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We explore the effect of Shor state construction methods on logical state encoding and quan-
tum error correction for the [7,1,3] Calderbank-Shor-Steane quantum error correction code in a
nonequiprobable error environment. We determine the optimum number of verification steps to be
used in Shor state construction and whether Shor states without verification are usable for practical
quantum computation. These results are compared to the same processes of encoding and error cor-
rection where Shor states are not used. We demonstrate that the construction of logical zero states
with no first order error terms may not require the complete edifice of quantum fault tolerance.
With respect to error correction, we show for a particular initial state that error correction using
a single qubit for syndrome measurement yields a similar output state accuracy to error correction
using Shor states as syndrome qubits. In addition, we demonstrate that error correction with Shor
states has an inherent sensitivity to bit-flip errors.

PACS numbers: 03.67.Pp, 03.67.-a, 03.67.Lx

I. INTRODUCTION

Quantum fault tolerance [1–4] is the framework which
allows for accurate implementation of quantum algo-
rithms despite the inevitability of errors during the com-
putation. This is done by assuring that an error that
occurs on one qubit cannot spread to multiple qubits.
Application of quantum error correction (QEC) then cor-
rects the single qubit error [5–7].
However, utilizing the entirety of the fault tolerant

framework promises to be an expensive proposition in
terms of the number of qubits and implemented gates.
Thus, it is worth exploring whether it is possible to relax
some of the strict rules required by the framework. One
way to do this may be by easing the construction require-
ments or simply not using Shor states as syndrome qubits
when encoding logical computational states and applying
error correction. In this paper we study the utilization
of Shor states in the encoding of logical zero states and
the application of error correction for the [7,1,3] Steane
code [8] with the goal of limiting the number of required
qubits and implemented gates.
A fault tolerant method for encoding a logical compu-

tational state in the Steane code is to apply fault tol-
erant error correction to any initial state of 7 qubits.
This requires construction of proper ancilla syndrome
qubits such that each ancilla interacts with no more
than one of the 7 data qubits. For the Steane code
appropriate syndrome qubits are four-qubit Shor states
[2]. Shor states are simply Greenberger-Horne-Zeilinger
(GHZ) states with Hadamard gates applied to each qubit.
However, as the Shor states themselves are constructed
in a noisy environment (here the nonequiprobable error
environment), verification via parity checks is necessary
to ensure accurate construction. Thus, in this paper, we
first attempt to determine the number of Shor state verifi-
cations necessary to construct logical zero states or apply
error correction with as high a fidelity as possible. We
then ask whether using Shor states with fewer verifica-
tion steps (thus using fewer ancilla qubits and requiring

fewer gates) will provide sufficient accuracy to be used
in the construction of logical zero states or the applica-
tion of error correction. Finally, we explore whether Shor
states are necessary at all in the construction of logical
zeros and the application of error correction, or whether
sufficient accuracy may be obtained using single qubits
for syndrome measurement.
The error model used in this paper is a non-

equiprobable Pauli operator error model [9]. As in [10],
this model is a stochastic version of a biased noise model
that can be formulated in terms of Hamiltonians coupling
the system to an environment. In the model used here,
however, the probabilities with which the different error
types take place is left arbitrary: the environment causes
qubits to undergo a σj

x error with probability px, a σ
j
y er-

ror with probability py, and a σj
z error with probability

pz, where σ
j
i , i = x, y, z are the Pauli spin operators on

qubit j. We assume that only qubits taking part in a gate
operation will be subject to error and the error is mod-
eled to occur after (perfect) gate implementation. Qubits
not involved in a gate are assumed to be perfectly stored.
While this represents an idealization, it is justifiable as all
accuracy measures are calculated only to second order in
the error probabilities pi. In addition, non-equiprobable
errors occur in the preparation and measurement of all
qubits.
This paper builds on the previous work of Ref. [11] (see

also [12]) in which the fault tolerant method of encoding
logical zero states for the [7,1,3] code was compared to the
gate sequence method of encoding to see which method
led to more accurately encoded zero states. Though the
gate sequence method is not fault tolerant (errors can
propagate to multiple data qubits) it was found that the
fidelity of the logical zero states constructed in this way
is comparable to the fidelity of the states constructed
using the fault tolerant method. Applying perfect er-
ror correction then revealed that the error probabilities
were reduced to at least second order for both meth-
ods (third order for the fault tolerant method), implying
the correctability of the errors and suggesting that either
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FIG. 1: Top: construction of a 4 qubit Shor state. cnot

gates are represented by (•) on the control qubit and (×) on
the target qubit connected by a vertical line. H represents a
Hadamard gate. The procedure entails constructing a GHZ
state which is verified using ancilla qubits. Hadamard gates
are applied to each qubit to complete Shor state construc-
tion. Bottom: syndrome measurements for the [7, 1, 3] code.
For fault tolerant syndrome measurement each Shor state an-
cilla qubit must interact with only one data qubit. The error
syndrome is determined from the parity of the measurement
outcomes of the Shor state ancilla qubits. To achieve fault tol-
erance each of the syndrome measurements is repeated twice.
Box: a useful equality which allows us to avoid implementing
Hadamard gates by reversing the control and target of cnot
gates. In our context, the cnots are reversed such that the
ancilla qubits become the control and the data qubits become
the target, as explained in the text.

method can be used for practical quantum computation.
Here we work within the fault tolerant method in at-
tempt to determine how best to construct Shor states for
encoding and error correction. In both papers, however,
a major goal is to determine whether accurate enough
protocols can be implemented without invoking the full
framework of quantum fault tolerance.

II. CONSTRUCTING SHOR STATES

A construction method for the four-qubit Shor states
needed for the [7,1,3] QEC code is shown in Fig. 1. If
the construction was done without error, no verification
steps would be needed and the Shor state (without the
final Hadamard gates as explained below) would be given

by: |ψShor〉 = 1√
2
(|0000〉 + |1111〉). However, actual

implementations of quantum computation will be done
in a noisy environment and thus verifications may be
useful. We simulate construction of Shor states in the
nonequiprobable error environment including initializa-
tion and measurement errors with different verification
strategies. We then determine which of the strategies
produce the highest quality Shor states based on the fi-
delity of the constructed Shor states, the fidelity of logi-
cal zero states encoded fault tolerantly with the different
Shor states used as syndrome qubits, and the fidelity of a
state after noisy error correction when the different Shor
states are used as syndrome qubits. The different strate-
gies we use are: no verifcation steps, one verification step,
and different possible two verification steps. The tenets
of fault tolerance require that at least one verification
step be applied so as to lower the probability of error to
second order.
To construct the Shor state we start with four qubits

that we attempt to initialize to the state zero. How-
ever, in this work, we assume that initialization itself is a
noisy process subject to the same error model as qubits
involved in a gate. Thus, the actual state of each initial-
ized qubit is ρi = (1−px−py)|0〉〈0|+(px+py)|1〉〈1|. We
then apply a Hadamard gate, H , to the first qubit. The
nonequiprobable error environment causes imperfections
in the gate such that the actual evolution of an attempted
Hadamard on a single qubit j in the state ρ is:

0,x,y,z∑

a

paσ
j
aHjρH

†
jσ

j
a, (1)

where σj
0 is the identity matrix, p0 = 1 − ∑

`=x,y,z p`,

and the terms Kj
a =

√
paσ

j
aHj can be regarded as Kraus

operators for the Hadamard evolution. The Hadamard
is followed by a series of cnot gates. The attempted
performance of the cnot gate with control qubit j and
target qubit k, cjnotk, in the nonequiprobable error en-
vironment on any state ρ actually implements:

0,x,y,z∑

a,b

papbσ
j
aσ

k
b cjnotkρcjnot

†
kσ

j
aσ

k
b , (2)

where terms Aj,k
a,b =

√
papbσ

j
aσ

k
b cjnotk can be regarded

as the 16 Kraus operators. Shor state construction re-
quires three cnot gates, shown in Fig. 1, and thus the
final Shor state is given by

ρShor−err =

0,x,y,z∑

a,b,c,d,e,f,g

A
3,4
f,gA

2,3
d,eA

1,2
b,cK

1
aρ

⊗4
i

× (K1
a)

†(A1,2
b,c )

†(A2,3
d,e)

†(A3,4
f,g)

†. (3)

Simply applying the above described gate sequence
does not build Shor states in a fault tolerant fashion.
This is because multiple errors in Shor state construc-
tion can propagate into the data qubits when the Shor
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TABLE I: Relevant fidelity measures for Shor states and encoded logical zeros from different construction methods: Shor
state without verification, Shor state with one verification, Shor state with two verifications, and the accuracy of logical zero
construction using single-qubit ancilla for syndrome measurements instead of Shor states. The accuracy measures are the
fidelity of the Shor state itself, the fidelity of the seven physical qubits making up the logical zero state, the fidelity of the one
qubit of information stored in the seven physical qubits, and the fidelity after perfect error corrction has been applied to the
constructed encoded zero states.

no verifications 1 verification 2 verifications 1-Qubit ancilla

Shor fidelity 1 − 10px − 11py − 7pz 1 − 5px − 6py − 10pz 1 − 5px − 6py − 13pz

7-Qubit fidelity 1 − 85px − 37py − 12pz 1 − 55px − 19py − 12pz 1 − 55px − 19py − 12pz 1 − 49px − 19py − 12pz

1-Qubit fidelity 1 − 25px − 11py 1 − 19px − 7py 1 − 19px − 7py 1 − 15px − 7py

after QEC 1 − 92p2

x
− 74pxpy − 14p2

y
1 1 1 − 26p2

x
− 6pxpy

states are used for syndrome measurement. We need to
test the Shor states to ensure that multiple errors have
not taken place. This is done utilizing an ancilla qubit,
initially in the state |0〉, adjoined to the Shor state to
measure the parity of random pairs of qubits [2]. Should
the test fail (the ancilla qubit measurement yields a |1〉),
the Shor state is immediately discarded. Of course, the
ancilla qubit initialization and the cnot gate implemen-
tations for this parity check are themselves performed in
the nonequiprobable error environment and thus follow
the dynamics described above. We utilize an initial an-
cilla qubit to measure the parity of qubits 1 and 4. Apply-
ing additional verification steps using additional ancilla
may, if the cnots themselves are not too error prone,
further ensure the lack of errors in the constructed Shor
states. A second ancilla can recheck the parity of the
qubits checked with the previous ancilla, or check the
parity between other Shor state qubits. We have sim-
ulated every possible combination for the second parity
measurement and this choice has little effect on any of
our accuracy measures.

Our first accuracy measure for the Shor states con-
structed with different numbers of verifications is the fi-
delity of the constructed Shor state as compared to a
perfect Shor state, F = 〈ψShor|ρShor−err|ψShor〉. The
fidelity results for Shor states with zero, one, and two
parity verifications are shown to first order in error prob-
ability in the first row of Table I. Note that to first order
the fidelity for Shor states of two verification is indepen-
dent of which qubits are used for the second verification.
The second order error probability terms, however, will
depend on the choice of qubits for the second verification.

Comparing the fidelity of the three Shor states we see
that the Shor state with only one verification leads to
a higher fidelity than the Shor states with zero or two
verifications. This apparently demonstrates the utility of
performing a verification step on the Shor states in order
to suppress errors that occur during the Shor state con-
struction. However, applying a second verification step
does not give enough of a benefit to outweigh additional
errors that may occur during the verification procedure
itself.

III. ENCODING WITH SHOR STATES

The fidelity reported above is a good measure of ac-
curacy for the Shor state in and of itself. However, our
purpose for constructing Shor states is to use them to
encode logical zero states and implement fault tolerant
error correction. It is possible that different errors in the
Shor state construction will have more or less of an ef-
fect on the accuracy with which these protocols can be
performed. Thus, another way to quantify the quality
of the Shor states is to simulate their utilization in the
encoding of logical zero states and in the performance of
error correction and report on the accuracy with which
these protocols are implemented.

We first turn to the construction of logical zero states.
To do this in a fault tolerant manner we start with 7
qubits all noisily initialized to the state zero. Though
this initialization is not perfect we choose to not per-
form the first set (bit-flip) of syndrome measurements as
their utility in correcting an initialization error is out-
weighed by the noise inherent in applying the necessary
syndrome measurments. Instead, we immediately mea-
sure the three phase flip syndromes (each one of the three
twice) with Shor states as the syndrome qubits. We can
measure the syndrome without Hadamard gates if we re-
verse the roles of the control and target qubits for the
cnot gates, and measure the Shor state qubits (noisily)
in the x-basis, as explained in [11]. In this paper, we
analyze the scenario where all four qubits are measured
as zero.

Attempting this construction in the nonequiprobable
error environment using Shor states with different num-
bers of applied verifications will result in logical zero
states with different degrees of accuracy. We can mea-
sure this accuracy in a number of ways. The first way is
simply to look at the fidelity of the seven qubit logical
zero state. The accuracy of this state gives an idea as
to how well the entire encoding process was performed.
Alternatively, one may look at the fidelity of only the
one qubit of encoded information. This is the only qubit
of information that is actually of importance and, if it is
protected, the state of the rest of the system is irrelevant.
Measuring the fidelity of this one logical qubit is done by
(noiselessly) decoding the constructed logical zero state,
tracing out all qubits but the first, and comparing the
state of the remaining qubit with the zero state on a
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single qubit. Both of these fidelity measures have been
calculated for logical zero states constructed using Shor
states of zero, one, and two verification parity checks,
and are given in Table I.
Errors affecting the logical zero state may also be of

varying degrees of severity. Applying perfect error cor-
rection allows us to test the ‘correctability’ of the types
of errors that occur during the encoding. If even perfect
error correction cannot (to first order) correct the errors
in the logical zero state then the encoding method cannot
be used for practical implementations of quantum com-
putation. We apply perfect error correction to the states
constructed using the three types of Shor states (with dif-
ferent numbers of verifications) and calculate the fidelity
measure of the output state. These fidelities are given in
Table I, and corroborate our previous observations that
applying one verifiction to Shor states is optimal. Ap-
plying no verification steps to the Shor states leads to
lower fidelities for the logical zero states, and applying
two verifications does not raise the fidelity. Perfect er-
ror correction applied to logical zero states encoded us-
ing Shor states with one or two verifications gives unit
fidelity up to third order. However, perfect error cor-
rection applied to logical zero states encoded using Shor
states with no verifications, suppresses errors to second
order implying that these states may also be useable for
practical quantum computation.
We compare the above cases of Shor state syndrome

measurement with a logical zero encoding method in
which a single ancilla qubit is used for each syndrome
measurement. This method does not meet the stan-
dards of fault tolerance since an error on the single ancilla
qubit, be it an initialization error or an error in one of
the syndrome measurement cnot gates, can spread to
multiple data qubits. However, using one ancilla qubit
removes the need to construct Shor states thus lowering
the number of gates to be performed. The logical zero fi-
delity measures defined above are calculated for the single
qubit syndrome measurement construction method and
are shown in Table I. Comparing these fidelity measures
to those calculated for Shor state based encoding, we find
that using single qubit ancilla leads to higher fidelity log-
ical zero states. However, upon application of perfect er-
ror correction the error probabilities are suppressed only
to second order, unlike the logical zero states constructed
using Shor states for which the second order error prob-
ability terms are also suppressed.

IV. QUANTUM ERROR CORRECTION WITH

SHOR STATES

We now consider the accuracy with which the differ-
ent Shor states can be used as syndrome ancilla qubits
for quantum error correction. The arbitrary single-qubit
initial state we would like to protect is assumed to have
been perfectly encoded via the [7, 1, 3] gate encoding se-
quence: |ψ〉 = cosα|0L〉 + eiβ sinα|1L〉, where |0L〉 and

|1L〉 represent the seven qubit logical |0〉 and |1〉 states
respectively. We assume the environment possibly causes
an error such that, before error correction, the system is
in a mixed state of no error and all possible single qubit
errors:

ρerr = (1−7(px+py+pz))|ψ〉〈ψ|+
7∑

i=1

x,y,z∑

a

paσ
i
a|ψ〉〈ψ|σi

a

†
.

(4)
Because there are only single qubit errors in the system
state, the error can be corrected by perfect application
of the [7,1,3] code.
To perform error correction in a fault tolerant manner,

Shor states with at least one verification must be used for
syndrome measurements. We apply error correction to
the state ρerr in the nonequiprobable error environment
by implementing the three bit-flip syndrome measure-
ments followed by three phase-flip syndrome measure-
ments using Shor states with different numbers of veri-
fications as the syndrome qubits. Each syndrome mea-
surement is repeated twice to account for errors that may
have occurred during the syndrome measurement itself.
We again only analyze the scenario where all four ancilla
qubits are measured as zero. We quantify the quality of
the error correction via fidelity measures comparing the
final state after error correction to the pre-encoded ar-
bitrary state. The fidelities of the seven qubits and one
logical qubit state are given, to first order, in Table II.
Comparing the seven-qubit fidelities of the QEC pro-

cedure utilizing Shor states with different numbers of ver-
ifications, we first note that the fidelities for Shor states
with one and two verifications are identical up to second
order terms. This fidelity is higher than that attained
by performing QEC using a Shor state with no verifica-
tions, again confirming that while performing verification
of the Shor state is important, there is no benefit gained
from performing a second verification step. The fidelities
exhibit little dependence on the initial state of the qubit,
α and β only appear in second order terms of the zero
verification Shor state QEC procedure fidelity. Further-
more, regardless of the Shor state used, the px error is
dominant implying that bit-flips are more harmful to the
error correction procedure than phase flips.
Similar trends hold when comparing the single qubit fi-

delities except that all of the single qubit fidelities depend
strongly on the initial state. These fidelities are highest
when α = 0, π2 , at which point the first and second order
pz terms drop from the fidelity expression. The fidelities
are lowest when α = π

4 . Once again px is the domi-
nant error term. We note that the presence of first order
terms in the fidelity measures indicate that, in this case,
noisy QEC cannot output a state with no first-order error
probability terms. Practical quantum error correction in
this case is thus reduced to minimizing the coefficients of
these first order terms.
We compare the above QEC performance with that of

error correction done without Shor states, instead using a
single (noisily initialized) ancilla qubit for syndrome mea-
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TABLE II: Fidelity measures for error correction applied to the state ρerr utilizing Shor states with different numbers of
verifications or a single ancilla qubit for syndrome measurement. In the Table a = cos[4α] and b = cos[2β] sin[2α]2. In this case
the bit flip syndrome measurements were done first.

no verifications 1 verification 2 verifications 1-Qubit ancilla

7-Qubit fidelity 1 − 85px − 25py − 7pz 1 − 55px − 7py − 7pz 1 − 55px − 7py − 7pz 1 − 49px − 7py − 7pz

1 − ( 81

4
+ 27

4
a − 27

2
b)px 1 − ( 57

4
+ 19

4
a − 19

2
b)px 1 − ( 57

4
+ 19

4
a − 19

2
b)px 1 − ( 45

4
+ 15

4
a − 15

2
b)px

1-Qubit fidelity −( 25

4
+ 3

4
a − 5

2
b)py −( 13

4
− 1

4
a − 1

2
b)py −( 13

4
− 1

4
a − 1

2
b)py −( 13

4
− 1

4
a − 1

2
b)py

− 3

2
(1 − a)pz − 3

2
(1 − a)pz − 3

2
(1 − a)pz − 3

2
(1 − a)pz

surement. While this scheme certainly does not meet the
criteria for fault tolerance, it does allow us to implement
QEC with fewer qubits, and the lack of possible error
from the construction of the Shor states may, and in fact
does, yield an improved resulting fidelity. The fidelities
for this case are shown in the last column of Table II.

A. Why Bit Flips?

In all of the above, σx errors dominate the loss of fi-
delity. There are a number of possible reasons as to why
this may be so. The first is because the bit flip syndrome
measurements were implemented first, and thus σx er-
rors that may occur during phase flip syndrome mea-
surements are not corrected. A second possibility is that
the use of (noisy) Shor states may cause the effect of σx
errors to be more pronounced. In this section we clarify
this issue by carrying out a series of simulations designed
to isolate the cause of increased sensitivity to σx errors.
Our first step is to repeat the above error correction

calculations implementing the phase flip syndrome mea-
surements first. The fidelities of the resulting states are
shown in Table III. Let us first compare the cases where
the syndrome measurement was done with a single ancilla
qubit. In this case the coefficients of the px and pz terms
in the seven qubit fidelity simply switch places while the
py coefficient remains constant. Similarly in the one-
qubit fidelity the py coefficient remains constant while the
values of the px and pz terms approximately trade values
(modulo the contribution of the initial state). This alone
suggests that the dominance of the px term in the origi-
nal simulations was simply because the bit-flip syndrome
measurements were done first. When the phase-flip syn-
drome measurements are done first pz replaces px. How-
ever, when looking at the QEC simulations that utilize
Shor states for syndrome measurements we do not find
the same trade-off. Instead, though the pz error coeffi-
cients grow and (in most cases) becomes dominant, we
find much less of a reduction of the px error coefficients.
This suggests that there is something inherent in the use
of the (noisy) Shor states that leads to this type of error.
To further explore this point we perform two addi-

tional sets of QEC simulations. In the first simula-
tions we utilize perfect Shor states but allow errors (due
to the nonequiprobable error environment) in the error
correction process (including syndrome measurement).
In the second we use Shor states constructed in the
nonequiprobable error environment (with one verifica-

tion) but the error correction itself (including syndrome
measurements) is perfect. Both are done with bit-flip
syndrome measurements first and with phase-flip syn-
drome measurements first. When perfect Shor states are
used, but the error correction is noisy, we find that the
dominant error depends on which set of syndrome mea-
surements is done first, if phase correction is done first
σz errors dominate and vice-versa. The other error type
is significantly diminished. When noisy Shor states are
used with perfectly implemented error correction we find
that which syndrome is done first makes little difference:
σx errors dominate and the fidelities do not contain a first
order term for σz errors. The various fidelity measures
are displayed in Table IV.
Taken together these simulations imply that when

noisy Shor states are utilized for syndrome measurement
in the Steane code there is a significant bias towards bit-
flip errors. A possible solution is to concatonate into a
three-qubit bit-flip QEC code for another level of error
correction. This could significantly reduce the sensitivity
to bit-flip errors without the resource cost of concatena-
tion into another level of the seven-qubit Steane code.

V. CONCLUSION

In conclusion, we have calculated quality metrics for
different Shor states used as syndrome measurement an-
cilla qubits for the [7,1,3] CSS QEC code operating in a
nonequiprobable error environment. The results suggest
that while a Shor state constructed in this error environ-
ment with one parity check verification is optimal for sup-
pressing errors in the construction of logical zero states,
Shor states with no checks will also suppress error prob-
ability terms in the fidelity to second order. In addition,
error correction applied without Shor states, instead us-
ing single qubit ancilla for syndrome measurement, leads
to logical zero states with higher fidelity but errors that
are less correctable as identified by fidelity after perfect
error correction.
For error correction applied in a nonequiprobable er-

ror environment using the seven qubit Steane code, our
simulations show that not using Shor states leads to
a corrected state with higher fidelity than using Shor
states. In addition, we noted that bit-flip errors are
dominant whether Shor states are used or not. We first
suggested that this was due to the fact that the bit-flip
syndrome measurements were done first, meaning that
uncorrected bit-flips may accumulate during phase-flip
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TABLE III: Fidelity measures for error correction applied to the state ρerr utilizing Shor states with different numbers of
verifications or a single ancilla qubit for syndrome measurement. In the Table a = cos[4α] and b = cos[2β] sin[2α]2. In this case
the phase flip syndrome measurements were done first.

no verifications 1 verification 2 verifications 1-Qubit ancilla

7-Qubit fidelity 1 − 61px − 25py − 55pz 1 − 31px − 7py − 55pz 1 − 31px − 7py − 55pz 1 − 7px − 7py − 49pz

1 − ( 61

4
− 49

4
a − 3

2
b)px 1 − ( 33

4
− 21

4
a − 21

2
b)px 1 − ( 33

4
− 21

4
a − 3

2
b)px 1 − ( 9

4
+ 3

4
a − 3

2
b)px

1-Qubit fidelity −( 33

4
− 21

4
a − 1

2
b)py −( 13

4
− 1

4
a − 1

2
b)py −( 13

4
− 1

4
a − 1

2
b)py ( 13

4
− 1

4
a − 1

2
b)py

− 27

2
(1 − a)pz − 27

2
(1 − a)pz − 27

2
(1 − a)pz − 25

2
(1 − a)pz

TABLE IV: Fidelity measures for quantum error correction applied to the state ρerr with perfect Shor states and noisy error
correction, and noisy Shor states with perfect error correction. Both cases were done with the σx syndrome measurements first
and the σz syndrome measurements first. In the Table a = cos[4α] and c = cos[2β].

bit-flip first phase-flip first

7-Qubit fidelity 1 − 31px − 7py − 7pz 1 − 7px − 7py − 55pz

Noisy QEC 1 − ( 33

4
+ 11

4
(a − c + ac)px 1 − ( 9

4
+ 3

4
a − 3

2
b)px

Perfect Shor States 1-Qubit fidelity −( 13

4
− 1

4
(a + c − ac)py −( 13

4
− 1

4
a − 1

2
b)py

− 3

2
(1 − a)pz − 27

2
(1 − a)pz

Perfect QEC 7-Qubit fidelity 1 − 24px 1 − 24px

Noisy Shor States 1-Qubit fidelity 1 − (6 + 2a − 4b)px 1 − (6 + 6a)px

syndrome measurements. Simulations switching the or-
der of the syndrome measurements demonstrated that
this is correct when using single qubit ancillae for syn-
drome measurement, but does not completely explain the
results of simulations using Shor states. Further simu-
lations indicated an inherent sensitivity towards bit-flip

errors when Shor states are used. We suggested that this
could be overcome by concatenating with a three-qubit
QEC code that protects against bit-flip errors.
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