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Abstract

Client endpoint systems are a prime target for attackers
of every sophistication level. These systems take part
in many transactions demanding a degree of trust that
cannot be placed in a general-purpose, commodity, com-
puter system. We propose that these sensitive transac-
tions can be made more secure by creating a new kind
of trusted path, one that connects a server directly to a
client’s hardware peripherals. This capability has been
designed to isolate a compromised endpoint from its pe-
ripherals during security sensitive applications. Such
connectivity could be made unforgeable, strong against
eavesdropping and tied to a user’s credentials using end-
to-end cryptography.

We present a prototype Secure Remote Peripheral En-
cryption Tunnel (SeRPEnT) for the Universal Serial Bus
(USB). Our device is a small, low-power “cryptographic
switchboard” that tunnels connected peripherals to a
server with Virtual Machine(VM)-hosted applications.
SeRPEnT can also pass-through devices to the client sys-
tem, allowing normal use of the local system by the user.
SeRPEnT enables secure transactions between the user
and server applications by only allowing input to these
VMs to originate from our portable embedded device.
SeRPEnT thus drastically reduces the attack surface cur-
rently exposed to an adversary.

1 Introduction

In 1985, the Department of Defense Trusted Computer
System Evaluation Criteria[1] defined a “trusted path”
as “A mechanism by which a person at a terminal can
communicate directly with the Trusted Computing Base.
This mechanism can only be activated by the person or
the Trusted Computing Base and cannot be imitated by
untrusted software.”
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The explosive growth of the Internet and networked
computing is a major difference between the world of
1985 and today. There are many remote services that de-
pend on an ability to securely authenticate a transaction
on behalf of a user. Online banking requires the guar-
antee that transfer of funds be initiated by the legitimate
owner of the account. But in all of these cases, due to
the lack of a trusted path, compromised endpoint sys-
tems have facilitated identity theft, bank fraud, and the
theft of user credentials. Despite these vulnerabilities,
servers continue to trust the client’s operating environ-
ment and assume that all requests are initiated by the
user. Instead, it must be assumed that the client system
is compromised.

A major goal of our work is to re-architect the way
users interact with remote applications and services.
SeRPEnT facilitates a bidirectional cryptographic tun-
nel from the user’s peripherals, through the compromised
host, directly to the remote service. This provides much
stronger authenticity of actions initiated by the user than
those provided by commodity OSes. To achieve this we
refocus trust on an embedded system with a much more
restricted functionality than the client’s general purpose
computer, and a locked-down backend server that medi-
ates user interaction as a focal point of security.

In Section 2 we describe the related work, in Sec-
tion 3 we will examine the interactions between remote
and local systems for different local system architectures.
In Section 4 we describe the current implementation of
SeRPEnT. We then describe how the implementation can
be used in Section 5 and Future Work in Section 6. Fi-
nally in Section 7 we give our conclusions.

2 Related work

We discuss prior work on designs of trusted path systems
for transactions on commodity hardware and software.

In 2006, McCune et al.[5] proposed a system of trusted
input and display paths with an architecture named Bump
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in the Ether (BitE). The original design was based on a
number of assumptions: 1) that a mobile phone can be
trusted as an input proxy (and usable monitor), 2) the
host’s OS kernel will not arbitrarily read and modify the
memory space of processes running on the system and
3) the host system must be “capable of attesting to its
current software state” with the aid of a Trusted Platform
Module (TPM). The second assumption was later relaxed
by Flicker[4], which introduced a mechanism for isolated
code execution by leveraging new hardware support for
security on modern x86 processors. In 2009, McCune et
al. built upon BitE and Flicker with Bumpy [6], which
utilized a USB interposer that provided encryption ca-
pabilities to the keyboard/mouse (input devices) in the
architecture. The new design inherited the requirement
that the user’s host machine support Trusted Execution
Technology (TXT) or AMD equivalent, in particular a
Dynamic Root of Trust to ensure the code isolation within
the untrusted host for processing trusted input. SeR-
PEnT follows the tradition of Bumpy’s USB interposer
but leaves behind a number of complexities–in particular
the need to attest to the client system’s state. We believe
a simpler architecture that shifts the focus of code isola-
tion from client to a professionally managed central SeR-
PEnT server/embedded device can provide trusted input
and be widely deployed sooner. We also believe that mo-
bile phones being used as a trusted monitor reduces us-
ability, and because they lack the widespread adoption
of a hardware root of trust, there is no reason to believe
mobile systems are any less vulnerable today than host
systems were in 2006.

The IBM ZTIC[7] is an embedded system designed for
decoupling online banking sessions (in particular SSL)
from the user’s system. Instead, the HTTPS sessions are
proxied through the ZTIC device for approving critical
transactions. In this way the user’s system need not be
trusted with a private key nor trusted to maintain a cer-
tificate authority listing. Additionally, approval of bank-
ing transactions occurs on an alternate datapath that isn’t
on the critical path of an adversary. Whereas ZTIC was
designed specially for online banking, SeRPEnT is appli-
cable more broadly to additional remote access scenarios
and a wider target audience.

3 Symbiote client:
thick + thinner-than-thin

In a 2008 position paper, Laurie and Singer suggested
that it was no longer realistic to expect an OS to main-
tain its full functionality and flexibility while also being
able to provide a trusted path [3]. Instead they advocated
for the extraction of mechanisms necessary to support
the trusted path outside of the commodity OS and hard-

ware, into a dedicated software/hardware device. While
we agree with this position, unlike Laurie and Singer,
we are not concerned with trying to posit what it would
take to build something for everyone. Instead, we try
to be something to someone and seek a cautious expan-
sion from there. That is why SeRPEnT is designed as a
thinner-than-thin-client.

Thin client systems gain trust through their simplic-
ity. They are only meant to provide keyboard, mouse,
video, networking, and sometimes a small amount of
local storage. They are meant to be dumb terminals
which just connect to some central backend server sys-
tem, where the work is actually done. However, user de-
mands for rich multi-media experience has forced manu-
facturers to compromise the purity of thin clients. Many
units, including the majority of those from Wyse1, in-
clude the capability to offload “rich media” processing
for perennially-vulnerable formats such as Adobe Flash
to the thin client. Instead, SeRPEnT “thinifies” thick
clients by encrypting the user input, and using the thick
client as a proxy forwarder to send the opaque data to
the SeRPEnT server, as shown in Figure1. In its current
form, SeRPEnT does not even accept any input from the
untrusted endpoint that isn’t encrypted by the server, and
retains a very small attack surface.

We believe that when used creatively, trusted input,
even in the absence of trusted displays is an 80% solution
for most use cases requiring trusted remote computing.
For instance, let’s assume that the user system in Fig-
ure1 is completely compromised with the attacker having
full privileges. On existing systems the user’s keystrokes
would follow path a), and go directly into the untrusted
machine and be captured by the attacker. Even if the at-
tacker doesn’t capture the keystrokes, the authentication
session is established between the client application on
the untrusted system and the server application on the re-
mote system. The attacker on the untrusted system can
then proceed to send fake commands to the application
as if he were the user. In path b) when SeRPEnT is being
used, the user logs in to their bank with their keystrokes
being encrypted from the local SeRPEnT embedded sys-
tem to the SeRPEnT server. The attacker will not be able
to use a keystroke sniffer to capture the credentials be-
ing sent to the remote system. More importantly, the at-
tacker will not be able to act on behalf of the user on
the remote system. This is because the endpoint is just
a proxy forwarding along the encrypted traffic with no
means to decrypt it. The authentication is actually es-
tablished between the more trustworthy SeRPEnT server
VM and the remote server. Thus the attacker who has
compromised the user’s system cannot in any way inter-
act with the SeRPEnT server or remote server, since he

1http://www.wyse.com
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Figure 1: SeRPEnT creates a path for trusted input from the user

does not have physical access to the SeRPEnT embedded
system. While the attacker may be able to see how much
money the user has, he will not be able to initiate fraudu-
lent transactions to steal the user’s money as is common
today. Being limited to virtual shoulder surfing in order
to get data off of the system puts the attacker at a sig-
nificant disadvantage because this dramatically increases
the amount of data which must be sent to the attacker in
order to collect information, potentially making this net-
work traffic a candidate for detection. This situation is a
far cry from the capability to completely impersonate a
user that an attacker has today when he compromises her
system.

It is extremely common to see compromise of user sys-
tems leading to the subversion of all authentication. For
example, an online banking fraud operation using a tro-
jan called Silentbanker2 was uncovered in 2008 where
criminals were circumventing the use of two-factor au-
thentication. The attackers, having established a foothold
(e.g., phishing or rich media vulnerability) on the user’s
system, had hijacked banking sessions after proper au-
thentication, injecting commands into the communica-
tion stream between the web-browser and the server. The
ability to interact with the remote system only through a
trusted path, as provided by a system like SeRPEnT, can
substantially mitigate this type of risk.

4 Implementation

Our working prototype is currently being used by a small
group of system administrators and users with a need for

2http://www.networkworld.com/news/2008/011408-silentbanker-
trojan.html

enhanced operational security (OPSEC). We’ve designed
it to support whichever USB peripherals must be part of
a trusted input transaction, while only using components
of the untrusted host when necessary and without sacri-
ficing security. The host CPU, system memory and OS
are untrusted. This iteration of the prototype has only im-
plemented a trusted input path, but we believe our design
can be extended for trusted display as well.

4.1 Hardware

The current design iteration leverages the ARM based
BeagleBoard3 model xM running a custom embedded
Linux kernel and small root filesystem. A 2GB µSD
card is capable of storing the OS and keying materials
and thus leaving no other filesystem traces on the device.
The current cost of the reference prototype (including a
flashy case) is $150. A similar prototype could be cre-
ated for nearly $25 using the anticipated Raspberry Pi4

or any SoC that supports behaving as both a USB host
and device simultaneously 5.

The BeagleBoard xM has hardware I/O to act as both a
USB host and device, but it has a number of other subsys-
tems that currently add only cost to the system. Ideally
a product would implement only USB host and device
(e.g., no need for S-video or HDMI display) to reduce
cost, size, and further limit the potential for attacks on
or misuse of the device. We identify the unused compo-
nents in Figure 2.

3http://www.beagleboard.org
4http://www.raspberrypi.org
5We’ve not yet been able to confirm that the mini USB port on the

Raspberry will be able to support our device-mode requirement
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Figure 2: BeagleBoard xM hardware IO usage. The eth-
ernet port is shown as unused, but is currently used only
as part of firmware reflashing/development.

4.2 Embedded software
Filesystem and upgrading. A read-only filesystem is
used to prevent filesystem corruption due to power loss.
To allow for upgradability the board’s ethernet hardware
can be used. Alternatively, the low cost of the µSD card
allows for an upgrade to be done by just sending a new
card to the user. Upgrading via ethernet (SSH) allows
a testing group to use the device (we refer to SeRPEnT
throughout this section as “the device”) while also al-
lowing developers the freedom to evolve modifications
without needing to be physically present at each device.
When being upgraded, the firmware image signature is
verified before the local filesystem is remounted with
read-write privileges. Once the firmware image is written
and after a successful reboot, the filesystem is returned to
being mounted read-only. The current design meets the
upgradability requirement outlined by Laurie and Singer.

Cryptography. We use standard OpenSSL libraries,
currently using self-signed certificates (created at a cen-
tral/trusted location) for mutual authentication between a
SeRPEnT device and a SeRPEnT server. The algorithm
providing symmetric encryption by OpenSSL (version
0.9.8o) is AES-256 in CBC mode and is robust against
B.E.A.S.T6 (and other chosen plain-text attacks) because
there is no device-side scripting for an attacker to ex-
ploit. It hasn’t yet been an issue, but for reduced power
consumption and filesystem size an SSL implementation
designed for embedded systems has been identified.

The current architecture uses two key pairs, one for in-

6http://www.cnsuk.co.uk/B.E.A.S.T.PDF

put devices and the other for output (i.e., a display path).
Before the device is distributed, the input private/public
key pair is generated and stored to the µSD card of the
device along with the public key of the server. The server
stores the public key of each device. The second key pair
labeled output is generated later and used for viewing the
virtual machine’s framebuffer from the client. As this
key is currently stored on the user’s untrusted system,
these key pairs bear different levels of trust.

Gadgets. We use the Linux-USB Gadget API Frame-
work7 to create the appearance of USB devices to the
user’s host system. This enables the device to be used in
pass-through or encrypted mode, described in greater de-
tail in Section 5. The device loads a kernel module that
allows it to to appear as a single USB device with two
Human Interface Devices (HIDs) (keyboard and mouse)
and a virtual serial port when plugged into a host system.

We also build upon USB/IP [2] so that drivers of
hosted USB devices can be further isolated. This al-
lows additional flexiblity and support for such USB de-
vices as web cameras, mass storage devices, and audio
to be incorporated as part of a trusted transaction. Sim-
ple devices like keyboard/mouse load drivers directly on
our device, whereas other device drivers (or proprietary
drivers) are loaded in an isolated server VM.

SeRPEnT appears as a multi-function composite de-
vice (i.e., a multi-interface, single composite device us-
ing USB Interface Association Descriptors) to a host sys-
tem. This physical connectivity to the host is made via
the USB device-side port shown in Figure 2. Gadgets can
mimic real or common USB devices for which a com-
modity OS has drivers already loaded, or easily available.
This flexibility allows for a mostly “plug-and-play” ex-
perience for the user.

We chose to use a CDC-ACM (serial) device as our
encrypted transport primarily for simplicity. All the user
system really needs is a means of receiving opaque (en-
crypted) data from SeRPEnT, and to send the packets to
our server. This could also have been accomplished us-
ing a composite device with a mass storage device in-
terface, which on some operating systems may be better
supported than serial ports.

Sources and Sinks. The HID and serial gadgets de-
scribed above are data sinks from the embedded system’s
perspective: data is proxied through them depending on
the mode SeRPEnT is in as decided by the user’s physical
pressing of the mode switch (shown in Figure 2). These
are static sinks in that they exist while the gadget mod-
ule is loaded until the device reboots. While gadgets are
mostly static, the sources on the other hand are dynamic,
seamlessly supporting hotplug thanks to udev8 events.

7http://www.linux-usb.org/gadget/
8udev is the device manager for the Linux kernel and manages

nodes in the /dev tree
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Currently keyboards and mice are automatically sup-
ported as input devices. When plugged in, the Linux ker-
nel loads the appropriate driver for the device, creates
corresponding files in the /dev tree, and finally a udev
event is generated. A userspace process listens for these
while filtering on keyboard/mouse devices to trigger reg-
istration of a new sources. Once registered, the open
file handles for input devices are read on-demand using
a standard select call. Since the prototype supports two
basic modes of operation, data is sent either to the gadget
HID descriptors (i.e., pass-through mode) or the gadget
serial port (encrypted and tunneled mode). This is shown
in Figure 3.

4.3 Untrusted system software
In addition to the device drivers loaded for SeRPEnT’s
HID and serial interfaces, the user system runs a serial-
to-TCP forwarder agent written in Python. The for-
warder is unsophisticated, it merely reads the encrypted
data from the serial device and encapsulates these frames
into a TCP stream to the server. The user endpoint also
runs a standard VNC client with SSL9 to connect to
the server and view the current state of the VM’s video
framebuffer.

4.4 Virtualization
The backend software consists of a modified QEMU-
KVM virtual machine with around 200 lines of changes,
mainly to the handling of input sources in the VNC
server code. The effect is that any input source other than
those originating from a SeRPEnT device are dropped
silently at the server. The sole purpose of the VNC
Server is to manage the efficient distribution of the VM’s
video framebuffer to the client.

The changes made to QEMU create an alternative
input-path (shim) fronted by an SSL decryption process,
which decrypts the data sent by the device. QEMU has
been modified to open a new (local) UNIX socket, which
is opened by a SSL shim for writing and the QEMU in-
stance for reading. If data successfully passes the de-
cryption process it is re-injected in the virtual hardware
to generate input events to the hosted operating system,
effectively completing the trusted path to the VM. Our
system is OS-agnostic requiring no modifications to the
OS kernel or specialized drivers.

5 Usage

We will describe the use of SeRPEnT to protect an online
banking transaction.

9Such as SSVNC or VNC + stunnel

The user’s desktop is compromised by malware10

specifically designed to hijack a browser banking session
even though the bank is employing a second authentica-
tion factor, up to and including external hardware tokens
such as RSA SecurID11. The malicious agent is designed
to activate as soon as the banking session is initiated.

Without SeRPEnT the attacker can inject commands
into the browser session, perhaps using a rogue browser
extension that triggers when a particular website is de-
tected by the trojan. The attacker, having targeted a spe-
cific bank, modifies outgoing payment account numbers
on the fly and redirects payment to their accounts. The at-
tacker also changes transaction records within the user’s
browser session to give the appearance of validity.

With SeRPEnT the SSL session from the browser to
the banking server is no longer used in the same way.
Instead, the bank hosts a SeRPEnT server which provides
a VNC session, and along with the receipt of a SeRPEnT
device the user has been instructed to plug their input
peripherals into SeRPEnT and plug SeRPEnT into a USB
port on their computer. She has also been instructed on
the use of pass-through/trusted input modes, and taught
to engage the button when the VNC session is loaded.

Pass-through and trusted input. The pushbutton on
the device is used to switch modes between pass-through
(unencrypted/local) and trusted path (encrypted/remote).
After doing so an LED on the device will confirm the
transition from pass-through into trusted input mode.
The user will then see a virtual machine session (perhaps
limited strictly to a browser window) with the request for
user credentials. The user complies and is now exclu-
sively interacting with a webpage otherwise unvailable
without SeRPEnT. If she so chooses, the user may switch
out of secure input mode by engaging the mode switch
again, allowing easy multi-tasking. The mouse cursor
now returns to life on the user’s desktop. She checks her
personal email before turning to secure mode and mak-
ing a payment. This leaves the attacker dumbfounded as
to how the mouse cursor/keystrokes in the VM are enter-
ing the banking session. The frustrated attacker finds it
impossible to change any information within the session
and finding that all that can be done is observe.

On the backend the bank has to make minimal
changes to utilize SeRPEnT. They may choose to part-
ner with a third party that hosts SeRPEnT-enabled vir-
tual machines or do it all in-house. Any changes required
to the service are only required so that an attacker can’t
by any other means inject input into banking session–
i.e., the only way in must be via a SeRPEnT server and
thus controlled only via enabled input devices. The web
server that serves banking content/manages transactions
should not be routable except to either a virtual tunnel be-

10e.g., Zeus, Poison Ivy, SilentBanker
11http://www.rsa.com
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Figure 3: Information flow from input devices to user systems.

tween the SeRPEnT server or through the use of a second
physical network interface card (NIC) on the SeRPEnT
server with appropriately configured routing tables.

Other use cases. For instance, contrast the preceding
banking scenario to that of a system administrator do-
ing remote administration. Today, sysadmins use an IP-
KVM, VNC, or Microsoft RDP. In all of these systems,
the compromise of the administrator’s endpoint means
the possibility of compromise for every system the ad-
ministrator interacts with thereafter. Power users like
system administrators are often overconfident that their
personal OPSEC behavior is sufficient, despite the fact
that they too can fall victim to 0-day exploits if targeted.
It is not hard to imagine a trojan like Silentbanker being
retrofitted to search for IP-KVM client sessions instead
of banking sessions. If instead the administrator’s au-
thentication and interaction with these remote systems
were taking place over the trusted path provided by SeR-
PEnT, the risk of an attacker gaining the full privileges of
the administrator is drastically reduced. Finally, the SeR-
PEnT server could co-locate the service and data that a
user needs to access, with each user having a separate
VM instance and roaming profiles. This would elimi-
nate the need for the secondary Remote Server shown in
Figure 1 and any configuration challenges that may in-
troduce.

6 Future work

Future work on SeRPEnT will focus on trusted display
paths, alernatives methods of user authentication to SeR-
PEnT (e.g., smart-cards, DOD CAC), and enabling SeR-
PEnT capabilities in mobile devices.

7 Conclusion

Decoupling key subsystems of the commodity com-
puter and creating cryptographic compartments in small,
portable hardware external to the untrusted system can
be used to create trusted paths for critical transactions.

Given a limited budget that can be spent by an organiza-
tion on security, our belief is that this approach could
lead to savings on managing intrusions introduced by
poorly configured or unpatched client systems. Rather
than hardening the vast number of disparate client sys-
tems each individually, we could instead focus on hard-
ening the purpose-built subsystems and servers. Finally
we believe that by maintaining a high degree of usability
for the user and not by depending on thick-client capa-
bilities, we simply allow the user a decision of being in
one of two domains untrusted local or trusted remote.
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