
Online Medical Symbol Recognition Using a Tablet PC 
              

 
Amlan Kundu, Qian Hu, Stanley Boykin, Cheryl Clark, Randy Fish, Stephen Jones and Stephen 
Moore   

 
MITRE  Corporation 
202 Burlington Road 
Bedford, MA 01730-1420 
 
 
 

Abstract 
 
In this paper we describe a scheme to enhance the usability of Tablet PC handwriting recognition 
systems by creating a software module for recognizing symbols that are not a part of the Tablet 
PC symbol library. The goal of this work is to make handwriting recognition more useful for 
medical professionals accustomed to using medical symbols in medical records. To demonstrate 
that this new symbol recognition module is robust and expandable, we report results on both a 
medical symbol set and an expanded symbol test set which includes selected mathematical 
symbols. 
 

I. Introduction 

A Tablet PC allows users to input data with a digital pen as well as via standard keyboard, 
mouse, or speech. Tablet PCs have special screens that use an active digitizer to enable users to 
write directly on the screen to control their PCs and to input information such as handwriting or a 
drawing. This process, called “inking,” enables users to add "digital ink" which appears as 
natural-looking handwriting on the screen. The digitized handwriting can be converted to 
standard text through handwriting recognition, or it can remain as handwritten text. 

When the input interface is easy and intuitive, handwriting can be a more natural and convenient 
input method for data entry into applications. When a doctor is standing beside an exam table 
and moving from room to room, manipulating a keyboard can be quite cumbersome. Thus, 
inking makes EMR (electronic medical record) creation more natural and convenient for medical 
professionals than typing on a keyboard. Inking also allows users to insert a sketch or drawing, 
take free-hand notes, and annotate an existing document such as an X-ray. Consequently, using a 
pen to input information into the Tablet PC can be a more natural and productive way to work in 
many situations, and is often quicker and easier than using a keyboard.  

On Tablet PCs, a digitizer overlaid on the LCD screen creates an electromagnetic field. When 
the pen comes in contact with the screen’s electromagnetic field, its motion is reflected on the 
screen as a series of data points. As the pen continues to move across the screen, the digitizer 
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collects information from the pen movement in a process called "sampling." The Tablet PC 
digitizer is capable of sampling 130 "pen events" (units of motion that correspond to data points) 
per second [11]. These electromagnetic pen events are then represented visually on the screen as 
pen strokes. Because of its high sampling rate, the Tablet PC is able to create the effect of "real-
time inking;" that is, as the user writes on the LCD screen, digital ink appears to flow from the 
moving pen. The high sampling rate also enables written ink to be displayed and stored with very 
high graphical resolution. Not only is this important for visual legibility on the screen, it is 
necessary for maximizing accuracy during the process of handwriting recognition.  

Despite its versatility, the Tablet PC recognition engine does not recognize some common 
medical symbols, which limits its usability for medical records applications. While symbols 
composed of standard keyboard characters such as mg% (milligrams per 100ml) can be added to 
the default dictionary, others such as ♂ (male) remain unavailable since the addition of non-
standard keyboard characters is not supported by the dictionary expansion utility.  This paper 
describes our research effort to recognize a set of 15 of these handwritten medical symbols 
(Table 1) allowing their use by medical professionals using a Tablet PC. To demonstrate that the 
symbol recognition module is robust and expandable, we have also included 20 mathematical 
symbols for an expanded set with which to test our symbol recognition algorithm. 
 
The primary contribution of the work described in this paper is that it deals with online medical 
symbol recognition in an application which includes both symbols and non-symbols. This 
combination of “medical”, “on-line” and “symbol/non-symbol” has not been addressed by 
previous work in the field of handwritten symbol recognition (HSR). While most of the papers 
related to HSR deal with offline HSR, online HSR, online mathematical symbol recognition in 
particular, is drawing increased attention [20]. In [21], online mathematical symbol recognition 
is addressed using a multi-classifier approach. In [22], online chemical symbol recognition is 
addressed using hidden Markov model based classifiers. In [23], online music symbol 
recognition is addressed using a complex scheme that recognizes individual strokes of the 
handwritten music symbol and uses that information for the final recognition. As has been noted, 
in this study we address online medical symbol recognition. However, our recognition approach 
does not deal with the handwritten medical symbol in isolation. In our work, handwritten 
medical symbols need to first be identified and separated from non-symbols as the writer writes. 
Only after a symbol is identified as a symbol is the final classification performed. Thus, the 
problem is one of identifying and classifying symbols embedded in a stream of non-symbols. 
This significantly increases the complexity of the problem. 
 
 
We begin in Section II with a description of our approach to interface with a standard Tablet PC 
handwriting application and our handwriting symbol classification system.  In Section III we 
describe the development of our test corpus and present experimental results.  In Section IV we 
provide a description of a research prototype which integrates the medical/mathematical symbol 
recognition module described here with a Tablet PC as well as our plans for tighter integration 
with the Tablet PC’s handwritten recognition engine. Finally, Section V presents our conclusions 
and future plans. 
 
II. Handwritten Symbol Recognition System 
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Our handwritten symbol recognition system consists of three stages, 1 - Data Collection and 
Feature Extraction, 2 - Symbol Identification and 3 - Symbol Classification.   This system 
augments the existing Tablet PC handwritten recognition system without requiring any changes 
to the existing system.  The description of our Handwritten Symbol Recognition system in this 
section includes our approach to accessing information from the existing Tablet PC. 

A. Data collection and Feature Extraction 
 
The first step in symbol classification is the conversion of a handwritten bit mapped symbol 
image into the features used for classification.  The classifier described in this paper uses 35 
features extracted from a binary bit mapped image.  The basis of our feature set are 30 features 
which have been successfully used in many handwriting applications [4,5].  These include three 
moment features that capture global shape information and 27 geometric and topological features 
including the number of loops, an X-joint feature, horizontal and vertical zero crossing features,  
a T-joint feature, the number of end points in upper, middle and lower zones of the character 
image, the number of segments in upper, middle and lower zones, and pixel distribution features.   

Based upon our previous research with Arabic character recognition, we added five features to 
this standard feature set.  Arabic characters share characteristics with symbols not normally 
found in the Roman character set such as abrupt changes in stroke direction and vertical stacking.  
These additional features were found to improve performance during Arabic character 
recognition and were included in our symbol classifier [5].  Two of these new features pertain to 
the character aspect ratio.  The maximum vertical extent and maximum horizontal extent of the 
character are used to compute the normalized horizontal to vertical aspect ratio fhv and the 
vertical to horizontal aspect ratio fvh.  Three chain code features, which assist with abrupt 
changes in stroke direction, were also included.  For the given character image, 8-directional 
chain codes are computed. All chains with a length greater than a threshold are considered good 
chains. The feature fch is assigned a value from 0 (no good chain) to 1 ( >3 good chains) based 
upon the number of good chains.  The feature frough is a chain code based roughness measure and 
fcon captures chain code sharp turn information. 

While it appears that some features of this empirically selected feature set are correlated, it has 
been shown [5] that feature reduction techniques such as Principal Component Analysis (PCA) 
result in a degradation in performance.  Our experiments and analysis showed that we could 
reduce our feature set from 35 to 28 but at a cost of a 5% reduction in performance.  Since 
feature computation is very fast, we elected to stay with our set of 35 features. 

Extraction of these features requires a binary bit mapped image of the user’s handwriting.  
Therefore our first step was the collection of bit mapped images of handwritten samples from our 
set of target medical symbols.  While our main sample collection media was a tablet PC, we also 
made use of data collected using a digital pen from IOGear.  The main advantage of the IOGear 
device was the relative simplicity (compared to the Tablet PC) of capturing a large number of 
images for training and testing.  IOGear images, when properly captured, are quite similar to 
those captured with the Tablet PC as they both simulate online handwriting.  We begin with a 
description of the feature extraction process using the Microsoft Handwriting SDK on a tablet 
PC. 
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Capturing an Image with a Tablet PC 

The Microsoft handwriting SDK converts Tablet PC writing not into a binary bit mapped image, 
but into a sequence of strokes defined by Beziér [8] points.  A single stroke is the movement of 
the pen between when it touches the screen and when it is lifted.  Beziér points are a compressed 
representation of these strokes.  Given these Beziér points, Beziér functions can be used to 
generate a bit mapped representation of the stroke as described below.  

An Nth order Beziér function fits a curve to N+1 Beziér points in such a way that the 2D 
coordinates of any point along the curve can be extracted.  To find a particular point on the curve 
described by a 3rd order Beziér function we use the equation: 

p = C1B1(t) + C2B2(t) + C3B3(t) + C4B4(t) 

where: 

p is the point in 2D space 
Ci are the Beziér points 
Bi are the Beziér functions described below 
t is the fraction of the distance along the curve (between 0 and 1) 
 

The Beziér functions calculate the weight to be given to each of the four Beziér points in 
determining the position of the selected point p which is a function of its distance along the curve 
connecting C1 and C4.  We used the Bernstein Basis Function, 1 = t + (1 - t) as a parametric 
method for generating these curves.  For a cubic (3rd order) curve, we cube both sides: 

13 = (t + (1 - t))3  1 = t3 + 3t2(1 - t) + 3t(1 - t)2 + (1 - t)3 

While it is possible to simplify this equation further, for the purpose of this analysis we wanted 
to express it in terms of t and (1 - t). The cubic equation gives us the four Beziér functions: 

B1(t) = t3 
B2(t) = 3t2(1 - t) 
B3(t) = 3t(1 - t)2 
B4(t) = (1 - t)3 

Given a sequence of Beziér points, the first four define the first Beziér curve of the stroke to be 
recreated. The last Beziér point of this group and the next three Beziér points define the next 
(Figure 1). Since these two curves share a common point, they are connected. The Beziér point 
computation continues until all the points in the set are used up. 
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Figure 1: Creation of a Beziér curve based on four control points given by dots 

In our implementation, we used at least 100 points (p) in each Beziér curve to recreate a smooth 
image followed by filtering and data reduction to create offline images adequate for training and 
testing. Figure 2 below shows a reconstructed image from 110 Beziér points. 

 
Figure 2: A typical reconstructed image from Beziér points. 

The inking in Figure 2 consists of two strokes. The first stroke has 76 Beziér points, and the 
second has 34.  Using the algorithm just described we convert the first 76 Beziér points into a 
stroke consisting of 25 small connected Beziér curves; each curve consisting of at least 100 
points.  The resulting offline image is shown in Figure 2. 

To capture Beziér points for training and test from a Tablet PC, the application shown in Figure 
3 was developed.  The interface contains a handwriting area on the left-hand side, from which 
the input is digitized by the Tablet PC and separated into a series of ink strokes represented by 
Beziér points. The Tablet PC SDK is used to retrieve the Beziér points and surface them to the 
application, via a text box, as a series of coordinates, where they can be collected and analyzed.  
Using this data collection interface, each sample of a handwritten symbol is saved in its own file. 
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Figure 3: MITRE Handwriting Capture Demo Application 
 
 

Capturing an Image with the IOGear Digital Pen 

The IOGear Mobile Digital Scribe is a device for capturing handwriting strokes while writing on 
normal paper. The device consists of a receiver which clips onto the paper and a ballpoint pen 
whose motion is tracked by the receiver.  Data stored in the receiver is downloaded via a USB 
connection and the device software produces a full page image.  No special paper is required to 
use the IOGear digital pen. 

We used IOGear to capture handwriting samples and export several pages of high-quality JPG 
images, which we then used for training and testing. Unlike the Tablet PC interface, a single 
saved page can contain multiple examples of the handwritten symbols.  A segmentation 
algorithm was used to segment the pages into individual symbol samples for use in the 
training/testing of the system. Some contrast and brightness adjustments were made to convert 
the IOGear images from gray scale to black and white (binary) images matching the 
reconstructed Tablet PC image.  Although IOGear images were not created using a Tablet PC 
stylus, there was significant similarity in the final image output as both simulate online cursive 
writing.   

Some typical sample images of medical symbols are shown in Figure 8 of Appendix-I. 
 

B. Symbol Identification 

Typical Tablet PC handwriting systems support multiple languages.  It has been shown that 
performance would be dramatically degraded if all languages shared a single library and 
recognition engine.  Therefore, each of the supported languages -- English, German, French, 
Korean, Japanese and Simplified and Traditional Chinese -- has its own recognition engine with 
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a bank of language-specific handwriting samples. As we have already described, the ability to 
add non-character symbols to the existing system’s English library is not available.  Based upon 
this and the acknowledged benefit of multiple libraries, we decided to treat our new symbol 
recognition as if it were a new language.  Therefore, as shown in Figure 4, the first stage in our 
new recognizer is a binary classifier that discriminates between a symbol and a non-symbol. 
Henceforth, we will refer to this step as symbol identification. 

 

Figure 4: Two stage symbol classification 

The binary symbol/non-symbol classification problem is deceptively complex.  Many non-
symbols have shape characteristics similar to those of symbols.  To address this issue our feature 
set included features for classification that capture the following characteristics of symbols vs. 
non-symbols. 

• Symbols are usually short relative to non-symbol handwriting. 
• Vertical stacking of strokes appears in some symbols. 
• Basic shapes of the symbols differ from the shapes of the non-symbols 

Preliminary testing on the Symbol Identification task was performed using the following 
standard classifier types [7]: 
 

• Bayes 
• Neural Net (MLP) 
• Logistic 
• Linear Regression 
• Radial Basis Function 
• Support Vector Machine 
• Several Meta-classifiers 
• Nearest Neighbor 1 and 5 
• Several Tree classifiers (including J48) 
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• RandomForest classifiers (essentially a multi-classification based on many trees) 
• Several rule based classifiers 

 

We found that three classifiers – a Multilayer Perceptron Neural Net, a RandomForest classifier 
and a Nearest Neighbor classifier— consistently outperformed all other classifiers. Based upon 
these preliminary results, we applied a multi-classifier framework to the binary symbol/non-
symbol problem using the following classifiers as components: 

• Multilayer Perceptron Neural Net [2,3,7,9] 
• RandomForest classifier (an advanced tree classifier) [1,7,10] 
• Nearest Neighbor classifier [2,3,7] 

As shown in section III, this multi-classifier approach was more robust than any individual 
classifier. 

Of the three component classifiers, the multi-layer Perceptron Neural Net and Nearest Neighbor 
classifiers are well-known [2,3,9]. A RandomForest classifier is an advanced tree classifier. In a 
RandomForest classifier, subsets of the feature set are randomly selected and trees are 
constructed based on these subsets. While using multiple decision trees, the focus is on the 
splitting criterion and the tree sizes to achieve a balance between over-fitting and achieving 
maximum accuracy.  It has been shown [1] that RandomForest classifiers outperform other tree 
classifiers. 

We implemented all three classifiers using the Weka software package [7] choosing the IB1 
(Instance-Based Classifier using 1 nearest neighbor(s) for classification) option for the Nearest 
Neighbor classifier.  Default parameters were used for all three classifiers. For the Multilayer 
Perceptron Neural Net, the number of iterations for training was set to 400. For the 
RandomForest classifier, the number of trees was set to 10.  More details regarding these 
classifiers can be found in the references [1,2,3,7,9,10].  The individual outputs of the three 
classifiers were merged using a simple majority voting scheme. 

C. Symbol Classification 

Once it has been determined that the image to be classified is a symbol, the input then passes 
through another module that identifies the appropriate symbol from the symbol library.  The 
same classifiers investigated for the Symbol Identification problem were evaluated for Symbol 
Classification.  Interestingly, we found that the same classifiers which gave optimum 
performance for Symbol Identification were the leading candidates for Symbol Classification.  
We again made use of the multi-classifier approach described above.  In the symbol 
classification stage, the outputs of the three individual classifiers were merged using a simple 
majority voting scheme. In cases where the output of each of the classifiers was different, the 
output of the classifier with the highest confidence was used. 

III. Experiments 
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This section describes the results of our experiments to both identify when the input 
handwriting was a symbol and to classify the new symbol set.  These experiments begin 
with the creation of a lexicon for training and test. 

A. Lexicon Creation 
Since non-symbols include all words, numbers, etc. excluding the symbols, creating a 
representative corpus for all non-symbols would be a huge task which fortunately turned out to 
be unnecessary. We observed that symbols are limited to inputs which are one or two characters 
in length.  Therefore our non-symbol lexicon could be limited to one and two character inputs.  
We developed a lexicon of 443 non-symbol words.  This included letters of the alphabet, Arabic 
numerals 1 through 99, Roman numerals, state abbreviations (e.g., MA) and other two-letter 
geographical abbreviations, temporal abbreviations (e.g., pm), and high-frequency one and two 
letter words such as it, of, and go.  In addition to these, medical practice uses many abbreviations 
which should be considered as non-symbols. We researched several web sites [13-19] to find 
medical and scientific abbreviations and acronyms, and selected those that are used in clinical 
reports for inclusion in our non-symbol lexicon.  These include abbreviations for units of 
measure (e.g., cm), vitamins (e.g., B1), chemical elements and compounds (e.g., Zn, O2), 
anatomical terms (e.g., GB for gallbladder), disease names (e.g., TB for tuberculosis), 
procedures (e.g., bx for biopsy), bodily substances (e.g., TG for triglycerides), vital signs and lab 
assay descriptors (e.g., RR for respiratory rate), report section headings (e.g., FH  for FAMILY 
HISTORY), the names of medical specialties (e.g., OB for obstetrics), hospital locations (e.g., OR 
for operating room), the Latin expressions used in drug prescriptions (e.g., qd for every day), and 
frequently used expressions such as RO (rule out) and WN (well nourished). 

Handwritten sample images of these 443 non-symbol words were collected from different 
writers. These non-symbol images along with symbol images were used to develop the symbol 
vs. non-symbol binary classifier. Some typical non-symbol sample images are shown in Figure 9 
of Appendix-I.  
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For our symbol recognition lexicon we chose 15 common medical symbols (Table 1) whose 
addition to the standard Tablet PC dictionary is not supported.    

Symbol Meaning Symbol Meaning 

(lb.) Pound ≈ 
Approximately 

equal 
∆ Change; heat ☐ Male 
µg Microgram ♂ Male 
p After ○ Female 
s Without ♀ Female 
µ Micron ↑ Increase 

± 
Plus or minus; either positive or negative; 

indefinite ↓ Decrease 
× Multiplied by; magnification   

Table 1:  List of medical symbols for the experiment 
 

In addition, we added 20 common mathematical symbols (Table 2) to create an extended set of 
symbols. This extended set was created to test the robustness and extendibility of the symbol 
recognition module 

α β λ τ η σ δ ψ γ π 
ρ Π Σ Φ Ω ∫   ≅  ≤ ≥ 

Table 2: List of mathematical symbols for the experiment 

Using both the Tablet PC and IOGear digital pen as input devices, 4102 non-symbols, 2525 
medical symbols and 1196 mathematical symbols were collected and allocated for training or 
test as shown in Table 3.  The number of writers used for data collection is indicated in the table.  
None of the data used for training was used for test.  However, some of the data used for test was 
created by writers of training data. 

  Tablet PC Writers IOGear Writers Total 
Medical Symbols Training 1797 7 510 4 2307 
Mathematical Symbols Training 1080 6 0 0 1080 
Non-symbols Training 989 3 2257 6 3246 
Medical Symbols Test 38 2* 180 4** 218 
Mathematical Symbols Test 120 2 0 0 120 
Non-symbols Test 413 2* 443 4** 856 
Table 3: Training and Test Corpus. (*1 new writer, 1 also contributed to training. **1 new 
writer, 3 also contributed to training) 
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B. Symbol Identification 
We evaluated the performance of our binary symbol vs. non-symbol classification stage first 
with a symbol set containing only medical symbols.  The classifier was then retrained using the 
expanded symbol set which includes our selected mathematical symbols to explore the impact of 
expanding the symbol class. 
 
As shown in Table 4, a total of 1074 samples (218 symbols, 856 non-symbols) were labeled by 
the symbol identification classifier.  The accuracy on this task was 96.7%; a significant 
improvement over the chance performance of 79.7% achieved by always choosing the majority 
class of Non-symbol. 
 
 Total Correct Incorrect Accuracy 
Medical Symbols 218 218 0 96.7% 
Non-symbols 856 821 35 
Table 4: Symbol identification for medical symbols only 
 
Expanding the symbol class to include mathematical symbols reduced the accuracy of the 
symbol identification task to 92.6% as shown in Table 5.  While this is still a significant 
improvement over chance performance of 71.7%, achieved by always choosing the majority 
class of Non-symbol, increasing the number of symbols from 15 to 35 caused a 4.2% relative 
degradation in performance.   
 
 Total Correct Incorrect Accuracy 
Medical + Mathematical Symbols 338 332 6 92.6% 
Non-symbols 856 774 82 
 
Table 5: Symbol identification for both medical and mathematical symbols 
 

C. Symbol Classification 
The symbol classification stage of our system was evaluated using only the identified medical 
symbols and then again after retraining with the expanded symbol set. 
 
As shown in Table 6, the accuracy of the symbol identification classifier was 95.4% on the 
medical symbol only test set and 95.9% on the expanded symbol set.  Apparently more than 
doubling the size of the symbol set does not cause problems during classification even though it 
produced a minor degradation in the symbol identification stage.    
 
 Total Correct Incorrect Accuracy 
Medical Symbols 218 208 10 95.4% 
Medical + Mathematical Symbols 338 324 14 95.9% 
Table 6: Symbol classification on both medical only and the expanded symbol set 
 
 

D. Evaluation of Data Collection and Multi-classifier Decisions 
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The system described in this paper was heavily influenced by our decisions to collect data from 
two different sources and to use a multi-classifier architecture rather than a single classifier.  In 
this section we report the empirical performance supporting those decisions. 
 
Training and test data was collected using both the target application Tablet PC and the IOGear 
digital pen.  Table 7 presents performance on both the symbol identification and symbol 
classification tasks for the extended symbol set.  The table indicates that when classification 
results are separated by the data source, there is very little change in performance.  The IOGear 
digital pen provided 42% of the data used to train the symbol identification classifier but only 
15% of the training data for symbol classification. 
   
 
 
 Total Correct Incorrect Accuracy 
Extended Symbol Identification Tablet PC 571 521 50 91.2% 

IOGear 623 585 38 93.4% 
Extended Symbol Classification Tablet PC 158 152 6 94.4% 

IOGear 180 172 8 95.6% 
Table 7: Performance of the two classifiers on source dependent data 

Finally, we evaluated the performance of individual classifiers and compared their accuracy with 
the accuracy of the combined classifier. Both Symbol Identification and Symbol Classification 
were performed on subsets drawn from the full expanded symbol test set.  Symbol Identification 
used 856 samples and Symbol Classification used 240 samples. Table 8 indicates that using a 
multi-classifier approach was significantly better than any of the individual classifiers when 
applied to the Symbol Identification task.  The improvement was less dramatic but still positive 
when applied to Symbol Classification.  

 Symbol Identification Symbol Classification 
Random Forest 82.1% 94.2% 
Nearest Neighbor 84.2% 95.0% 
Neural Net 80.6% 82.3% 
Combined Multi-classifier 90.4% 98.3% 
Table 8: Performance of individual classifiers vs. multi-classifier approach on both the Symbol 
Identification and Symbol Classification tasks. 
 
IV. Application 
The handwriting symbol recognition system described in this paper is a part of a larger prototype 
system being developed at MITRE which provides an interactive multimodal interface for an 
open-source web application called OpenEMR [23].  OpenEMR is a web application that 
manages patient medical records. Our interface is designed to allow medical professionals to 
include speech and handwriting tools when interacting with OpenEMR via a web browser plug-
in (Mozilla Firefox), for the purpose of searching, navigating, and inputting medical data in ways 
that are natural to the user. The purpose of this prototype is to demonstrate the potential for this 
type of tool to streamline the productivity and workflow of the medical user beyond the 
traditional keyboard-and-mouse paradigm offered by current electronic medical record systems.  
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Software developers can easily adapt the propotype software to work with other electronic health 
records systems. 

In this section we focus on the handwriting modality of the prototype, which connects a Firefox 
browser with the Tablet handwriting tool. This tool has been customized with medical 
dictionaries for out-of-vocabulary (OOV) terminology for the purpose of generating better 
recognition performance. 

 

 
Figure 5: MITRE’s handwriting recognition prototype interface instantiated within OpenEMR 

Figure 5 shows a screenshot of the prototype interface. The web page being displayed represents 
the medical practitioner’s summary of a patient visit, commonly known as a SOAP Note 
(Subjective, Objective, Assessment, and Plan). This page of the open-source system has been 
modified to utilize handwriting and speech, signaled by the green and red buttons in the upper 
left portion of the screen.  A handwriting input panel is situated in the upper right corner.  
Clicking on this control activates the pop-up handwriting pad shown. In the scenario shown here, 
the handwriting tool is used to correct text that was input via speech recognition, changing the 
mis-recognized word ‘oscillation’ to the correct term ‘auscultation’.  The handwriting panel is 
available to a user to enter text or make corrections in text input areas.  It is believed that this 
expanded modality would be useful in environments where keyboarding is not practical – for 
example, in triage situations where desktop terminals are not readily available. 
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Currently, we are working to augment this prototype with the symbol recognition research 
system described in this paper, so that medical symbols can also be recognized and displayed.  A 
symbol recognition application has been developed to demonstrate the ability to pass ink from 
the Tablet PC to the symbol recognition algorithm described in this paper (Figure 6). 

 
Figure 6: Recognizing symbol input with and without symbol recognizer 

This interface contains a handwriting area on the left-hand side, from which the input is digitized 
and separated into a series of ink strokes. The stroke data is then passed to the symbol 
recognition algorithm, with the results displayed on the right side. (The Tablet system’s result is 
displayed above to compare the research with default behavior). 

We are working to combine the behavior of the two recognition engines -- the native handwritten 
recognition engine and the symbol recognition engine described in this paper -- so that mixed 
handwriting, containing both text and symbol input, can be parsed and recognized (Figure 7). 

 

 
Figure 7: Mixed Text and Symbol Handwriting Recognition (ink and electronic text 
representations)  
 
 
V. Conclusions 

 

In this paper we have described our method of training a system to automatically recognize 
handwritten medical symbols that are out of the existing system’s lexicon.   While our intent is to 
recognize symbols relevant to a medical application, we have also shown that the symbol 
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classification is robust to symbols from other domains.  We have shown that using a multi-
classifier architecture provides improved performance over an individual classifier. 

This study has shown a potential method to augment existing recognition system for out-of-
vocabulary symbol recognition. 

Future work will address improving the performance of the binary symbol identification stage 
and final integration of the symbol recognizer with the existing Tablet PC system.  Since 
symbols constitute a small fraction of the handwriting input, misidentification of non-symbol 
characters by the binary symbol identification stage must be kept very low to reduce inserted 
errors to the level necessary for adoption of the symbol recognition enhancement.  The fact that 
medical abbreviations look similar to symbols makes this a difficult task.  Our future work will 
involve more data collection and algorithm refinement based on contextual information to 
improve the performance of binary symbol vs. non-symbol classification. 
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APPENDIX-I: Sample Images 
 
 
 
 
 

 
Figure 8: Typical image of symbols 7, 6, 5,4,3, 2, 1, 9 and 10 
 
 
 
 
 
 
 

 
 
 
Figure 9: Typical non-symbol images  from a lexicon of 443 entries 
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