Evaluation of Machine Translation Errors in English and Iraqi Arabic

Sherri Condon, Dan Parvaz, John Aberdeen, Christy Doran, Andrew Freeman, and Marwan Awad

The MITRE Corporation
McLean, VA
{scondon, dparvaz, aberdeen, cdoran, afreeman, mawad}@mitre.org

Abstract

Errors in machine translations of English-Iraqi Arabic dialogues were analyzed at two different points in the systems’ development using HTER methods to identify errors and human annotations to refine TER annotations. Although the frequencies of errors in the more mature systems were lower, the proportions of error types exhibited little change. Results include high frequencies of pronoun errors in translations to English, high frequencies of subject person inflection in translations to Iraqi Arabic, similar frequencies of word order errors in both translation directions, and very low frequencies of polarity errors. The problems with many errors can be generalized as the need to insert lexemes not present in the source or vice versa, which includes errors in multi-word expressions. Discourse context will be required to resolve some problems with deictic elements like pronouns.

1. Introduction

A limitation of both human judgments and automated measures of translation quality is that they are not diagnostic. Analyses of the errors produced by machine translation (MT) systems have the potential to focus research aimed at improving translation performance. However, translation error annotation is problematic because there are many ways to translate a single expression from one language to another. It is difficult to annotate specific errors in a consistent way to yield quantifiable results because what constitutes an error depends on what is considered correct. A team of linguists at The MITRE Corporation had an opportunity to analyze translation errors from 4 English-Iraqi Arabic speech translation systems at two different stages of development, and this paper presents the methods adopted to identify errors along with some results of the analyses.

We developed a methodology that incorporates techniques from the Translation Error Rate (TER) family of measures (Snover et al., 2006) in order to facilitate identification and annotation of errors. In the methods used to compute the Human Translation Error Rate (HTER) score, human editors create a reference translation of a source input that is as close as possible to the system’s machine translation of that input, while preserving the content of the source. We adopted this process so that the differences between system hypotheses and reference translations are more likely to reflect problems in the MT rather than variation among possible satisfactory translations.

2. Related Work

Methods for evaluating MT output have proliferated rapidly: 39 automated measures were submitted to the NIST 2008 Metrics for Machine Translation Challenge (Przybocki, Peterson & Bronsart, 2008). However, there have been few attempts to analyze MT errors so that researchers can identify the types of errors that are made. Litijós, Carbonell & Lavie (2005) created a hierarchical taxonomy of errors for use in refining rules of transfer-based MT systems. They do not describe which types of errors were identified, but Vilar et al. (2006) extended the typology and used it to annotate errors in translations from Spanish to English, English to Spanish, and Chinese to English. Three types of inputs from audio data were compared: clean text transcripts, verbatim transcripts, and the output of automated speech recognition (ASR). The error annotation reported in Vilar et al. was performed by human annotators using reference translations and a tool that highlights the differences between the MT and a reference translation. Aside from explaining that the use of reference translations “must be done with care” (Vilar et al., 2006, p. 697), there is no description of the annotation process, but the results provide a rich source of generalizations about the types of errors produced by the RWTH statistical MT system.

Popović & Ney (2007) combine part-of-speech tagging with Word Error Rate (WER) and Position Independent Word Error Rate (PER) measures (Tillman et al., 1997) to provide automated error analyses of the same translations that Vilar et al. (2006) analyzed. The results of the automated analyses are comparable to the results of the human analyses and provide error frequencies for a variety of syntactic and morphosyntactic classes without the time and expense required by human annotators. Popović & Ney do not specify whether they used the clean text transcripts or the verbatim ones, but Vilar et al. note that the latter include some ungrammatical constructions which present an additional source of errors. It remains to be seen whether conventional parsers and morphological analyzers can provide accurate automated analyses of highly disfluent speech data such as the verbatim transcripts we analyzed.
3. Methods

Our approach to error annotation has been to adopt the methods that are used to compute the HTER score for the Defense Advanced Research Projects Agency’s (DARPA) Global Autonomous Language Exploitation (GALE) program. For HTER, The National Institute of Standards for Technology (NIST) post-editing tool was used to facilitate this process (NIST, 2008) and the guidelines for post-editing were similar to the GALE guidelines (NIST, 2007). The tool allows the editor to view the TER score for the machine translation compared to the editor’s reference translation so that the editor can experiment with alternative wordings and see which is scored closest to the machine translation. In addition, the tool displays reference translations produced for each source transcription by independent human translators. For the TRANSTAC data, each human post-editor was able to view 4 reference translations of each source.

Three native English speakers annotated the translations from Arabic to English, and three Arabic speakers annotated the translations from English to Arabic. For the latter, two non-native Arabic linguists each annotated half of the data, and a third native Arabic speaker reviewed the annotations. Differences were reconciled by the relevant annotator pairs. For half of the Arabic to English translations, each translation was annotated by two annotators, and the differences were reconciled in meetings of all three annotators.

After producing the customized reference translations, annotators used the TER output to classify each error. The TER score computes the number of deletions, insertions, substitutions, and shifts of words that are required to modify the machine translation so that it matches the reference translation. The tool that computes TER aligns the machine translation and the reference translation and annotates each error by associating an abbreviation \(I, D, \) or \(S \) with the word that is inserted, deleted, or substituted respectively. For shifts, the “\(@ \)” symbol appears in the position that the shifted word has moved from. The errors identified by these TER notations were used to classify the errors into the following common grammatical classes: \(\text{pronoun, noun, verb, and other} \) (prepositions, adjectives, conjunctions, and adverbs). The result is an annotation that combines the TER classifications with the word class annotations. For example, \(ivp \) was used to annotate an inserted verb or predicate element such as a modal or auxiliary.

Two additional syntactic categories were adopted in an attempt to limit the annotations associated with each error to a single category. One category, labeled \(\text{Pro-Verb} \) in this paper, was used to annotate errors involving a single element consisting of a pronoun and verb. In translations to English, these were insertions or substitutions of contractions such as \(I'm \), and in translations to Arabic, the annotation was used if the subject was expressed only by inflection on the verb and both the verb and the subject inflection were wrong. The second category, labeled \(\text{Subject Person} \), was used exclusively to annotate Arabic verbs when the subject person inflection did not agree with the subject.

In addition to the annotations described above, errors that changed the polarity or speech act of an input were noted, as were words that were wrongly transliterated (or replaced by question marks) and errors caused by word sense ambiguity. A set of annotation guidelines was compiled so that annotators would complete the annotation process as consistently as possible. In addition to producing reference translations, annotators occasionally changed the TER alignment when it did not capture the relations between the MT and the reference in a satisfactory way. Usually these changes were made to align words in the same syntactic categories.

Not all differences between machine and human translation noted by TER were annotated as errors. For example, inflectional differences such as the singular \(\text{guard} \) vs. the plural \(\text{guards} \) were annotated as \(\text{null} \) to indicate that the error was insignificant. Other differences annotated as \(\text{null} \) were deleted or inserted articles \(\text{the}, \) \(\text{a}, \) deleted \(\text{and} \) (if the absence did not affect the meaning), repetitions, and synonyms. Subject inflection on Arabic verbs that did not agree with the subject was usually annotated as \(\text{null} \) if the error was in number or gender, unless the annotator believed that the result would be ambiguous or confusing for the listener. In contrast, subject person inflection was annotated using the special categories described above.

4. Data

The translations selected for the study were from an evaluation of 4 speech translation systems that were developed for the DARPA Spoken Language Communication and Translation System for Tactical Use (TRANSTAC) program (Weiss et al., 2008). The systems used statistical MT engines, except that one system’s English to Arabic translation was rule-based with a statistical fall-back. In addition to live evaluations, TRANSTAC evaluations include evaluations based on recorded dialogues, which allows all systems to be tested on identical inputs (Condon et al., 2008). For the latter, systems are also tested using transcriptions of the audio inputs in order to evaluate the translation capability without speech recognition errors. We used outputs from those text translations for the error analyses, and we chose the same subset of translations for which NIST obtained human judgments (Sanders et al., 2008).

Translations were analyzed from two evaluations conducted in July, 2007 and November, 2008. In the 2007 corpus, there were 95 source utterances translated from English to Iraqi Arabic, and 101 from Iraqi Arabic to English. In the 2008 corpus, we analyzed 109 source

<table>
<thead>
<tr>
<th>Translation Direction</th>
<th>July, 2007</th>
<th>Nov., 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>English to Iraqi Arabic</td>
<td>380</td>
<td>436</td>
</tr>
<tr>
<td>Iraqi Arabic to English</td>
<td>404</td>
<td>428</td>
</tr>
</tbody>
</table>

Table 1: Total Number of Translations Analyzed
utterances that were translated from English to Iraqi Arabic and 107 that were translated from Iraqi Arabic to English. The translations from four machine translation systems were processed and annotated so that several hundred were analyzed for each direction from each evaluation. Table 1 presents the totals.

Table 1: | Translation to | English | Arabic | English | Arabic |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Deletion</td>
<td>0.109</td>
<td>0.065</td>
<td>0.121</td>
<td>0.026</td>
</tr>
<tr>
<td>Insertion</td>
<td>0.057</td>
<td>0.034</td>
<td>0.043</td>
<td>0.024</td>
</tr>
<tr>
<td>Substitution</td>
<td>0.095</td>
<td>0.059</td>
<td>0.090</td>
<td>0.077</td>
</tr>
<tr>
<td>Total</td>
<td>0.261</td>
<td>0.158</td>
<td>0.253</td>
<td>0.127</td>
</tr>
</tbody>
</table>

Table 2: Deletion, Insertion, and Substitution Errors in Word Classes: Proportion of 2007 Total Errors

5. Results

Tables 2 and 3 present the proportions of non-null errors annotated by type and word class in the 2007 corpus. (Together the tables sum to 1.) Deletions are words in the reference translation that do not occur in the machine translation, and insertions are words in the machine translation that do not occur in the reference translation. The TER shift annotation is labeled Word Order in this report. For translations to both languages, the most frequent type of error is substitution. In fact, because both the Pro-V and Subject Person categories in Table 2 are also substitutions in Arabic, nearly half of the total errors for translations into Iraqi Arabic are substitutions, and this proportion holds in the 2008 data, too (Tables 6 and 7).

For translations into English, substitutions are about one third of the total errors, and deletions account for another third of the total errors. Pronouns and verbs are the word classes with the highest frequencies of errors in translations to English: together they represent about half of the annotated errors. No single word class has a comparable frequency of errors in translations to Iraqi Arabic. However, if errors involving subject person inflection on the verb (Pro-V and Subject Person) are added to the verb errors, then about 22% of the errors in translations to Iraqi Arabic involve verbs.

The frequency of polarity reversals in which a negative becomes positive or vice versa is very low at less than 1% for translations to both languages. Errors that affect the speech act of the source are also very rare. These were only noted for the declarative/interrogative/imperative contrast: other speech acts expressed by verbs or modals were classified as verb errors. All of the speech act errors occurred when a translation from Arabic to English omitted or inserted an inverted auxiliary, resulting in a statement instead of a yes/no question or vice versa. Also very rare were source words that were not translated but were transliterated or replaced with question marks, which are labeled Untranslated in Table 3.

Identifying errors caused by word sense ambiguity requires analysis of source inputs, but the HTER-based procedures we adopted do not require knowledge of the source utterances. In order to identify the frequency of word sense errors, a bilingual judge viewed the source for each annotated error in order to determine whether it should also be annotated as a word sense error. The proportion of errors attributed to word sense ambiguity in Table 3 is much smaller than reported in studies like Vilari et al. (2006). This result is likely due to the relatively narrow domains of the TRANSTAC test data.

We were fortunate to be able to annotate translation errors for the same 4 systems at two different stages of development, which allows us to observe any changes in error types and to compare error frequencies with automated measures of translation quality. Table 4 provides the frequencies of the TER scorer’s automatic annotation of differences between the post-edited reference translations and the machine translations from English to Iraqi Arabic. It also provides the frequencies of TER annotations to which annotators assigned a non-null error type. Because there were more input utterances in the 2008 evaluation than in the 2007 evaluation, the non-null error frequencies are also normalized per input. Finally, BLEU scores computed in the offline evaluations are presented. The latter were computed on a larger sample of test data (500-600 inputs in each direction) from which the annotated corpora were selected. Details about computation of the BLEU scores and NIST’s selection of the subset of inputs we annotated are available in Condon et al. (2008) and Sanders et al. (2008) respectively. Table 5 presents the same information for translation from Iraqi Arabic to English.

Tables 4 and 5 show that only about half of the differences between the post-edited reference translations and the machine translations to Arabic were viewed as significant errors by the annotators in translations to Arabic,
compared to about two thirds for translations to English. As mentioned in section 3, minor inflectional differences such as number, gender and even tense were not annotated as errors if the annotator judged that the speaker’s intent could be inferred adequately from the translation and its context. In this respect, the annotations resemble the METEOR measure (Banerjee & Lavie, 2005), which employs stemming before matching reference and machine translations. Similarly, other differences were annotated as null if the annotator judged that these errors would be ignored by interlocutors who were tolerant of machine translation and were able to make sense of the machine outputs in the dialogue context. Also, some null annotations involved disfluencies and repetitions that did not affect the primary import of the input.

Tables 6 and 7 present the proportions of non-null errors annotated by type and word class in the 2008 corpus. By comparing with Tables 2 and 3, we can observe whether the significant improvements that systems achieved in translation quality produce any changes in the types of errors that we observe. For translations to Iraqi Arabic, most of the proportions differ by less than .04, but a few are somewhat greater. The proportion of pronoun errors is about .065 lower in the 2008 corpus and there is an increase of the same amount in the number of Subject-person errors, which can also be viewed as an increase in the proportion of verb errors.

5.1 Iraqi Arabic Errors

At 15.5%, errors in subject person inflection on verbs comprise one of the larger categories of errors in the 2008 translations to Iraqi Arabic. (1) provides an example in which the person inflection on the verb, which is the first person singular form that would be used when “I” is the subject, occurs with a third person plural subject my marines. “Ref” indicates the human post-edited translation, and “MT” indicates the system output.

(1) Ref: my marines I am going to search the house, “Ref” indicates the human post-edited translation, and “MT” indicates the system output.

The system translation would be understood like “my marines I am going to search the house,” which could be interpreted several ways.

Figure 1 presents the proportions of 5 classes of errors in the 2007 English to Iraqi Arabic translations. It demonstrates the variation in frequencies that occurs among the systems. System D is the translation engine which employed rule-based MT for English to Iraqi Arabic translations, and the much lower proportion of Subject-person errors for System D in Figure 1 suggests that rule-based approaches perform better when agreement inflection is required.

Although word order tends to be stricter in English than in Arabic, the frequency of word order errors is about the same in translations to Iraqi Arabic and translations to English. Many word order errors in both directions reverse the order of head nouns and their modifiers. This is another case in which a clash in the structures of the two languages results in MT errors: in English adjectival modifiers usually precede the noun, whereas in Arabic they usually follow. An example is in (2).

(2) Ref: [ref text]

MT: [mt text]

Source: they have additional supplies

Figure 1: Proportions of Error Types in 2007 English to Iraqi Arabic Translations
An analysis of the word order errors in the 2008 English to Arabic translations shows that 27% of the word order errors reverse the order of a head, usually a noun, and its modifiers. This proportion does not include the order of modifiers that are expressed in the Arabic *idafa* or *construct* structure. Machine translations that reverse the order of nouns in an Iraqi Arabic *idafa* structure constitute a significant 40% of the word order errors. (3) provides an example.

(3) Ref: اَيْهَا أَمْرِي إِنْ تَذَلِيلِي ضَرَّبَتْكَ مَا أَدْخَلْتَ مِنْهَا

MT: اَيْهَا أَمْرِي إِنْ تَذَلِيلِي ضَرَّبَتْكَ مَا أَدْخَلْتَ مِنْهَا

Ref: <jyt Elmwd >Sw mHTp AlkhrbA’ mAltkm
Ref: came+1s in-order-to see+1s station-of det+electricity poss-2p

MT: <jyt Elmwd >Sw AlkhrbA’ AlmHTp mAltkm
MT: came+1s in-order-to see+1s det+electricity det+station poss-2p

Source: I came out to take a look at your power station

Analysis of the 28% of errors annotated as *Other* in the 2008 English to Arabic translations revealed that a significant portion of the errors involved dependencies among multiple words. Some errors involved prepositional particles selected by verbs, as in (4).

(4) Ref: ﺍِﻓْتَهَانِي ﻋَلَيْكَ ﺑِاِﻟْيَأْنُ ﺭَﺣْلٍ ﺍِﻟْإِرْدَاب

MT: ﺍِﻓْتَهَانِي ﻋَلَيْكَ ﺑِاِﻟْيَأْنُ ﺭَﺣْلٍ ﺍِﻟْإِرْدَاب

Ref: rH tryd mnH yfH kl AlbybAn
Ref: future 2ms+want from+him 3ms+open all-of det+doors

MT: lh tryd yfH kl AlbybAn
MT: 2ms+want to+him 3ms+open all-of det+doors

Source: you would want him to open all the doors

In contrast, there were only 3 instances of wrong prepositions in verb modifiers. The largest group of errors annotated as *Other* involves multi-word expressions such as “to where” in (5), which must be translated as a single connector meaning “in order that/in order to.”

(5) Ref: ﻓِنوَرْنَ ﻓِيِزِيَارَةَ ﻋَلَيْكَ ﻋِنْدَ ﻋِرْقَيْنَ ﺻِيْحُ ﺍِلْمِدْرَاب

MT: ﻓِنوَرْنَ ﻓِيِزِيَارَةَ ﻋَلَيْكَ ﻋِنْدَ ﻋِرْقَيْنَ ﺻِيْحُ ﺍِلْمِدْرَاب

Ref: nqdr mTyk Alfws Elmwd tIE wtStrt AlmwAd
Ref: can+1p 1p+give+2ms det+money in-order-to 2ms+go-up and+2ms+buy det+material

MT: >qdr Alfws wyn tIE wtStrt AlmwAd
MT: can+1s det+money where 2ms+go-up and+2ms+buy det+material

Source: we can give you funds to where you can go out and buy the materials

23% of errors annotated as *Other* involved multiple word dependencies like those in (4) and (5). Most of these errors can be viewed as word sense ambiguities, and annotators found that careful analysis of the errors annotated as *Other* led them to increase their counts of word sense errors. Excluding the multi-word errors, another 17% of errors annotated as *Other* could be attributed to word sense ambiguities. Consequently, the total proportion of errors attributable to word sense ambiguities in the 2008 English to Arabic translations may be as high as 10%, which is similar to the proportions reported in Vilar et al. (2006).

5.2 English Errors

The high frequency of pronoun errors in translations to English is striking. In the 2007 translations to English, the frequencies of nouns and pronouns in the translations are nearly equal (about 18%), yet the frequency of pronoun errors is 2 or more times higher than the frequency of noun errors for every translation system. These errors are significant because many of the errors involve basic personal pronouns (*I, you, he, she, it, etc.*). Consequently, the errors do not occur because the translation system has encountered rare or out-of-domain language. Instead, the errors are caused by significant linguistic differences between the two languages and by the fact that use of pronouns depends on their context. For example, in (6), the subject of the Arabic verb “understand” can be either “I” or “you.”

(6) iflahamit

understand+past+1st or 2nd person singular subject

“I/you understood”

In the case of utterances like (6), the only way to determine the referent of the verb’s subject is to use the context. Human interlocutors are very good at resolving this kind of ambiguity from the discourse context, but the
task has proven to be quite challenging for language processing systems. The example in (7) demonstrates a pronoun substitution in machine translation that is likely to have been caused by the ambiguity illustrated in (6).

(7) Ref: I saw his symptoms
MT: you see his symptoms

Another difference between English and Arabic can cause incorrect pronouns to occur in machine translations. Like Romance languages, Arabic has the property of gender associated with nouns. Every noun is either masculine or feminine, and there are no pronouns like it. Consequently, in order to select the correct English pronoun form, it is necessary to know the referent of the pronoun. Some examples of this problem are provided in (8).

(8) MT: are taking care of it god willing and hopefully it will get better a little bit more
Ref: we are taking care of him god willing and hopefully he will get better soon
MT: of course I mean it is in good condition
Ref: of course I mean she is in good condition

The translations in (8) occur in hospital scenarios, and the third person pronouns refer to patients. We noted that it was much less likely for the systems to translate a third person pronouns refer to patients. We noted that it was much less likely for the systems to translate a third person pronoun errors produced by the four 2007 machine translation systems. The kind of error illustrated in (9) can be serious if the intended subject is not clear from the context, but at least the English-speaking listener is aware that there is a potential ambiguity in the reference due to a missing word. In contrast, substituting an incorrect pronoun, as in (7) and (8), can be a serious problem that leads to misunderstandings. 25% to 47% of the pronoun errors generated by the 2007 machine translation systems were pronoun substitutions, but not all of them were substitutions of one pronoun by another. Some were „substitutions” of pronouns by other word classes, which occurs when TER aligns the machine translation and the reference translation. Most of those might be better classified as pronoun deletions.

Inserted pronouns are not as frequent as deleted or substituted pronouns. There are two likely sources of inserted pronouns. First, because it is often necessary for the translation to insert a pronoun subject when the Arabic source does not have one, there is a possibility that systems will mistakenly insert the pronoun subject when the source already has another subject expressed. An example is presented in (10).

(10) MT: at the same time those people they store them in this complex
Ref: at the same time those people store them in this complex

Second, Arabic and many other languages often require pronouns where English permits a gap. The most common examples occur in relative pronouns, as in (11).

(11) MT: it is about three kilometers from the point the checkpoint he ran away from it
Ref: it is about three kilometers from the point the checkpoint that he ran away from

Pronoun errors like (10) and (11) detract from the fluency of the machine translation, though they are unlikely to lead to serious miscommunication. These errors were often annotated as null because the annotator judged that they did not interfere with comprehension of the speaker’s intended meaning.

Not all of the errors annotated as pronoun errors involved personal pronouns. Errors involving any pronouns received this annotation, including indefinite pronouns (someone, anything), pleonastic pronouns (it, there), relative and interrogative pronouns (which, when), demonstrative pronouns (this, that), and pronouns corresponding to bare noun adverbials (here, there).

Another clash of linguistic properties results in a large proportion of the verb errors in translations to English. Over 40% of these errors involve the copula, the verb be that expresses identity and attribution. The copula is unique because it does not contribute meaning beyond a generic equivalence or attribution plus whatever tense or other verbal inflection it might carry. As a consequence, in Arabic and other languages such as Russian, the copula is omitted in the present tense. In (12), there is no Arabic word in the source utterance corresponding to is in the reference translation.

(12) MT: no sir all the family in the house
Ref: no sir all the family is in the house

Like pronoun errors, errors involving forms of the copula be cannot be attributed to structures or vocabulary that occur infrequently. Instead, they reflect linguistic

1 The one case in which the form of an English verb unambiguously determines its subject is am.
differences that are challenging for translation systems. In the 2007 systems, errors involving a form of be either in the reference translation or in the machine translation ranged from 38% to 52% of the verb errors. Together, the pronoun errors and copula errors averaged over 40% of the total errors that the 2007 machine translation systems produced when translating from Iraqi Arabic to English.

6. Conclusions
For the most part, the error types that have been quantified in this research are predictable from the structural differences between English and Iraqi Arabic. These differences include (1) head and modifier order, particularly for nouns, (2) subject inflection on verbs in Iraqi Arabic, (3) unexpressed pronoun subjects in Iraqi Arabic, (4) gender inflection on nouns, and (5) unexpressed copula in Iraqi Arabic. Of the many structural differences between English and Iraqi Arabic, the ones above are undoubtedly salient in the TRANSTAC corpora because the structures occur frequently in speech. Consequently, the problems occur not for lack of examples, but because of linguistic differences that are difficult to resolve with statistical approaches to machine translation.

Many of these errors share another property which is known to challenge MT: they require inserting linguistic material into the translation that was not present in the source. Or they require the reverse: refraining from inserting linguistic material into the translation to correspond to items in the source. This failure to achieve one-to-one correspondence between the translation and the source also tends to be a feature of multi-word expressions, which are known to be sources of difficulty for MT and other language processing operations.

Some errors involve more than structural differences between the two languages. The pronoun errors in particular often require knowledge of the discourse context to resolve. Iraqi Arabic speakers communicate effectively even though the past forms of verbs do not distinguish between first and second person subjects because the context of the interaction makes it clear whether the speaker is talking about “I” or “you.” Similarly, knowing whether to translate an Arabic “he” or “she” as “it” requires knowledge of the referent of the pronoun. These problems will continue to challenge machine translation systems until they are resolved.

Finally, this research has provided some estimates of the relative proportions in which the error types impact machine translation. These estimates can be used to guide efforts to improve translation quality.

7. Acknowledgements
We are grateful to everyone who contributed to the TRANSTAC program, especially our colleagues at NIST, researchers at SRI International, Carnegie Mellon University, IBM, and BBN/Raytheon, and TRANSTAC Program Manager Dr. Mari Maeda, whose vision made this research possible.

8. References