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Abstract—In this paper, we study the communication overhead of 

gossip-based information dissemination algorithms. Among basic 

variants of gossip algorithm Push is most efficient in the early 

rounds while, in contrast, Pull becomes more efficient in the later 

rounds. Therefore, a cost-efficient gossip algorithm needs to 

combine the advantages of push and pull algorithms. One 

possible approach is to begin with push algorithm and then at 

some point switch to pull algorithm. We analyze the effect of 

transition round from Push to Pull on the communication cost of 

gossip algorithm. We use simple deterministic difference 

equations to approximately model the message propagation 

throughout the network for both Push and Pull algorithms and 

derive closed form solution for Pull model. We then present our 

First-Push-Then-Pull (FPTP) gossip algorithm and derive the 

optimum round to transition from Push to Pull. We show that, in 

a fully connected network, normalized communication cost is 

minimized to approximately a constant (≈2.6 

transmissions/message/node) when the transition round is

)(logRound N . Furthermore, we extend our results to networks 

with limited connectivity/cooperation and show that although the 

communication overhead increases moderately as a function of 

connection probability, it still remains approximately constant. 

To validate our results we test our algorithm in mobile ad-hoc 

network (MANET) environment using random-waypoint 

mobility model and show that the simulation results closely follow 

our analysis.  
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I.  INTRODUCTION 

Gossip (or epidemic) algorithms are a class of randomized 
communication protocol used for information dissemination 
over decentralized networks. They have shown to be an 
efficient, robust, and scalable technique to disseminate 
information in a wide range of distributed applications. Gossip 
algorithms have been proposed for many distributed 
applications, including database replication [1, 4], data 
aggregation [5], failure detection [6] system monitoring [7], 
broadcast and multicast [8-10], ad hoc network routing [11], 
and video streaming [12] among others.  These randomized 
algorithms are simple and have substantially higher degree of 
fault tolerance, compared to deterministic algorithms, which 
makes them highly scalable at the same time. Gossip 
algorithms are based on pair wise random exchange of 
information where communication takes place in parallel 
rounds. In each round every node contacts another node at 
random and either receives or transmits a piece of information 

(or both). There are three basic variants of gossip algorithm -- 
Push, Pull, and Push&Pull: 

• Push: in push algorithm each informed node randomly 
picks another node and sends its message. 

• Pull: in pull algorithm each uninformed node 
randomly picks anther node and, if the selected node is 
informed, receives its message. 

• Push&pull: in push&pull algorithm all the nodes pick 
another node at random and exchange their message if 
either node is informed. 

Clearly, the advantages of randomized algorithms come at 
the price of increased communication cost and higher latency. 

Indeed communication overhead is substantial: )ln( NNΘ  

transmission per message for push algorithm, )lnln( NNO  for 

push&pull algorithm compared to 1−N  transmission for 

deterministic algorithms. However it seems that the nonlinear 
relationship between cost and latency variables, in various 
randomized algorithms, could complicates the cost 
optimization.   

Each one of the above randomized algorithms has its 
advantages and disadvantages in various stages of message 
propagation. Consider the communication cost of 
disseminating a message throughout the network. In the early 
rounds push algorithm is very efficient since every call from an 
informed node will reach an uninformed node with high 
probability. In pull algorithm, on the other hand, uninformed 
nodes place a lot of calls to other uninformed node and receive 
no updates.  By contrast, in the later rounds of the algorithm 
pull algorithm becomes more and more efficient while push 
suffers from increasing number of informed nodes calling other 
informed nodes. Push&pull algorithm combines both the 
strength and weaknesses of the two algorithms which leads to 
faster convergence which comes at higher communication cost.  
In general, push algorithm could be less cost effective because 
it is possible for more than one informed nodes calling the 
same uninformed node.  

The above argument leads us to conclude that a cost-
efficient gossip algorithm will have to begin with push 
algorithm and then at some point switch to pull algorithm. The 
difficulty is how to determine when to switch from Push to 
Pull. In this paper we study the effect of transition round from 
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push to pull algorithms on the communication cost of gossip 
algorithm. We use simple deterministic difference equations to 
model the message propagation throughout the network. These 
deterministic models are all based on the fact that for large 
networks the distribution of the proportion of the informed 
nodes in any given round is sharply concentrated around its 
mean value. In particular, Pittel [1] showed this property for 
push algorithm and Demers et al. [2] showed it for pull 
algorithm. Bakhshi et al. [13] used mean-field analysis to show 
the same property for push&pull algorithm. Most of the works 
on efficiency analysis of gossip algorithms however focus on 
deriving a bound on the number of rounds required to spread a 
message to the entire network and the communication cost is 
generally inferred from the number of rounds. In this paper we 
derive the communication cost directly from the message 
propagation model.  

The remainder of the paper is organized as follows. In 
Section 2, we present an approximate information propagation 
model for pull algorithm using a deterministic difference 
equation along with its closed form solution and the associated 
communication cost function.  In Section 3, we repeat the same 
analysis for push algorithm and compare the performances of 
the two algorithms. In Section 4, we present our “First-push-
then-pull” algorithm and derive the optimum round to 
transition from push to pull algorithm to minimize the 
communication overhead. We then extend our model to limited 
connectivity/cooperation case in Section 5. In Section 6 we 
apply our algorithm to mobile ad-hoc network (MANET) and 
present simulation results for networks with limited 
connectivity and multiple message propagation cases 
comparing our approach to simple push and pull algorithms. 
Finally, in Section 7 we draw conclusions and point to some 
further directions for research. 

II. PULL DIFFUSION MODEL 

We now study the difference equation approximating the 
message dissemination for pull algorithm in fully connected 

network. Let iX  be the proportion of informed nodes in the 

network in round i. Then, 

.0for       )1()|( 1 ≥+−=+ iXXXXXE iiiii  

Ignoring the fluctuation of 1+iX around its mean value, we 

have the following approximation for progression of the 

process iX : 

0for       )1(1 ≥+−=+ iXXXX iiii                      (1) 

The intuition behind (1) is that in round i+1, the probability 
that some node does not have the information (the proportion

iX−1 ) contacts a node that does, is iX . An Implicit 

assumption in (1) is that all the nodes cooperate in spreading 
the message. We can immediately infer some properties of (1). 

For example, it converges at the limit, that is, for )1 ,0(0 ∈X  

and )1 ,0( 0X−∈ε  there exists a τ such that ε
τ

−=1 X . We 

say that τ is the number of rounds in which X converges.  

To understand the behavior of the system depicted by (1), 

we derive a closed form solution for iX . We begin by rewriting 

(1) as follows. 

0for       )2(1 ≥−=+ iXXX iii                              (2) 

Equation (2) is the familiar logistic equation [15] with growth 

parameter 2=r . If we set 2/XY = , we can rewrite (2) in its 

canonical form as follows:  

0for       )1(21 ≥−=+ iYYY iii                                    (3) 

The dynamic properties of (3) have been well studied [16]. 
It has been shown that for the growth parameter 3>r , the 

equation exhibits chaotic behavior. Here we have, 2=r , and 
thus the equation is stable and has the steady state value of 

2/1*
=Y  (or 1*

=X ). For 2/10 <Y , iY  is monotonically 

increasing for 0≥i , until convergence is attained. While 

closed form solutions exist for logistic differential equations for 
generic values of r, such solutions exist for only a handful of 
specific values of r for logistic difference equation. For 2=r  
(3), the closed form solution is given by the following for 0≥i . 
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Assuming portion of the nodes that initially have the 
message is 1/N we get:   

         
i

i
N

X
2)

1
1(1      −−=                                              (5) 

To approximate the number of rounds in which X

converges we set
N

1
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Throughout this paper, Nlog refers to logarithm base 2.  

Clearly, for large N, right hand side of this inequality is a 
very good estimate for the total number of rounds for Pull 
algorithm. Comparing (6) with the required number of rounds 

for push&pull algorithm, )ln(lnlog3 NON + [3], and push 

algorithm, )1(lnlog ONN ++  [2], confirms the accuracy of our 

estimate. As expected, number of rounds required for 
convergence of pull algorithm is greater than Push&Pull but is 
less than Push.  

We can also obtain an expression for the normalized total 
communication cost by adding the number of calls in each 

round, iX−1 , for τ rounds using the following[17]: 
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III. PUSH DIFFUSION MODEL 

Let iX  be the proportion of informed nodes in the network 

in round i. Then, 

.0for       )
1

1)(1()|1( 1 ≥−−=− + i
N

XXXE iNX
iii  

Again, ignoring the fluctuation of 1+iX around its mean value, 

for large N, we have the following approximate progression for 

the process iX : 

0for       )1(11 ≥−−=
−

+ iXX iX
ii e                     (8) 

As mentioned in push algorithm it is possible for more than 
one informed nodes to call the same uninformed node. 
Probability of such collisions leads to a more complex non-
linear difference equation for progression of informed nodes in 
push algorithm, making it hard to obtain a closed form solution 
for (8) and the associated cost function. Therefore, we mainly 
rely on simulations to compare the performance of push and 
pull algorithms.  

Fig. 1 shows how the gossip propagates throughout the 
network for N=2^15 for both push and pull algorithms. We 
observe that, compared to push algorithm, pull algorithm 
converges faster. As the number of informed nodes increases, 
probability of more than one informed nodes calling the same 
uninformed node increases which results in slowing down of 
convergence in push algorithm. Another major difference 
between push and pull algorithms is in their start and stop time. 
In pull algorithm it is not clear when the nodes need to start 
pulling information from each other. Therefore, pull algorithm 
is more suitable for applications where updates occur 
frequently. The stopping time, on the other hand, is trivial since 
the algorithm terminates when all the nodes are informed. In 
contrast, push algorithm starts when a node, or a subset of 
nodes, acquire a new message. However, the algorithm is very 
sensitive to stopping time. Stopping the information diffusion 
too early could leave many nodes uninformed and not stopping 
the algorithm at the right time results in a large increase in 
communication cost.   

Assuming an exact estimate of the right termination time, 
communication cost of the push algorithm is less than pull for 
large N. A fair comparison however will have to consider the 
termination mechanism used in Push. Fig. 2 depicts the 
normalized communication cost as a function of N for both 
push and pull algorithm. As expected, from (7), the normalized 
cost of Pull exhibits a logarithmic relationship with respect to N 
and is higher than Push for N>64. 

IV. FIRST-PUSH-THEN-PULL DIFFUSION MODEL 

Our FPTP gossip algorithm is based on the simple fact that 
although growth rate of the informed nodes in push and pull 
algorithms  in   the   early   rounds  are   quite  comparable,  the 

 

Figure 1. Gossip growth comparison between Push and Pull algorithms 

for N=2^15. 

 

Figure 2. Communication cost comparison between Push and Pull 
algorithms as a function of N. 

communication cost of Push is much less than Pull. The 
opposite is true in the late rounds of gossip algorithm before 
every node is informed. Therefore, a cost-efficient gossip 
algorithm will have to begin with push and end with pull 
algorithms. Clearly, the difficulty is how to determine the 

transition round, sτ , for switching from Push to Pull. In this 

section we show that minimum communication cost is 
achieved if we switch from Push to Pull at round

)(log Nrounds =τ . Furthermore, we show that the minimum 

normalized communication cost is almost constant for large N. 

Theorem For the First-Push-Then-Pull algorithm, 
normalized communication cost is minimized to approximately 

a constant when )(log Nrounds =τ . 

Proof. We begin by showing that the minimum cost occurs 

when )(log Nrounds =
∗

τ . First we note that the total cost is a 

polynomial in proportion of informed nodes at round sτ which 

monotonically increases with sτ . Applying Descartes’ rule of 

signs to the derivative of this polynomial, it follows that FTPT 

algorithm has exactly one real minimum as a function of 

transition round sτ . The rest of the proof is by induction on 

log N, where the base case is an arbitrary large N.  For a fixed 

large N , 0N , it is easy to show numerically that the theorem 

holds. For the induction step, assume that the theorem is true 

for a large number of nodes 1N . Then, for 12 2NN = , since



121 /1/2 NNX == with very high probability, the minimum 

communication cost occurs when

)(log1)(log 21 NroundNrounds =+=τ . 

Once we establish that the minimum cost always occur at 

)(log Nrounds =τ , it becomes clear from the induction steps 

that
s

Xτ is approximately constant for all large N which 

immediately leads to a constant minimum cost. ■ 

Fig. 3 shows the communication cost as a function of 

transition round, sτ , for several values of N. As expected, the 

minimum normalized cost is constant. The constant normalized 
communication cost for the optimum FPTP algorithm is 
approximately 2.606 transmissions/message/node. The 
proportion of informed nodes at the transition round is also 

constant and is approximately 3593.0=
s

Xτ . Furthermore, the 

number of rounds for FPTP algorithm to converge is

4log += Nτ  which is smaller compared to push algorithm for 

all N but is less than the number of rounds for pull algorithm 

only when 162>N . 

Note that since FPTP starts with push algorithm and ends 
with pull algorithm, nodes don’t need to have an estimate of 
starting/stopping time but need to have an estimate of the 
transition round. However, only uninformed nodes need to 
know when to start pulling.    The switching mechanism is a 
design issue which is outside the scope of this paper. 

V. LIMITTED CONNECTIVITY/COOPERATION CASE 

We now extend our basic model to allow nodes to limit 
their cooperation or allow for limited connectivity between the 
nodes. Here, we examine the effect of probability of 
cooperation/connectivity between the nodes of a network on 
the overall cost and the rate of spread of new messages. We 
introduce a new parameter α , to represent a constant/average 

probability of connection/cooperation. Then, the information 
diffusion model for pull algorithm can be described by the 
following recursion: 

].10(     where)1(1 ,αXXXX iiii ∈+−=+ α    (9) 

Similarly, the information diffusion model for push algorithm 
is given by the following recursion: 

]10(    where)1(11 ,αeXX iX
ii ∈−−=

−

+

α
.    (10) 

As mentioned a closed form solution for (9) is non-trivial 
making it difficult to analytically examine FPTP performance. 
However, following the same analysis in Section IV, it is still 
possible to show that FPTP has a single minimum cost as a 
function of transition round for a given α and that it is 

approximately constant. Fig. 4 shows the normalized 

communication cost as a function of transition round, sτ , for 

several values of α for N=2^15. A most interesting observation 

in Fig. 4 is that the optimum transition round occurs when sτ is 

equal to the total communication cost of pull algorithm (i.e.

0Ss =τ ). Furthermore,  as we  might  expect  the minimum  

 

Figure 3. Normalized communication cost for FPTP algorithm as a 
function of transition round. 

 

Figure 4. Normalized communication cost for FPTP as a function of 
transition round for several values of α  (N=2^15).  

cost increases as the connection probability decreases. Fig. 5 
shows the normalized communication cost of FPTP algorithm 
for several values of N with 6.0=α . We observe that, 

minimum cost is approximately constant at about 3.5 and the 

optimum transition round is 7log +N which is again the same 

as the total communication cost for Pull algorithm (i.e.

)( 0Srounds =τ ). 

VI. MOBILE AD-HOC NETWORK APPLICATION 

In this section we apply our FPTP algorithm to MANET 
networks to examine our results in the context of information 
dissemination in mobile ad-hoc networks. We use random-
waypoint model [18] in our simulations to model mobility. In 
random-waypoint model a node chooses a point uniformly at 
random within the grid and moves toward it with a random 
speed. Once the node gets to its destination it pauses for some 
time and then repeats the process. To simulate limited 
connectivity, we assume a communication range for all the 
nodes beyond which the message relay fails. The networks 
under consideration are fully distributed. That is, nodes have no 
knowledge of the other nodes’ state (e.g. location, 
informed/uninformed state, etc.). Therefore, any 
communication attempt, successful or unsuccessful, adds to the 
communication cost. 



 

Figure 5. Normalized communication cost for FPTP algorithm as a 

function of transition round for .6.0=α  

 

The parameters for the simulation environment are set as 
follows: 

• Area: 100X100 meters 

• Average Speed: 3 meters/second  

• Pause time: 1 second 

• Transition round from push to pull: 7log +N  

• 1000 runs for each case 

• Rounds interval: 1 second 

The transition round was chosen to minimize the 
communication cost. Initially, all the nodes are placed 
uniformly at randomly within the area. In our first experiment 
the communication range is set to the average distance of all 
the nodes which corresponds to approximately 50% chance of 
connectivity.  

Table-1 shows the communication cost of disseminating a 
single message in transmissions/node for 2048,,128 L=N . As 

expected, the overhead for push and pull algorithms increase 
logarithmically with the number of nodes. In contrast, for the 
FPTP algorithm increasing the number of nodes results in a 
small fluctuation in the communication overhead. The second 
observation is that increase in the number of rounds required 
for all the nodes to become informed is regular (approximately 

2 rounds when Nlog increases by one. It is also interesting to 

note that the communication cost is less than our analytical 
results. One contributing factor could be that in random-
waypoint mobility model the distribution of the nodes changes 
over time and the nodes gravitate toward the center [19]. 
Therefore, node distribution does not remain uniform and the 
connection probability increases over time.  

In the second experiment we simulated propagation of two 
messages throughout the network. We again assumed limited 
communication range for all the nodes. Initially, two randomly 
selected nodes are assigned messages 1 and 2 respectively.  
Table-2 shows the communication cost  of  disseminating   two  

TABLE I.  COMMUNICATION COST IN TRANSMISSIONS/NODE 

(SINGLE MESSAGE CASE) 

 

TABLE II.  COMMUNICATION COST IN TRANSMISSIONS/NODE 

(TWO  MESSAGE CASE) 

 

messages to the entire network in number of 
transmissions/node for 2048,,128 L=N .  All the simulation 

parameters were the same as single message case including the 
transition round.  

The additional complication in the multiple message case 
stems from the fact that the nodes have no knowledge about the 
other nodes’ message profile. Therefore, nodes are not able to 
efficiently decide which message to relay if they have both 
messages. Furthermore, each node can only send one message 
per round. Based on these assumptions, if a node possesses 
more than one message, it has to randomly pick one to relay 
[20]. This is a source of additional inefficiency that leads to 
increased cost and latency. Our simulations show that for the 
FPTP gossip algorithm increase in the number of transmissions 
per message is minimal.  

The overhead for the Push and Pull gossip algorithms again 
increase logarithmically with the number of nodes. For the 
FPTP gossip algorithm, the overhead stays relatively constant 
and, as expected, the communication cost is slightly larger than 
twice the cost of single message case. Although the 
communication cost almost doubles, number of rounds doesn’t 

 

NUMBER OF NODES 

128 256 512 1024 2048 

F
P

T
P

 Cost 

(ave) 
2.793 2.658 2.532 2.553 2.478 

Rounds 

(ave) 
21.168 23.076 25.974 28.462 31.181 

Pull 

Cost 

(ave) 
9.706 10.687 11.386 12.478 13.327 

Rounds 

(ave) 
19.204 21.456 23.408 25.820 28.240 

Push 

Cost 

(ave) 
11.845 13.353 14.737 16.494 18.164 

Rounds 
(ave) 

23.014 25.796 28.372 31.492 34.311 

 

NUMBER OF NODES 

128 256 512 1024 2048 

F
P

T
P

 Cost 

(ave) 
6.690 6.318 6.147 6.081 5.783 

Rounds 

(ave) 
32.124 34.900 36.201 38.220 41.522 

Pull 

Cost 

(ave) 
14.583 15.881 16.980 18.236 18.282 

Rounds 

(ave) 
32.410 37.150 40.465 44.400 47.347 

Push 

Cost 

(ave) 
24.762 28.334 31.177 34.744 37.808 

Rounds 

(ave) 
34.014 39.280 43.220 48.260 51.508 



necessarily follow the same trend since there are more 
communications taking place in each round.  

There are few interesting observations in these results some 
of which are expected and some are counter intuitive and need 
further investigation. First is the optimum transition round from 
push to pull algorithm which is remains the same as the single 
message case.  Although the optimum transition round is still

7log +N , the communication cost is not as sensitive to the 

transition round as in the single message case. Second, the 
communication cost for push algorithm is much higher than the 
pull algorithm. This seems to be consistent with the low 
transition round to pull algorithm which indicates that Pull is 
more efficient than Push in the multiple message case. Third, 
the FPTP algorithm becomes more efficient as the number of 
nodes increase. A limited number of simulations have shown 
that as the number of nodes increase the communication cost 
approaches twice the cost of single message case. 

VII. CONCLUDING REMARKS 

We introduced a novel gossip algorithm for cost-efficient 
dissemination of new information in decentralized networks. 
We demonstrated that in a fully connected and cooperative 
network optimum combination of push and pull algorithms can 
drastically reduce the communication cost of. Our FPTP gossip 
algorithm minimizes the expected normalized communication 
cost to a constant which we believe can be used as a lower 
bound on the number of required transmissions in gossip 
algorithms. We also showed that the same results hold for the 
networks with limited connectivity. We then validated our 
results by testing our algorithm in a MANET networks 
environment using random-waypoint mobility model and 
demonstrated that the simulation results closely follow our 
analysis.  

There is considerable scope for further research that we are 
currently exploring. One open question is whether the constant 
overhead derived in this paper is the lower bound on the 
communication cost of all variants of gossip algorithm. 
Another interesting problem is the relationship between the 
optimum transition round in the limited connectivity case and 
the connection probability α . Our observation that the 

optimum transition round is approximately equal to the total 
cost for the pull algorithm is most intriguing.   

Another aspect concerns analysis of the multiple message 
case. Our simulations raised number of interesting questions 
that we need to gain a better understanding about them. Most 
notable among them is the optimum transition stage which 
remained the same as the single message case although the 
number of rounds increased substantially.  Another extension is 
to formulate our algorithm for arbitrary number of messages 
and examine the results in relations to increasing number of 
messages.  

Finally, we plan to investigate a repertoire of MANET 
routing algorithm that include various communication modes 
such as broadcast and directional transmissions. It is also 
interesting to investigate the performance of FPTP gossip 

algorithm for different mobility models and compare the results 
to the more common flooding approaches. 
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