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ABSTRACT  
 
Global Navigation Satellite System (GNSS) receivers 
suffer signal-to-noise ratio (SNR) losses due to 
bandlimiting, quantization, and sampling. This paper 
presents an analytical model for GNSS receiver losses 
applicable to a wide variety of hardware configurations. 
The model addresses digitization of the received signal by 
a uniform quantizer with an arbitrary (even or odd) 
integer number of output levels. The model provides SNR 
loss values for GNSS signals in the presence of both 
additive white Gaussian noise and interference, provided 
that the interference can be accurately modeled as a non-
white, Gaussian wide sense stationary process. 
 
INTRODUCTION  
 
Direct sequence spread spectrum (DSSS) receivers, 
including those used for the Global Navigation Satellite 
System (GNSS), suffer signal-to-noise ratio (SNR) losses 
due to bandlimiting, quantization, and sampling. Previous 
research into such losses has included: (1) low-fidelity 
analytical models that predict SNR loss values with many 
simplifying assumptions, (2) extensive simulation 
campaigns that provide useful loss values, but are time 
                                                 
*The contents of this material reflect the views of the author. 
Neither the Federal Aviation Administration nor the Department 
of the Transportation makes any warranty or guarantee, or 
promise, expressed or implied, concerning the content or 
accuracy of the views expressed herein. 

intensive and do not provide much insight into the various 
loss mechanisms. 
 
Earlier analytical studies of DSSS receiver SNR losses 
due to quantization include derivations in [1] for 
quantization losses of 1.96 dB and 0.55 dB, respectively, 
for 1- and 2-bit uniform quantizers. These derivations are 
simplified in that they assume that the received signal is 
sampled, but with independent noise upon each sample 
and ignoring bandlimiting effects on the desired signal 
component. A more thorough treatment of bandlimiting, 
sampling, and quantization effects in digital matched 
filters is provided in [2]. The results in [2] were later 
inferred to apply to GNSS receiver losses in [3, 4]. As 
detailed later in this paper, however, the results in [2] are 
truly not directly applicable to GNSS or other DSSS 
receivers because the losses derived therein presume 
coherent integration over only one symbol of the desired 
signal by the receiver, whereas DSSS receivers coherently 
integrate over many spreading symbols. 
 
Monte Carlo simulation results for GNSS receiver SNR 
losses for a variety of modulation types, receiver 
configurations, and in the presence of both white noise 
and non-white interference are provided in [5] and [6]. 
These results, although useful, have several limitations. 
First, if loss results are required for a scenario not yet 
investigated, additional simulations must be run, and 
these can be extremely time intensive. A simulation tool 
developed by the second author of [5] and augmented in 
capability by others at MITRE takes over 6 hours on a 
desktop personal computer to yield results for a typical 
run. Second, simulations provide limited insights into the 
various mechanisms contributing towards implementation 
losses. Lastly, the loss results presented in [5, 6] are all 
for receivers using sampling rates that are commensurate 
with the desired GNSS signal symbol rates, i.e., with an 
integer number of samples per spreading symbol. As 
discussed within this paper, with commensurate sampling, 
receiver SNR losses are highly dependent on the phasing 
of the sampling epochs relative to the symbol transitions. 
Well-designed GNSS receivers avoid commensurate 
sampling rates, because of errors that can arise in 
pseudorange measurements when such rates are used [7, 
8].  
 
This paper presents an analytical model for GNSS 
receiver losses applicable to a wide variety of hardware 
configurations. The model addresses digitization of the 
received signal by a uniform quantizer with an arbitrary  
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Figure 1. GNSS Receiver Signal Processing Model 

  
(even or odd) integer number of output levels. The model 
includes the effects of sampling and bandlimiting, without 
limitations on the allowable sample rates or filter transfer 
functions. Both commensurate and non-commensurate 
sampling rates are considered, although as mentioned 
above the former are mostly of interest in comparing 
results with those reported previously in earlier studies. 
 
As observed in the previous literature, losses are 
dependent on the desired signal modulation type. 
Furthermore, different losses are incurred for the three 
components of the received signal considered: (1) desired 
GNSS signal, (2) noise, and (3) Gaussian non-white 
interference (e.g., inter-/intra-system interference from a 
number of GNSS signals of the same or different 
modulation type). The analytical formulation provides 
insight into how implementation losses result from a 
combination of attenuation of the desired signal, and 
attenuation and/or enhancement of the noise/interference. 
 
This paper is organized as follows. The analytical model 
is first derived and described in the following section, 
with certain cumbersome steps in the derivation relegated 
to appendices. The subsequent section provides 
implementation loss results from the analytical model and 
compares pertinent results against those found in the 
previous literature. The final section provides a short 
summary and conclusions. 
 
ANALYTICAL MODEL 
 
A simplified block diagram of signal processing within a 
GNSS receiver is shown in Figure 1. The received signal, 
r(t), is modeled as the sum of a desired signal, noise n(t), 
and interference i(t). The baseband normalized (unity 
power) desired signal is denoted s(t), with received phase  
  (radians) and received power level of C watts. Note 
that Figure 1 is highly simplified and omits certain 
receiver processing functions that are considered lossless 
this analysis, e.g., down-conversion of the original L-band 
received signal to its in-phase (I) and quadra-phase (Q) 
components (treated here as a single complex signal). 
 
The following subsections provide statistical models for 
the signal, noise, and interference, and then follow these 
received signal components through the processing shown 
in Figure 1. The final subsection derives expressions for 

effective signal power and effective noise density at the 
output of the correlator, which when combined yield SNR 
losses. 
 
Signal Model 
 
The baseband normalized desired signal, s(t), is modeled 
very generally as:   
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where  is the fraction of power in the signal‟s in-phase 
component, Tc is the symbol period, {cl} and {dl} are 
independent, white pseudorandom sequences from the 
binary alphabet [-1,+1], and p
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respectively, the l-th spreading symbols used for the 
inphase and quadraphase components. The spreading 
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symbols taking on the same, rectangular shape, or to more 
complicated GNSS signals such as the GPS L1 civil 
signal (L1C) that include in- and quadra-phase 
components with a mixture of different symbols (the L1C 
pilot component uses two different symbol types that are 
time multiplexed). 
 
The signal defined in equation (1) is cyclostationary, with 
a two-parameter autocorrelation function that is periodic 
with time, t, with period Tc: 
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(2) 

and its time-average may be defined as 
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where 
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Noise and Interference Models 
 
The noise, n(t), and interference, i(t), are assumed to be 
mutually independent, complex Gaussian wide sense 
stationary random processes. The noise is further assumed 
to be white with power spectral density of 0( )nS f N  
watts/hertz (double-sided), whereas the interference has 
an arbitrary power spectral density ( )II S f , where I is 
the received interference power level (watts), and ( )IS f  
is the normalized (unity power) interference power 
spectrum. 
 
Filtering 
 
The low-pass filter in Figure 1 is specified by an arbitrary 
transfer function, H(f).  For some of the later results, an 
ideal low-pass filter with transfer function: 

 1,   / 2
( )

0,        else      
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 

 
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(5) 

is presumed, where B is the two-sided filter bandwidth. 
The filter outputs corresponding to each received signal 
component are denoted by tildes (e.g., ( ), ( ), ( )s t n t i t ).  
 
For the transfer function specified in equation (5), after 
filtering the noise power spectral density is given by: 
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and its autocorrelation by: 
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With ideal low-pass filtering as described by equation (5), 
the interference power spectral density is given by: 
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For an arbitrary low-pass filter with transfer function H(f), 
equations (6) and (8) may be replaced by the respective 
input noise and interference power spectral densities 
multiplied by |H(f)|

2. 
 

It is assumed that within the receiver passband, the power 
of the desired signal is much lower than the combined 
power of the noise and interference, e.g., with ideal low-
pass filtering, 
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where ( )sS f is the Fourier transform of ( )sR  . 
 
Sampling 
 
The low-pass filtered received signal is uniformly 
sampled at rate fs. After sampling, the received signal may 
be expressed as: 
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where Ts = 1/fs is the sampling period, and T0 is a constant 
timing offset. 
 
The autocorrelation of the sampled received signal may 
be expressed as: 
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where the last line follows from (9) and 
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The power spectral density of the sampled received signal 
is the discrete-time Fourier transform of (11), which can 
be expressed as a function of the continuous-time power 
spectral densities of the noise and interference 
components of the received signal, equations (6) and (8), 
respectively, as 
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where the approximation in the second line follows from 
the assumption stated in equation (9) that the noise and 
interference power are much larger than the desired signal 
power.  
 
Quantizer 
 
The complex quantizer in Figure 1 is modeled as shown 
in Figure 2, where Re(·) and Im(·) are the real and 
imaginary operators, respectively. nx and ny  are 
introduced as the inphase and quadraphase components of 
the received signal, respectively, and their quantized 
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versions are denoted by the same notation with a 
superscript „q‟. 
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Figure 2. Complex Correlator Model 

 
Each of the two real quantizers is modeled as an odd 
symmetric, memoryless nonlinearity whose output, y(t), at 
arbitrary time, t, is only a function of the input voltage at 
that instant, x(t), following the input-output 
characteristic [9]: 
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 where N is the number of output levels, u(x) is the unit 
step function, K is a gain constant and    is the floor 
operator whose output is the greatest integer less than or 
equal to its argument.  

This paper focuses on quantizers with uniform step sizes. 
The input-output characteristic for a uniform quantizer is 
given by equation (14) with [9] 
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Examples for various values of N with K = 1 are shown in 
Figure 3. 

For comparisons with previous studies, it is useful to note 
that the maximum input threshold, T, for an N level 
uniform quantizer is related to the parameter Q as: 
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Figure 3. Examples of Uniform Quantizers 

 
As derived in Appendix A, the autocorrelation of the 
output signal of the complex correlator may be related to 
the autocorrelation of the input signal utilizing results 
from [9, 10]. The result is: 
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In equation (20), Hk(·) is a k-th order Hermite polynomial. 
Efficient methods for numerically computing (20) and 
(21) are provided in Appendix A. 

If the interference has a baseband power spectral density 
that is even symmetric, i.e., ( ) ( )I IS f S f  , then [ ]rR m  
will be entirely real for all m and thus: 
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The power spectral density of the complex quantizer 
output may be related to the power spectral density of its 
input by taking the discrete-time Fourier transform of 
equation (18): 
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If the interference has a baseband power spectral density 
that is even symmetric, i.e., ( ) ( )I IS f S f  , such that 
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which may also be obtained by taking the discrete-time 
Fourier transform of equation (22). 
 
Phase Rotation and Correlation 
 
As shown in Figure 1, the received signal after filtering, 
sampling and quantization, q

nr , is phase rotated by an 
estimate of the incoming signal phase (assumed here to be 
perfect) and then correlated against the complex 
conjugate of the discrete-time replica of the desired 
signal, *

ns , resulting in the complex correlation sum: 
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where M is the number of samples per coherent 
correlation interval, TI = MTs. 

As derived in Appendix B, the mean value of the k-th 
complex correlation sum is: 
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is the time-average (over sample epochs across the 
coherent correlation interval) of the two-parameter cross-
correlation function between the filtered and unfiltered 
desired signal, i.e., 
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with 
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where h(t) is the impulse response of the low-pass filter in 
Figure 1, equal to the inverse Fourier transform of its 
transfer function, H(f). For the transfer function provided 
in equation (5),  
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As mentioned in the introduction, well-designed receivers 
use sample rates that are incommensurate with the 
spreading symbol rate [7, 8]. With incommensurate 
sample rates, equation (27) is well-approximated by: 
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since over the coherent correlation interval, the sampling 
epochs tn are uniformly distributed across the spreading 
symbols. It follows then, that for incommensurate 
sampling rates: 
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in general, and 
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for the ideal filter with transfer function provided in 
equation (5). 

Another case worthy of special note is when the sample 
rate is exactly commensurate with the spreading symbol 
rate: 
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where Ns is a positive integer representing the number of 
samples per spreading symbol. Although commensurate 
sampling is rarely found in GNSS receivers, it has been 
assumed in previous studies [2, 5, 6] and its treatment in 
this paper has been included to facilitate a comparison of 
results. 

Commensurate sampling is illustrated in Figure 5. At the 
top of the figure is the desired signal component of the 
baseband received signal with rectangular symbols after 
filtering. The bottom of the figure indicates the sampling 
epochs. Note that there are exactly two samples per 
symbol. The phasing of the sample epochs with respect to 
the symbol transitions is captured by the time offset 
parameter, T0, introduced in equation (10). In Figure 5, T0 
= 0, i.e., the first of every two samples coincides with the 
leading edge of a symbol. 

With commensurate sampling,  

 
1

0
0

1( ) ( ; )
sN

ss ss s

ns

R R nT T
N

 




 
 

(35) 

 
 

© The MITRE Corporation. All rights reserved.



 
Figure 5. Illustration of Commensurate Sampling with 

Two Samples per Spreading Symbol 
 

The variance of the k-th complex correlation sum, as 
derived in Appendix B, may be accurately approximated 
for s cMT T  as: 
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Signal-to-noise Loss 
 
Using equation (26), the effective signal power at the 
output of the correlator may be found as: 
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(38) 

represents the loss in signal power due to bandlimiting, 
sampling, and quantization as can be observed by noting 
that  

eff
C C  in the limit as the filter bandwidth 

B  , the sample rate sf  , and the quantizer levels 

N   such that in Figure 1, q j

n n n nr Cs e n i   . 

Signal losses for a variety of quantizer levels, N,  and as a 
function of maximum input threshold level, T, are shown 
in Figure 4 and minimum signal loss values and 
associated quantizer thresholds are summarized in Table 
1. In both Figure 3 and Table 1, the results presume that 
the receiver bandwidth is sufficiently wide and the 
sampling frequency is sufficiently high so that the desired 
signal component of the received signal is negligibly 
attenuated, i.e., (0) 1ssR  . If this condition does not hold, 
an additional loss due to bandlimiting must be applied, 
utilizing equation (32) for incommensurate sampling or 
equation (35) for commensurate sampling. 

 

The effective noise plus interference power density is 
given by: 
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Figure 4. Signal Losses for Quantizers with N Levels 

vs. Maximum Input Threshold 

Table 1. Minimum Signal Loss Values and Quantizer 
Threshold Settings 

Number of 
Quantizer 
Levels, N 

Minimum 
Signal 
Loss (dB) 

Optimum 
Threshold 
Parameter, Q 

Optimum 
Maximum Input 
Threshold 
Level, T 

2 1.961 N/A N/A 

3 0.916 1.224 0.612 

4 0.549 0.996 0.996 

5 0.372 0.843 1.265 

6 0.272 0.733 1.466 

7 0.208 0.651 1.628 

8 0.166 0.586 1.758 

16 0.050 0.335 2.345 

32 0.015 0.188 2.820 

64 0.005 0.104 3.224 

128 0.001 0.057 3.591 
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(39) 

since in the presence of desired signal plus noise only, as 
is well-known, the correlation sum variance must equal 

0 / IN T  and thus (36) must equal 0 0/ / ( )I sN T N MT  in 
the limiting conditions ( B  , sf  , N  ).  

 
RESULTS AND VALIDATION 
 
Rectangular Symbols, Ideal Filtering, Nyquist Sample 
Rate, Noise-only 
 
Some simplifications to the analytical model are possible 
when the sampling rate is equal to the two-sided receiver 
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bandwidth, fs = B, only noise is considered, and ideal 
filtering as described by equation (5) is employed. In 
these conditions, the noise component of the sampled 
received signal is white, i.e., 0[ ]n mR m N B . From 
equation (22), the output of the complex quantizer for any 
number of levels has the same autocorrelation function, 

0[ ]q mr
R m N B . It follows then that 0( )q

j

sr
S e N f   

and substitution of this result into equation (17) yields 
 0 0eff
N N The SNR loss, thus, under these conditions 

is entirely attributable to the effective signal loss provided 
by equation (18). 
 
Figures 6 and 7 present SNR loss results from the 
analytical model for a desired signal using rectangular 
symbols, ideal filtering as described in equation (5), 
Nyquist rate sampling, and thermal noise only. Figure 6 
shows losses when the two-sided receiver bandwidth is 
equal to twice the chipping rate, B = 2/Tc. This case is 
applicable, e.g., to a C/A-code receiver with a 2.046 MHz 
two-sided bandwidth or a L5 receiver with a 20.46 MHz 
two-sided bandwidth. In this case, there are exactly two 
samples per spreading symbol in the desired signal. The 
sampling time offset, T0, in equation (8) was selected to 
be Tc/4, so that the two samples per symbol were centered 
with respect to the symbol minimizing signal loss. 
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Figure 6. SNR Losses – Rectangular Symbols, Noise 

Only, Two-sided Receiver Bandwidth Equal to Twice 
the Chipping Rate, Nyquist Sample Rate 

 
Figure 7 plots losses when the two-sided bandwidth is ten 
times the chipping rate, B = 10/Tc, e.g., a C/A-code 
receiver with a 10.23 MHz two-sided bandwidth. Nyquist 
sampling was used resulting in ten samples per spreading 
symbol with T0 = Tc/20, so that the ten samples in each 
symbol are centered with respect to the start and end of 
the symbol. 
 
The results in Figures 6 and 7 were originally of concern, 
since they are significantly different than the results for 
the same scenario as reported in two prominent texts [3] 
and [4], which both provide SNR loss values that 
originate from [2]. As an example of the differences, [2] 
indicates a 3.47 dB SNR loss with a 1-bit quantizer for the 

conditions used to produce Figure 5, whereas the 
analytical model indicates an SNR loss of 2.42 dB. 
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Figure 7. SNR Losses – Rectangular Symbols, Noise 
Only, Two-sided Receiver Bandwidth Equal to Ten 

Times the Chipping Rate, Nyquist Sample Rate 
 
Upon further study, it is clear that the SNR loss results in 
[2], without extension, are not truly applicable to GNSS 
receivers. The reason for this is that the results in [2] are 
focused on a communications receiver that only 
coherently integrates over one symbol. GNSS receivers 
typically coherently integrate over many spreading 
symbols. For example, a C/A-code receiver typically 
integrates over at least 1023 spreading symbols (chips) for 
all modes of operation. 
 
The method used in [2] to compute SNR losses is to first 
determine the probability mass function for each 
quantized sample of the received signal. With Nyquist 
sampling, as explained at the beginning of this section, 
noise samples are independent of each other. Thus, with 
an integer number of samples per symbol in a digital 
matched filter, it is possible to determine the probability 
mass function of the sum of quantized samples as 
integrated over each symbol by convolving the per-
sample probability mass functions. The method in [2] can 
be extended for a receiver that coherently integrates over 
many symbols simply by further convolving the 
probability mass function obtained for one symbol over as 
many symbols as are included within the coherent 
integration period. 
 
Figure 8 shows SNR losses as a function of the number of 
symbols within the coherent integration period for the 
conditions used to produce Figure 6. Figure 8 was 
produced using the extension of the method in [2] 
outlined above and with the quantizer thresholds shown in 
Table 1. As the number of symbols in the coherent 
integration period is increased, the SNR loss results 
asymptote to the values predicted by the analytical model 
(which presumes a coherent integration period that is 
much longer than the spreading symbol period). Tables 2 
and 3 summarize a comparison of SNR loss results from 
this extension of the method  from [2] vs. results from the 
analytical model described in this paper. Note the 
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excellent agreement, with all results between the two 
vastly different methods equal to within 0.01 dB.  
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Figure 8.   SNR Loss Results Using Extension of 

Method in [2]; Rectangular Symbols, Noise Only, 
Two-sided Receiver Bandwidth Equal to Twice the 

Chipping Rate, Nyquist Sample Rate 

Table 2. Comparison of SNR Loss Results from 
Extension of Method in [2] vs. Analytical Model; 

Rectangular Symbols, Noise Only, Two-sided Receiver 
Bandwidth Equal to Twice the Chipping Rate, Nyquist 

Sample Rate 

Number of 
Quantizer 
Levels, N 

Minimum Loss 
per Exension of 
Method in [2] 

(dB)* 

Minimum Loss 
per Analytical 
Model (dB) 

2 2.43 2.42 

4 1.01 1.01 

8 0.63 0.63 

16 0.51 0.51 

25 0.48 0.48 

*With coherent integration period = 1000 symbols. 

Table 3. Comparison of SNR Loss Results from 
Extension of Method in [2] vs. Analytical Model; 

Rectangular Symbols, Noise Only, Two-sided Receiver 
Bandwidth Equal to Ten Times the Chipping Rate, 

Nyquist Sample Rate 

Number of 
Quantizer 
Levels, N 

Minimum Loss 
per Exension of 

Method in 
[Chang] (dB)* 

Minimum Loss 
per Analytical 
Model (dB) 

2 2.01 2.01 

4 0.60 0.60 

8 0.21 0.21 

16 0.10 0.10 

25 0.07 0.07 

*With coherent integration period = 1000 symbols. 

 

It should be noted that when commensurate sampling is 
used with a small number of samples per spreading 
symbol, SNR losses are highly dependent upon the 
relative phasing between the sample epochs and desired 
signal symbol edges. Figure 9 illustrates the sensitivity by 
plotting loss results vs. the timing offset T0 for a one-bit 
(N = 2) quantizer, Nyquist sample rate, rectangular 
symbols, and ideal filtering with two sided bandwidth of 
twice the chip rate. These results can best be understood 
by viewing Figure 5. With two samples per spreading 
symbol, minimum signal power losses occur when the 
two samples are centered with respect to each symbol. If 
T0 is zero, the first of the two samples is aligned with the 
symbol leading edge, which is zero half the time (every 
time the preceding symbol has the opposite polarity). The 
net result is that on average 1 of 4 samples is devoid of 
energy from the desired signal component and the 
receiver suffers an approximate 1.3 dB additional loss for 
T0 = 0 vs T0 = Ts/2. Optimum sample phasing was 
explicitly utilized in [2] and in the results presented in 
Tables 2 and 3, whereas worst-case phasing is apparent 
from the loss results presented in [5,6]. 
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Figure 9. SNR Loss Sensitivity to Sampling Epoch 

Phasing with Commensurate Sampling 
 
Validation 
 
To validate the analytical model, SNR loss results were 
computed for 17 scenarios and compared with Monte 
Carlo simulations using a tool developed originally by the 
second author of [3] and significantly further developed 
by Dr. Alex Cerruti of MITRE. The scenarios included a 
wide variety of desired binary phase shift keyed (BPSK) 
and binary offset carrier (BOC) signal modulation types, 
quantizer levels, receiver bandwidths, and sample rates. In 
the description to follow the notation BPSK-R(n) is used 
for a BPSK signal with an n × 1.023 MHz symbol 
(chipping) rate and rectangular symbols. BOC(m,n) 
denotes a BOC modulation with a m × 1.023 MHz square 
wave subcarrier and a n × 1.023 MHz symbol rate. 
TMBOC denotes the time multiplexed BOC modulation 
that will be used for the pilot component of the GPS L1 
Civil (L1C) signal that time multiplexes 29 BOC(1,1) 
symbols and 4 BOC(6,1) symbols out of every 33 total 
symbols. 
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Figure 8 plots the results of the first scenario, which 
represents aggregate BOC(10,5) interference to a victim 
BPSK-R(1) receiver. White thermal noise was also 
present. The interference-to-noise density was varied over 
20 values from –infinity to 108 dB. The receiver had a -6 
dB two-sided bandwidth of 2.0 MHz with attenuation 
provided by a 12-th order Butterworth filter (the cascade 
of two 6-th order filters with -3 dB bandwidths of 2.0 
MHz), and digitized the received signal, noise, and 
interference with a 2.0 MHz sample rate and with one-bit 
quantization. Each simulation result point in Figure 8 is 
based upon Monte Carlo simulation of 100,000 complex 
correlation sums with a 1-ms coherent integration time. 
The analytical model was carefully tuned to the scenario, 
using the transfer function of the true digital filter that 
was used in the simulations. The analytical model also 
used an aliased power spectrum for the input desired 
signal and aggregate interference since the simulations 
created these digitally with an original sampling rate of 
163.68 MHz. Nearest-neighbor resampling was used in 
the simulations to decimate from the original high 
sampling rate to the final receiver sample rate, and this 
was accounted for in the analytical model utilizing an 
equivalent signal processing model where the high rate 
sampled signal is converted to analog using a sample-and-
hold, with its well known distortion to the signal 
spectrum, and then resampled. Three desired signal 
powers were evaluated. The analytical results very closely 
matched the simulation results with an average error 
below 0.01 dB, and a peak error of 0.12 dB. 
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Figure 8. BOC(10,5) on BPSK-R(1) Scenario Results 

 
The remaining 16 scenarios were run with only 10,000 1-
ms coherent correlation sums per simulation data point 
due to time considerations. The results for a few of the 
scenarios are shown in Figures 9 – 11. Overall, the 
simulation and analytical model results were in excellent 
agreement, with typical differences less than a few tenths 
of a dB for effective C/N0‟s down to around 20 dB-Hz. 
This level of error is attributable to the natural variation of 
the Monte Carlo simulations with 10,000 correlation sums 
per data point. At lower effective C/N0‟s, larger 
differences were observed but deduced to be due to the 
increased variance of the simulation loss estimates with 

decreased SNR, as demonstrated through additional 
simulation runs for a select number of points.  
 
One scenario involving aggregate cosine-phased 
BOC(15,2.5) interference to a narrow-band BPSK-R(1) 
receiver resulted in abnormally large differences between 
the simulation results and the analytical results. 
Debugging of the scenario revealed that the filter transfer 
function that was applied in the analytical model did not 
truly match the attenuation that occurred within the 
simulation tool. MATLAB was used for the simulations, 
and the MATLAB filtfilt.m function was found to 
have significant dynamic range problems, resulting in the 
filtered received signal power spectral density being much 
higher than would be predicted using the filter transfer 
function provided by another MATLAB function, 
freqz.m. This problem only manifested itself in one of 
the sixteen scenarios, because this particular scenario had 
an extremely low degree of overlap between the 
interference and the desired signal power spectra. Since 
the objective of the comparison exercise was to validate 
the analytical model, and the discrepancy in results was 
found to be due to problems with the simulation tool, this 
particular scenario was dropped from further analysis.  
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Figure 9. BOC(14,2) on BOC(10,5) Scenario Results; 

2-bit Quantization, 24.0 MHz Two-sided Receiver 
Bandwidth, 24.0 MHz Sample Rate 
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Figure 10. BOC(10,5) on BPSK-R(10) Scenario 

Results; 2-bit Quantization, 24.0 MHz Two-sided 
Receiver Bandwidth, 24.0 MHz Sample Rate 
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Figure 11. TMBOC on BPSK-R(10) Scenario Results; 

1.5-bit (3-level) Quantization, 20.0 MHz Two-sided 
Receiver Bandwidth, 20.0 MHz Sample Rate 
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SUMMARY AND CONCLUSIONS 
 
This paper has presented an analytical model for the 
computation of implementation losses suffered by GNSS 
receivers due to bandlimiting, sampling, and quantization. 
The model has been shown to accurately predict SNR 
losses due to bandlimiting, sampling, and quantization. It 
has the distinct advantage over Monte Carlo simulations 
in that it allows rapid determination of losses for 
scenarios not yet considered. 
 
APPENDIX A: OUTPUT AUTOCORRELATION 
AND POWER SPECTRAL DENSITY OF A 
COMPLEX QUANTIZER WITH WIDE-SENSE-
STATIONARY GAUSSIAN INPUT 
 
The autocorrelation  yR  of the output signal y(t) of a 
memoryless nonlinearity driven by a zero-mean, 
Gaussian, wide-sense stationary random process x(t) with 
autocorrelation function  xR  may be generally 
expressed as [10]:  
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(A-1) 

where the coefficients {
kb } are a function of the specific 

nonlinearity. A variety of methods for determining the 
coefficients are provided in [10]. The coefficients for a 
uniform quantizer with input-output characteristics as 
described in equation (2-14) may be expressed as: 
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(A-2) 

 
where 2 (0)x xR  is the power of the input process and 

( )kH x  is a k-th order Hermite polynomial defined as: 

   2 2( 1) exp( / 2) exp( / 2).
k

k

k k

d
H x x x
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(A-3) 

Equation (A-2) is easily derived from a more general 
result for the output autocorrelation of a uniform 
quantizer driven by the sum of Gaussian noise and an 
unmodulated carrier from [9]. It is noted in [9] that the 
output autocorrelation function of a uniform quantizer 
driven only by additive Gaussian noise (as used in this 
report) was derived earlier by Velichkin, but the reference 
cited in [9] for this prior work could not be located for use 
herein. For N = 2, the coefficients in (A-2) are a series 
expansion of the arctangent function [11]. 

The gain constant K is selected to achieve unity power 
gain for the quantizer, i.e., such that:  

 2 2(0)y y xR  

 
(A-4) 

Using equations (A-1) and (A-2), the condition stated in 
(A-4) requires that: 
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(A-5) 

The power spectrum of the quantizer output signal may be 
related to the power spectrum of the input signal by taking 
the Fourier transform of both sides of equation (A-1) 
yielding: 
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where the notation  
k

xS f


   denotes the convolution of 

the input power spectrum  xS f by itself k times. 

The results of equation (A-1) and (A-6) are readily 
adapted to discrete-time signals. For instance, as applied 
to the in-phase discrete-time signal, 

nx , from Figure 2: 
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and 
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where it is understood in equation (A-8) that the 
convolution is now circular as appropriate for discrete-
time signals, e.g., 
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It is useful numerically to replace the model for each real 
quantizer with an equivalent model shown in Figure A-1. 
In this figure, (a) and (b) are equivalent provided that the 
quantizer input/output levels are adjusted to maintain 
constant ratios with respect to the input signal standard 
deviations, i.e., if a quantizer parameter Q is used in (a), 
(b) must use the quantizer parameter / xQ  . 

 

Real 
Quantizer

nx q

nx

Real 
Quantizer

nx
q

nx
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(b)  
Figure A-1. Equivalent Models for a Real Quantizer 
 
The equivalence of (a) and (b) in Figure A-1 may be 
demonstrated by rewriting equation (A-7) as: 
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where 
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with the parameters 0kh  and K  defined as: 
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and 
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The second line of equation (A-10) validates the 
equivalence of Figure A-1 (a) and (b) since the 
summation in this line is seen to be the autocorrelation of 
the output of a real quantizer (see equation A-7) with the 
input signal /n xx  . The autocorrelation is increased by 

2
x  after the gain factor of x  following the real 

quantizer in Figure A-1 (b). 

Using this equivalent model, the power spectral density in 
(A-8) may be rewritten as: 
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The output autocorrelation function for the complex 
quantizer in Figure 2 may be found as: 
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(A-15) 

The first and last terms of the last line of (A-15) are 
provided by equation (A-7).  

The two middle terms of (A-15) can be determined by 
observing that the derivation of (A-1) from [10] applies to 
the cross-correlation between any pair of random 
variables before and after the same memoryless 
nonlinearity, Kf(x), is applied to each of the two variables. 
Let X1 and X2 be a pair of random variables and let Y1 = 
Kf(X1) and Y2 = Kf(X2). Equation (A-1) results from 
selecting: 
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It follows then, that by selecting: 
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Then, 
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Substituting (A-7) and (A-18) into (A-15) yields: 
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Based upon earlier assumptions that the noise and 
interference are zero-mean and wide sense stationary, and 
further that these received signal components dominate 
the desired signal, the cross-correlation of the received 
signal in-phase and quadraphase components must satisfy 
certain constraints [12]: 
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Using these relationships, (A-19) may be simplified as: 
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where (A-2) was used (specifically, the fact that for a 
uniform quantizer bk = 0 for k even) going from the 
second to the last line of (A-21).  

Equation (A-21) may be simplified further by noting that 
the autocorrelation of the input to the complex quantizer, 

[ ]rR m , may be expanded as: 
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The final result, relating the autocorrelation of the output 
of the complex quantizer to the autocorrelation of its input 
is presented in the main body of this paper as equation 
(18) and the input-output relationships for power spectral 
densities is presented in the main body as equation (23). 

Numerical Considerations 

Determining the {bk} coefficients in (A-2) requires 
numerical computation of Hermite polynomials and k!., 
both of which can lead to overflow problems for large k. 
These may be avoided by noting that that although the 
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numerator and denominator of bk grow exceedingly large 
with k, the ratio does not. 

The k-th order Hermite polynomial, ( )kH x , is defined in 
(A-3).  The polynomials for k = 0 and k = 1 may be 
readily found as: 
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( ) 1
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H x

H x x



  
(A-23) 

Higher order Hermite polynomials may be efficiently 
computed using the recursion: 

 
1 2( ) ( ) ( )k k kH x x H x k H x    

 
(A-24) 

The magnitude of ( )kH x  for large x is bounded by 
21.086 !exp( / 4)k x  [9]. 

To avoid overflow problems in the computation of bk, 
equation (A-2) may be rewritten as: 
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where ' ( )kH x  is defined as: 
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which may be efficiently computed recursively using: 
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(A-27) 

The quantizer gain coefficient K  is defined in equation 
(A-13) and represents a required gain factor for a real 
quantizer with unit power, zero-mean Gaussian input to 
provide an output also with unit power. Although as 
indicated in (A-13), this coefficient may be determined 
as: 
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numerically, this is somewhat challenging since the series 
{ 0kh } converges slowly with k, especially for quantizers 
with a small number, N, of output levels. 

An alternative approach to determine K  is to examine 
the probabilities of occurrence for each of the N quantizer 
output levels, similar to the analysis to be presented in 
Appendix B, except with the input to the quantizer 
approximated as zero-mean. 

With unit power, zero-mean Gaussian input a real 
quantizer with K = 1 and an even number of levels has an 
output variance given by: 
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where it is understood that the summation is zero if the 
upper limit is lower than the lower limit, as is the case for 
a 1-bit quantizer (N = 2). 

With the same input process, a real quantizer with an odd 
number of levels has an output variance: 
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Both (A-29) and (A-30) were derived by determining the 
variance for N = 2, 3, 4, 5, 6, and 7 levels and observing 
the patterns that emerged with increasing N. 

Finally, the alternate expression for K  is: 
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(A-31) 

using (A-29) or (A-30) as appropriate. This result is also 
useful to determine the degree of convergence obtained 
by truncating the series { 0kh } to a finite number of terms, 
since the following should hold: 
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(A-32) 

 
APPENDIX B: DERIVATION OF MEAN VALUE 
AND VARIANCE OF CORRELATION SUMS 
 
The mean value of each correlation sum is: 
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Using the cyclostationary model for the desired signal can 
be expanded as: 
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where the inner expectation is with respect to q

nr , and the 
outer expectation is with respect to ns . (see, e.g., [13, 
Section 3.2] for a discussion of this expanded form of the 
expectation operator). 

The real and imaginary components of q

nr each are 
constrained to only a finite number of levels (the N real 
quantizer output levels) so that the inner expectations in 
equation (B-2) involve finite summations, e.g.,  

  
/2

1

N

q q q

n n p n p n n p n

p

E x s o P x o s P x o s
  



               (B-3) 

where po is the p-th positive quantizer output level given 
by 
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and the odd symmetry of the real quantizer has been 
utilized. Since the input to each real quantizer is 
Gaussian-distributed, the probabilities in (B-3) are readily 
computed as, e.g.,: 

1

1

' '

' Re

' Re
    

q

n p n p n p n

j

p n

x

j

p n

x

P x o s P a x a s

a C s e
erf

a C s e
erf













        

     
 
 

     
 
 

 
(B-5) 

where 
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and  'pa is an extension of  pa  defined in equations 
(15) and (16): 
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By the low input signal-to-noise ratio assumption in 
equation (9), it follows that / 1n xCs    and the 

approximation 
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for 1x  may be applied to (B-5) resulting in: 
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Using (A-12) and (A-13), (B-9) can also be expressed as: 

 01 Req j

n n nE x s K h C s e          
 

(B-10) 

Similarly, an expression for the mean value of q

ny may be 
determined as: 
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and finally, substituting (B-10) and (B-11) into (B-2): 
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which leads directly to equation (26) in the main body of 
this paper.  

The variance of the k-th complex correlator output is: 
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(B-13) 

The mean value of the k-th complex correlator output, zk, 
was determined previously in equation (B-12). However, 
note that in the derivation of the autocorrelation and 
power spectral density of the complex quantizer, 
equations (18) and (23), respectively, the mean value of 
the input to the quantizer (the desired signal term) was 
noted to be very small relative to the variance of the input 
(noise and interference terms) and approximated as zero. 
To maintain consistency with this earlier approximation, 
the variance of zk is thus approximated as:  
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For large M, equation (B-14) simplifies to: 
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(B-15) 

If the coherent correlation interval is large relative to the 
desired signal spreading symbol rate, i.e., s cMT T , then 
(B-15) may be further approximated by: 
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which involves the inner product between the power 
spectral density of the complex quantizer output due to 
noise and interference and the power spectral density of 
the normalized desired signal. The above derivation 
closely parallels the development of correlator output 
variance with analog signal processing, e.g., see [14]. 
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