and ―domain-specific‖ features -- the latter based on the ―Augment‖ 

method of Daume III (2007).  

 

Table 3 shows the performance of the Entity Tagger (i.e., measuring exact match on extents) 

trained and tested on different datasets and different combination methods. Here the source data is 

ASC, and the target data is either ICE or ProMED.  

 

 ICE ProMED 

Target Data Only 85.60 67.54 

Source Data Only 76.77 67.31 

Data Merge 85.88 84.14 

Model Combination 82.52 68.57 

"Augment" Method 85.34 71.42 

TABLE 3: Entity Tagging F-Measure of Different Data Aggregation Methods 

 

It can be seen that in both domains, training a single model over the combined data sets yielded 

strong results. In the ICE domain, which contained a total of 3,477 sample tags that were used for 
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four-fold cross-validation, both the Augment model and the model trained only over ICE data 

performed comparably to the Data Merge model, while in the ProMED domain, with only 995 

sample tags, Data Merge can be seen to clearly outperform all other techniques.  

 

Figure 5 shows the effect of different amounts of target data in the ICE domain on F-Measure 

under various combination methods. The figure shows that the Data Merge model performs best 

with relatively low amounts of target data, but as increasing amounts of target data are included, 

the Data Merge, Augment, and target-only curves converge, implying that there is enough target 

data that the relatively poorly-performing source data is no longer useful.   

 

 

 

 

 

 

 

 

 

 

FIGURE 5: Learning Curves over ICE 

 

Figure 6 is a similar chart for the ProMED domain.  Here, the Data Merge technique is clearly 

superior to the others, however with the relatively small number of training tags, it is possible that 

additional ProMED data would lead to improvement in the other techniques‘ scores. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6: Learning Curves over ProMED 
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7. Conclusion 

We have described an annotation scheme called SpatialML that focuses on geographical aspects of 

spatial language. A freely available annotation editor has been developed for SpatialML, along 

with corpora of annotated documents with geo-coordinates, in English and Mandarin Chinese. The 

agreement on annotation is acceptable: inter-annotator agreement on SpatialML extents is 91.3 F-

measure on the ASC corpus, while disambiguation agreement on geo-coordinates is 87.93 F-

measure on it. Automatic tagging is also reasonable, though improvements are desirable in other 

domains. An automatic tagger for SpatialML extents scores 86.9 F-measure on ASC, while a 

disambiguator scores 93.0 F-measure on it. In terms of porting the extent tagger across domains, 

training the extent tagger by merging the training data from the ASC corpus along with the target 

domain training data outperforms training from the target domain alone. When there is less target 

domain training data, mixing in general purpose data which is similar in content is shown to be a 

good strategy.  

 

SpatialML has also gained some currency among other research groups. Moskowitz and 

Pustejovsky (2008) have worked on integrating SpatialML with TimeML for interpreting 

narratives involving travel events, using on-line sources such as travel blogs. In addition, we have 

collaborated with the University of Bremen in mapping SpatialML to GUM. Barker and Purves 

(2008) have used SpatialML in the TRIPOD image search system. SpatialML is also the 

inspiration for a Cross-Language Evaluation Forum (CLEF) information retrieval task aimed at 

search engine log analysis16. Finally, SpatialML forms part of the initial framework for the 

proposed ISO-Space standard, currently a Work Item under ISO Working Group TC 37 SC4 

(Language Resource Management). 

 

Future work will extend the porting across domains to the disambiguator, and will also evaluate 

the system on Mandarin17. Our larger push is towards extending our multilingual capabilities, by 

bootstrapping lexical resources such as multilingual gazetteers. We also expect to do more with 

relative locations; currently, locations such as ―a building five miles east of Fengshan‖ can be 

displayed in KML-based maps where lines are drawn between the source and target PLACEs from 

the RLINK. Research is underway to determine appropriate fudge factors to compute the actual 

orientation and length of such lines from their natural language descriptions. Finally, since we are 

in position to extract certain semantic relationships involving topology and orientation, we expect 

to enhance and then use these capabilities for formal reasoning. 
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