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Abstract— Flights incur a large percentage of delay on the 
ground during the departure process; however, predicting the 
taxi-out time is difficult due to uncertainties associated with the 
factors influencing it, such as airport surface traffic, downstream 
traffic restrictions, runway configuration, weather, and human 
causes. Airport Surface Detection Equipment, Model X (ASDE-
X) surveillance data provides high resolution coverage of aircraft 
surface movement which can be leveraged to address this 
problem. This paper presents a novel approach which builds an 
adaptive taxi-out prediction model based on a historical traffic 
flow database generated using the ASDE-X data. The model 
correlates taxi-out time and taxi-out delay to a set of explanatory 
variables such as aircraft queue position, distance to the runway, 
arrival rates, departure rates and weather. Two prediction 
models are developed.  One treats aircraft movement from 
starting location to the runway threshold uniformly while the 
other models aircraft time to get to the runway queue different 
from the wait time experienced by the aircraft while in the 
runway queue. The models are evaluated using data from New 
York’s John F Kennedy (JFK) airport during the summer of 
2010. Results show significant improvement in taxi-out 
predictions as compared to predictions from FAA’s Enhanced 
Traffic Management System (ETMS). 
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I.  INTRODUCTION 
Traffic flow management (TFM) is focused on balancing 

demand and capacity to maintain safety while minimizing 
flight delays.  Managing that balance is predicated on 
predicting both demand and capacity.  The greatest source of 
error in demand prediction comes from error in predicted 
departure taxi (i.e. taxi-out) time which is defined as the time 
from the actual pushback to takeoff.  Improved departure taxi 
time prediction will result in more stable trajectory modeling 
and better en-route sector demand forecasts. It will also help 
airlines proactively manage pushback times and improve the 
efficiency of airport surface movement operations. 

Taxi-out prediction for a flight is complex due to 
uncertainties associated with the factors contributing to it. 
Surface departure traffic, interaction with arriving traffic, 
runway configuration, downstream traffic restrictions, airport 
layout, human causes and weather related delays are all 
potential contributing factors. Real-time prediction for 
applications such as trajectory modeling is even more 

challenging, as data values associated with explanatory 
variables such as queue position are not readily available. Prior 
work in the area of taxi-out prediction has been limited due to 
lack of high quality surface movement data. Predictions have 
been based primarily on pushback and wheels-off data from 
sources like the Aviation System Performance Metrics (ASPM) 
system, and have been made on aggregate quantities rather than 
the individual flight level. The ASDE-X surveillance system 
fills this gap by providing high quality surface movement data 
on aircraft on and around the airport. 

This study explores using high-resolution position updates 
from the ASDE-X surveillance system to develop a taxi-out 
prediction model. It is based on the premise that existing 
surface traffic conditions and short-term traffic trends (past 15-
60 minutes) revealed from analyzing ASDE-X data are better 
predictors of future taxi-out time than historical averages.  The 
airport surface is digitized into a number of logical areas such 
as terminals, taxiways, queues, and runways, and ASDE-X 
traffic flow data is superimposed on this layout to heuristically 
determine the aircraft’s location, status (such as taxiing, 
queued, taking off, airborne, arriving and landed), runway 
queue order (number of aircraft which will take off before the 
flight under consideration) and paths of flights on the airport 
surface. A historical traffic flow database is created and 
analyzed to discover correlations of potential explanatory 
variables such as queue position, runway distance, arrival rates, 
departure rates and weather to the observed taxi-out time. Two 
approaches to taxi-out predictions are explored.  One treats 
aircraft movement from the starting location to the runway 
threshold uniformly (referred to as the “Uniform Flow Model” 
or UFM) and correlates taxi-out time to a combination of 
explanatory variables. The other approach, referred to as the 
“Split Flow Model” (SFM), treats aircraft movement prior to 
the runway queue (nominal taxi time) differently from when it 
is in the departure queue (taxi out delay) and predicts taxi-out 
time as sum of predicted nominal taxi time and predicted taxi-
out delay. The models are calibrated for the departure runways 
of JFK airport and applied to the test data. Predictions from 
both models are compared to each other and to those obtained 
from ETMS and historical taxi-out average for a flight. Results 
show significant improvement in taxi-out prediction compared 
to the Enhanced Traffic Management System (ETMS) 
predicted and average taxi-out values. The Split Flow Model 
(SFM) performs better than Uniform Flow Model (UFM) in 
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traffic conditions when departure queues are present; however, 
UFM performs more consistently in all traffic conditions. 

The organization of this paper is as follows: related work in 
the area of prediction of departure taxi times is first explored in 
the Background section. Section III discusses causal factors 
affecting departure taxi time and how they are included in the 
study. Next is a high level description of the methodology 
adopted. Section V on Data Sources details the data sources, 
attributes and data validation strategy used. Following this, 
Section VI on Traffic Situation Discovery details heuristics 
underpinning the determination of flight information. After that 
is a section on the prediction models and underlying statistical 
analysis. The results of applying the models to the test data are 
presented the Section VIII, along with analysis and 
comparisons to ETMS predictions and average taxi-out values. 
Finally, the conclusion points out the strengths and weakness of 
this approach. 

II. BACKGROUND 
A number of prior efforts have been made to address 

prediction of departure taxi times. Shumsky [1] used a linear 
regression model to predict taxi out time using airline, 
departure demand and departure runway as explanatory 
variables. He also developed a queuing model for the runway 
service process; however the model was based on cumulative 
behavior and did not account for the stochastic nature of the 
process.  Herbert [2] modeled the queuing service using 
exponential, Erlang and server absence models, assuming a 
Markovian system entry process. In another notable work, Idris 
et el [3] developed a queuing model to predict taxi out time 
based on factors such as queue size, runway configuration, 
weather, aircraft type, downstream traffic restrictions and 
starting terminal. In this study, queue size was estimated based 
on number of departing aircraft on the airport and estimated 
number of aircrafts it will pass on its way to the runway. His 
work concluded that the takeoff queue length is most 
significant explanatory variable to predict the taxi out time. All 
these papers identified key factors influencing taxi-out time; 
however predictions were made at an aggregate level and not 
on an individual flight basis. 

A study on individual flight prediction was done by Pujet 
[4] who developed a queuing model by predicting the travel 
time an aircraft will take to reach departure runway and adding 
that to a runway queue time modeled as a probabilistic service 
process. Simaiakis and Balakrishnan [5] improved the 
prediction model by including taxiway interactions as a factor 
influencing the taxi-out time. In a study based on ASDE-X 
surveillance data, Legge and Levy [6] modeled taxi-out time 
based on the relationship with Virtual Departure Queue (VDQ), 
defined as the number of aircraft which have pushed back 
before the current one.  This study, while using ASDE-X data, 
did not leverage the detailed traffic situational map that can be 
constructed using this data. Also, the study limited its scope to 
using VDQ as the only explanatory variable to taxi-out time. 

The approach presented here combines the insights gained 
from earlier work on causal factors for taxi-out delays with 
detailed surface traffic situation provided using ASDE-X data 
to develop a new flight-specific taxi-out prediction model. 

III.  CAUSAL FACTORS AND THEIR INCLUSION 
Consider the airport surface traffic operations depicted 

schematically in Fig. 1. There is interaction among traffic on 
different components of the system such as arrival runways, 
taxiways, terminal gates, ramps and departure runways. As 
throughput of each component varies, queues are formed in 
them which add to the taxi-out times. The snapshot of actual 
airport traffic (JFK on July 9, 2010 at 7:00pm) shown in Fig. 2 
reveals complex interactions in play among these components. 
There is a significant aircraft queue waiting to takeoff from 
runway 22R. Cross traffic from arrivals on runway 22L and 
departures from runway 13R impact 22R’s departure rates. 
Taxiing streams of aircraft interact with each other as they 
merge to enter the runway queue area, causing delays and 
uncertainty in the aircraft order in the runway queue.  Aircraft 
travel varying distances to the runway, contributing to taxi-out 
variations. The runway configuration in use alters the traffic 
pattern and arrival/departure balance and therefore impacts 
taxi-out times. Downstream traffic restrictions due to weather 
or high traffic volumes significantly affect departure rates and 
hence the departure times. 

Based on these observations, the following key causal 
factors are included in this study. 

A. Runway Queue Position 
It is defined as the number of aircraft which will depart 

from the assigned runway before the aircraft under 
consideration.  An aircraft with a zero queue position implies 
that it will depart next.  An algorithm to determine the queue 
position is described in Traffic Situation Discovery section. 

B. Runway Configuration 
The departing runway has an impact on taxi-out times 

because of variance in taxiing distance and interaction with 
arriving and departing traffic from other runways. This study 
models predictions on a runway basis, using it as a primary 
differentiating factor. The arrival and departure rates of parallel 
and crossing runways are also included in the analysis. 

C. Airline/Terminal 
The distance travelled by an aircraft to the runway varies 

depending on its starting location, which can potentially impact 

 
Figure 1. Airport surface traffic operations [7] 
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the taxi-out time. For this study, the straight line distance from 
the aircraft to the runway threshold is used as approximation of 
the actual distance. 

D. Weather 
The impact of weather on taxi-out is included by using data 

from Severe Weather Avoidance Programs (SWAP) in the 
model. 

E. Taxiing Traffic Interactions 
This is a difficult factor to account for, as there are very 

complex traffic interactions during busy times. Runway 
crossing traffic is accounted for by considering arrival and 
departure rates from crossing and parallel runways; the arrival 
rate of the current runway is included to model interactions 
resulting when the same runway is used for both arrivals and 
departures. 

F. Downstream Traffic Restrictions 
Moving average taxi-out time for the runway is used as the 

primary indicator of this factor in this study. It represents the 
traffic flow rate from the runway and is considered an 
important predictor of future flow rate.  Fifteen, thirty and sixty 
minute averages are kept. 

IV.  METHODOLOGY 
Raw ASDE-X data is transformed and enriched in a series 

of steps to derive key metrics and generate a traffic flow 
database which underpin the taxi-out prediction model. The 
main steps in this process are: 

 
a. Produce a digitized surface layout map of the airport. In 

this step, airport surface layout features such as runways 
and taxiways are digitized at sufficient accuracy and 
stored in XML data files. 
 

b. Traffic situation discovery. The ASDE-X data is cleansed 
and superimposed on the digitized airport map to infer 
aircraft status, location, runway used and queue position. 
A database of historical traffic patterns with attributes 
representing explanatory variables is created in this step. 

A traffic visualization framework is developed for display 
and validation purposes. 

 
c. Validate data. In this step ASDE-X data is validated for 

completeness and accuracy using visual checks and 
comparisons with other data sources such as Aviation 
System Performance Metrics (ASPM) and Airline Service 
Quality Performance System (ASQP). 

 
d. Prediction model development and application. Linear 

regression analysis is used to model taxi-out relationship 
to the explanatory variables. Two different models are 
developed based on regression analysis and applied to the 
test data. 

 
e. Results analysis and comparison with ETMS predictions. 

 

V.  DATA SOURCES 

A. Airport Surface Detection Equipment – Model X Data 
The ASDE-X surveillance system is primarily a runway 

safety tool that fuses data from multiple sources such as radars 
on air traffic control tower or remote tower, multilateration 
sensors, ADS-B (Automatic Dependent Surveillance- 
Broadcast) sensors, terminal automation system and aircraft 
transponder into a single stream. The data covers moving 
“tracks’ which may be aircraft or non-aircraft objects (such as 
luggage carts) on and around (up to a minimum of five miles 
from the airport) the airport. There are over hundred data 
attributes stored for each track.  For this study, only the 
following attributes are used: 

 timestamp of the track at one second resolution 
 call sign 
 latitude, longitude, altitude 
 aircraft type 
 aircraft heading  
 speed  

 
For this study JFK ASDE-X data from July 3, 2010 to August 
14, 2010 is used. 

 
Data Validation 

The ASDE-X data is evaluated for positional accuracy, 
reliability, coverage and completeness. Positional accuracy of 
data is assessed visually by observing how well tracks of 
aircraft line up with center-line of taxiways and runways and 
observing inter-aircraft distances. Fig. 3 shows that tracks of 
two aircraft line up well with the center of the taxiway. 
Reliability of data was very high as no missing updates were 
observed in data processing. 

Coverage analysis shows that most tracks (95%) start 
from the taxiway area, just outside the ramp (the “spot”). This 
implies that the actual pushback event is missed in the 
available ASDE-X data. Fig. 4 shows that ASDE-X spotted 
the aircraft on average 10.9 minutes after the actual pushback 
for aircraft headed to runway 22R.  
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Figure 2. Airport traffic snap shot (JFK on July 9th at 7:00pm) 
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Figure 7.  Exit points for taxiway 7 

   

The completeness of data was checked by comparing hourly 
departure figures computed using ASDE-X data with those 
from ETMS. For JFK during July 2010, ASDE-X reported 
94% of flights reported in ETMS.  Fig. 5 compares ASDE-X 
and ETMS hourly departures, showing a close match in trends. 

Accuracy of ASDE-X-derived wheels-off time is assessed 
based on its comparison with Airline Service Quality 
Performance (ASQP) data. Fig. 6 shows the two matched well, 
confirming accuracy of ASDE-X data. 

Overall, ASDE-X data is found to have sufficient accuracy 
to form the basis of a taxi-out prediction algorithm. 

B. Airport Layout & Metadata 
To trace an aircraft’s surface path, the airport layout is 

segregated into logical areas.  Google Earth is used to digitize 
the airport layout information as it is sufficiently accurate and 
provides flexibility to create named polygon areas which can 
be saved as files (KML format).  The accuracy of this tool is 
established by visually validating the projected ASDE-X traffic 
on JFK, EWR, IAD, CLT and ORD airports. Empirical traffic 
flow patterns are studied to determine the number and layout of 
“airport areas” needed to capture the traffic flow at adequate 
granularity. The following area types are identified and 
digitized: runways, terminals, taxiways and queues. Queues are 
the areas where aircraft tend to line up and wait before taking 
off from a runway, other areas correspond to their physical 
equivalents. 

Fig. 8 shows the airport areas of JFK airport. 

Apart from the layout coordinates of the areas, additional 
information is collected to aid processing. Each area has one or 
more adjoining areas; centers of the dividing edges are 
captured as exit-points for that area. Fig. 7 shows four exit 
points from Taxiway 7. Depending on the number of exit-
points, an area may contain multiple flows of aircraft. Note that 
there can be multiple queues for a runway, for example Queue1 
22R and Queue2 22R serve runway 22R (see Fig. 8). The 
layout information along with additional metadata is captured 
in an airport-specific configuration file  

 
Figure 3.  Aircraft tracks 

 
Figure 4.  ASDE-X start time variance with actual pushback 

 

 
Figure 5. Hourly departure counts ASDE-X versus ASPM data 

 

 
 

Figure 6. ASDE-X wheels-off variance in minutes from ASQP 
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VI. TRAFFIC SITUATION DISCOVERY 

A. Flight Status and Location 
Positional attributes of ASDE-X data are mapped to areas 

configured in the digitized airport layout to locate it on or 
around the airport. Aircraft spotted first while on the airport 
surface are considered to be departing, while those in the air 
(altitude above ground level is greater than zero) are considered 
arriving. An aircraft is marked as being queued when it is in the 
queue area and its speed drops below a threshold. A flight is 
marked as taking off when it is on the runway and its speed 
exceeds a takeoff speed threshold; once its altitude exceeds 
zero it is marked as having taken off and is airborne. Similarly, 
an arriving flight is marked as landed when its altitude drops to 
zero. Aircraft location and status feed into the process of queue 
assignment and ordering. 

B. Queue Assignment and Order 
Each departing flight is assigned to one of the currently 

active runways. If there is only one active departure runway, all 
departing flights are assigned to its queue. In the case of 
multiple active runways, the algorithm assigns an aircraft to the 
runway X queue as follows: 

 aircraft on the runway X are assigned first 
 aircraft on the queue area to runway X are assigned next 
 aircraft on area adjacent to the queue area are assigned to 

runway X next. 
 aircraft heading to the runway X queue are assigned next 

depending on the number of airport areas they have to 
traverse to get to the queue area. 

In Fig. 9, white aircraft icons are assigned to runway 22R 
and black to runway 13R. Note that an aircraft’s proximity and 
heading are both considered for queue assignment; for 
example, the aircraft at queue position three is assigned to 
runway 13R even though it is close to the queue for 22R. 

Queue order is determined as follows: 
 aircraft on the runway are ordered based on their distance 

to the departing runway end.  
 aircraft on queue are ordered next, based on their distance 

to runway entrance point 
 aircraft on other surfaces are ordered next based on their 

distance to runway entrance point 

 

 
Figure 8.  JFK airport areas 

 

 
Figure 9. Queue ordering for runways 22R and 13R 
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C. Runway Activity Data 
Runway activity is recorded every minute to compute 

arrival rate, departure rate and average taxi-out time over the 
last fifteen, thirty and sixty minutes. 

Traffic situation discovery results are captured in a database 
table.  Key attributes collected are: call sign, starting area, start 
time, surface path, taxi-out time, departing runway, initial 
runway assignment, initial queue position and initial distance to 
the runway. For SFM, queue entry time, queue position and 
distance to runway on queue entry are also captured. 

VII. TAXI-OUT PREDICTION MODELS 
The taxi-out prediction model is based on modeling the 

relationship of taxi-out time to the explanatory variables 
described previously. Historical traffic data from 3 July 2010 to 
23 July 2010 is processed to create the database used to 
calibrate the models. 

Fig. 10 shows a typical aircraft taxi-out track.  Using traffic 
situation discovery rules, the following data points are 
collected for each flight: 
 time when the aircraft is first spotted  
 runway assignment 
 queue time when the aircraft stops in queue area 

indicating it is waiting in queue 
 wheels off time 
 initial queue position in the runway queue 
 queue position in the runway queue when the aircraft gets 

queued 
 straight line distance of aircraft to the runway threshold 

The following runway activity data is collected every minute: 

 active arrival and departure runways 
 moving taxi-out average for each departure runway in 

fifteen, thirty and sixty minute bins 
 arrival and departure rates for each runway in fifteen, 

thirty and sixty minute bins 
 

Taxi-out time is modeled using two approaches. 
 

A. Uniform Flow Model (UFM) 
This approach assumes uniform aircraft movement 

behavior during the entire taxi-out process and models the taxi-
out time in a single segment. Taxi-out time is modeled as 
function of explanatory variables as discovered using linear 
regression analysis. The model can be applied to all flight 
departures. 

B. Split Flow Model (SFM) 
This approach assumes that aircraft movement behavior 

when it is travelling to the queue is different from when it is 
waiting in the queue. This model calculates taxi-out time as 
sum of time to get to the queue (nominal time) and queue time. 

Taxi-out time = Nominal time + Queue time  
 

A nominal taxi-out time value for each runway is established 
as the ten percentile point of the actual taxi-out time 
distribution. Fig. 11 shows the distribution for runway 22R, 
6.43 minutes is used as nominal time for this runway. 

C. Exception Situations 
At times, an aircraft takes inordinately large taxi-out time 

due to exception conditions such as mechanical issues or 
human causes. Taxi-out values lying outside 2σ from the mean 
are ignored to account for these situations. In some cases the 
taxi-out predictions can be impacted due to anomalies in traffic 
pattern, such as aircrafts cutting through the queue. To account 
for that, five percent of outlying predictions are ignored when 
considering the performance of all prediction methods. 

D. Model Equation 
The regression analysis on historical database fits the data 

to an optimal linear solution, which outputs predicted taxi-out 
time (taxi-out delay for SFM) as a function of the explanatory 
variables. This is represented as a linear equation for each 
departure runway considered. For UFM, the equation produces 

Runway 22R

Queue1 22R

Taxiway 4B

Taxiway 4A-5

Taxiway 5

Start Time

Queue 
Time

Take Off

Runway Distance

 
Figure 10. Data points collected for each flight 

 

 
Figure 11.  Actual taxi-out distribution for runway 22R 
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the final predicted taxi-out time; for example, equation for the 
runway 4L is: 

 

Ttaxiout = 151 + 64.1*QP + 0.10*RD + 0.03*FA +           (1) 

  38.05*4LA + 13.64*4RA     

 

 Ttaxiout  Predicted taxi-out time (seconds) 

 QP Queue position 

 RD Distance to runway threshold (meters) 

 FA Taxi-out mean (15 minutes bin, in seconds) 

 4LA 4L Arrivals last fifteen minutes 

 4RA 4R Arrivals last fifteen minutes 

 

For SFM, taxi-out time is computed as sum of queue time (or 
taxi-out delay) and nominal time to get to the queue. The queue 
time is predicted using linear equation derived from regression 
analysis, such as equation (1) and nominal time is taken as ten 
percentile value of taxi-out distribution for the runway. 

VIII. MODEL PREDICTION RESULTS & ANALYSIS 

UFM and SFM models were applied to JFK ASDE-X data 
from 24th July 2010 to 13th August 2010 to assess the 
following: 

 Impact of explanatory variables on taxi-out time 
 Comparison between the two ASDE-X prediction models 
 Stability of ASDE-X model predictions 
 Comparison between ASDE-X and ETMS predictions and 

average taxi-out values 
 

Table 1 shows mean, standard deviation and coefficient of 
determination (R2 or square of correlation coefficient) of taxi-
out prediction error (predicted-actual taxi-out) in minutes for 
the two models broken down by explanatory variable for each 
departure runway. Variables taxi-out mean and all arrival rates 
are for fifteen minute bins; thirty and sixty minute bins are 
ignored as they are less significant. The last row of each set 
(All) is based on a multi-linear regression of all the explanatory 
variables in the set.  

A. Impact of Explanatory Variables 
Queue position emerges as the most significant determinant 

of taxi-out time as indicated by highest value of R2 for both the 
models. For UFM, average taxi-out time is next, followed by 
arrival rates on parallel runway. For SFM, runway distance is 
the next most significant factor, followed by average taxi-out 
time; other factors are insignificant. Fig. 12 shows a scatter plot 
of UFM predicted taxi-out times against queue positions for 
runway 4L; linear and quadratic fits are plotted. The two plots 
are almost identical, indicating that a linear relationship can be 
assumed for this most significant explanatory variable. Fig. 13 
and Fig. 14 show the scatter plot of average taxi-out time (15 
minutes) and 4R arrival rates versus the taxi-out times, 

indicating a less well-defined relationship compared to queue 
position.  

      TABLE 1. RUNWAY WISE MODEL PERFORMANCE 

N=1525 Nominal Time=7.57 minutes 

N=2206 Nominal time= 6.43 minutes 

N=2994 Nominal Time=9.83 minutes 

N=1685 Nominal time=5.83 minutes 

Row header : Mean: taxi-out error  (predicted-actual times) in minutes, σ: Taxi-out error standard 
deviations  in minutes, column Tax-out mean and all arrivals are for 15 minutes time-bucket 

Runway 4L 

Independent 
Variables 

Uniform Flow model Split Flow Model 

Mean Stdev R
2
 Mean Stdev R

2
 

Queue Position 0.31 3.91 0.47677 0.50 3.61 0.73614 
Taxi-out Mean 0.05 5.19 0.15158 0.28 5.18 0.14630 

Runway Distance 0.59 5.12 0.04641 0.65 4.78 0.40552 
Severe Weather n/a n/a n/a 0.67 5.38 0.00321 

4L Arrival rate 0.68 5.05 0.03327 0.80 5.21 0.01992 

4R Arrival rate 0.68 5.37 0.15504 0.80 5.30 0.16971 

All (multi-linear) 0.37 3.53 0.54233 0.50 3.51 0.79027 

Runway 22R 

Independent 
Variables 

Uniform Flow model Split Flow Model 

Mean Stdev R
2
 Mean  Stdev R

2
 

Queue Position 1.77 5.11 0.56709 0.51 5.56 0.69177 
Taxi-out Mean 1.56 6.11 0.49451 0.67 7.28 0.14867 

Runway Distance 4.24 7.64 0.04069 0.54 6.23 0.31834 
Severe Weather 3.50 7.86 0.14864 1.13 7.85 0.06540 
22R Arrival rate 4.31 8.22 0.01464 0.90 8.20 0.02882 

22L Arrival rate 3.92 7.82 0.03145 1.20 7.91 0.04412 

All (multi-linear) 1.15 4.89 0.64471 0.51 5.55 0.72092 

Runway 13R 

Independent 
Variables 

Uniform Flow model Split Flow Model 

Mean Stdev R
2
 Mean  Stdev R

2
 

Queue Position -0.32 5.79 0.51725 1.20 6.63 0.72164 
Taxi-out Mean -1.75 7.18 0.23378 -0.27 7.83 0.28394 

Runway Distance -4.68 9.50 0.00653 -2.07 9.0 0.33786 
Severe Weather -3.73 9.05 0.02046 -1.4 9.4 0.00126 

13R Arrival rate -4.67 9.46 0.00656 -1.49 9.5 0.03479 

13L Arrival rate 4.72 9.54 0.00250 -2.45 9.78 0.03109 

All (multi-linear) -0.40 5.82 0.52795 0.10 7.35 0.77754 

Runway 31L 

Independent 
Variables 

Uniform Flow model Split Flow Model 

Mean Stdev R
2
 Mean  Stdev R

2
 

Queue Position 0.83 6.53 0.53557 -7.11 10.80 0.16208 

Taxi-out Mean -0.10 7.33 0.35036 -7.12 10.83 0.02374 
Runway Distance 0.20 8.96 0.19952 -7.12 10.88 0.10658 

Severe Weather -0.12 9.25 0.00240 -7.11 10.83 0.00957 

31L Arrival rate 0.84 8.51 0.22952 -7.11 10.85 0.00028 

31R Arrival rate 1.18 8.75 0.15538 -7.12 10.85 0.01327 

All (multi-linear) 0.83 6.05 0.61775 -7.11 10.83 0.35403 
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Figure 12. Scatter plot of taxi-out time versus queue position along with linear 
and quadratic fit curve. 

 
Figure 13. Scatter plot of taxi-out time versus 4R arrival rates 

 
Figure 14. Scatter plot of taxi-out time versus taxi-out average last 15 minutes 
 

Arrivals on parallel runways are more significant for runways 
4L and 31L than other runways. Since the models consider 
already taxiing flights and make short-term predictions, 
weather did not emerge as a significant factor in this study. 

B. Models Comparision 
The Split Flow Model provides better prediction than Uniform 
Flow Model for runways 4L, 22R and 13R as indicated by a 
higher coefficient of determination. This is supported by 
empirical observations on aircraft movement behavior when 
they are queued during departure. For runway 31L, the Split 
Flow Model performs significantly worse as shown by lower 
coefficient of determination and higher spread and mean error 
values. This is 
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Figure 15. Average daily traffic trend vs taxi-out variance 
 

due to significantly less time the flights were queued for 
runway 31L (~ 15 percent) compared to other runways (~ 50 
percent) as shown in Table 2. UFM performs more consistently 
than SFM; however SFM performs better in traffic conditions 
where queues develop during the departure process. 

C. Model Stability 
Model stability is assessed by plotting the impact of varying 

traffic conditions on prediction quality, measured as the 
absolute difference between predicted and actual taxi-out times 
as percentage of taxi-out time. Average number of push backs 
and average taxi-out time are used as measure of departure 
traffic load and delay.  Fig. 15 shows traffic variation and taxi-
out error variance percent slotted on identical times of the day; 
all the values are averaged in thirty minute bins. UFM model 
predictions on JFK data from 24th July 2010 to 13th August 
2010 are used for this analysis. The charts show that 
predictions remain fairly stable in varying traffic conditions. 

D. Model Comparison with ETMS and Averages 
ETMS generates a series of predictions for a flight starting 

from the time it is filed to when it takes off. For this analysis, 
UFM predictions are compared to the ETMS predictions active 

    TABLE 2. RELATIVE QUEUE TIMES FOR RUNWAYS 

Runway Taxi-out time Queue time 
Mean Std Dev Mean Std Dev 

4L 15.38 8.17 8.61 5.38 
22R 22.11 13.31 10.95 9.39 
13R 20.34 10.77 11.34 7.91 
31L 16.39 16.38 2.38 2.29 
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at that time. The runway-wise taxi-out error in minutes 
(predicted minus actual taxi-out time) distribution is depicted in 
Fig. 16.  The ASDE-X-based model significantly improves 
predictions for all runways for both taxi-out error mean value 
and reduced error spread (σ values). In another comparison, 
taxi-out prediction for a flight is calculated as average of ten or 
more taxi-out times for the same flight during the period from 3 

July 2010 to 23 July 2010 (Averages model). Fig. 17 shows 
taxi-out error distributions for ETMS, Averages and ASDE-X 
model for all the runways. The ASDE-X-based model 
significantly improved predictions over other models in both 
mean error and error spread as measured by σ values.  

                       
Runway 4L          ETMS Predictions              ASDE-X Model Predictions 

                       
Runway 22R          ETMS Predictions              ASDE-X Model Predictions 

                       
Runway 13R          ETMS Predictions              ASDE-X Model Predictions 

Figure 16. Runway wise comparison between ETMS & ASDE-X model 
 
 
 
 

              
All           ETMS Predictions            Averages Predictions                              ASDE-X Model Predictions 

Figure 17. All runways comparison among ETMS, ASDE-X & Averages prediction models 
All numbers are taxi-out error (predicted-actual) in minutes 

 
 

                       
Runway 31L          ETMS Predictions              ASDE-X Model Predictions 
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IX. CONCLUSION 
This paper introduces two  taxi-out prediction models based 

on high resolution airport surface movement data available 
from ASDE-X surveillance system. Uniform Flow Model ( 
UFM) assumes uniform aircraft movement from the starting 
location to the runway threshold and models taxi-out time in a 
single segment. Split Flow Model (SFM), on the other hand, 
models taxi-out time as sum of predicted time to reach the 
runway queue and taxi-out delay while the aircraft is in the 
queue. Linear regression analysis on traffic flow database 
generated using ASDE-X data is used to model taxi-out time 
(in case of UFM) or taxi-out delay (in case of SFM) as a 
variable dependent on explanatory variables such as queue 
position, runway distance, arrival rates, departure rates and 
weather. Results from applying the models show a significant 
improvement in quality of predictions when compared with 
predictions currently available from ETMS or using average 
taxi-out times (Averages model) for a flight. ASDE-X model 
(UFM) reduced mean prediction error (predicted-actual taxi-out 
time) from -8.07 (ETMS) and 2.29 (Averages) to 0.68 minutes. 
Error spread (standard deviation) was reduced from 21.78 
(ETMS) and 8.13 (Averages) to 4.61 minutes. Comparison 
between the two models shows that SFM performs better in 
traffic conditions when queues develop at runways, while UFM 
performs more consistently in all traffic conditions. This study 
also shows that queue position is most significant determinant 
of taxi-out times. 

Since ASDE-X updates traffic data every second, the model 
can update predictions as aircraft approach runway, making it 
suitable for deployment in a real-time environment.  

One weakness of this model is that the predictions are for a 
short-term horizon (thirty minutes or so into the future), as they 
can only be made when the aircrafts come into the ASDE-X 
view. The ASDE-X data used in the study starts tracking flights 
when they leave the ramp area.  If the ASDE-X data within the 
ramp area were available, modeling can start at pushback, thus 
extending the look ahead time. Also, the model needs to be 
recalibrated if traffic pattern changes significantly, such as due 
to closing of a runway, or during winter when aircraft wait for 
de-icing. The model should constantly adapt to changing traffic 
pattern by monitoring the error rates and recalibrating if 
needed.  

This model can be further improved by considering other 
factors such as departure separation rules and fleet mix, flight’s 
departure clearance time when an Expected Departure 
Clearance Time (EDCT) has been assigned, and the first 
departure fix in the flight’s filed route to fine tune the queue 
ordering and wait times. 

NOTICE 
Copyright 2011, The MITRE Corporation.  All Rights 

Reserved. 

The contents of this material reflect the views of the author 
and The MITRE Corporation and do not necessarily reflect the 
views of the FAA or the DOT. Neither the Federal Aviation 
Administration nor the Department of Transportation makes 
any warranty or guarantee, or promise, expressed or implied, 
concerning the content or accuracy of these views. 
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