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Abstract. We describe an experiment to elicit judgments on the validity of 
gene-mutation relations in MEDLINE abstracts via crowdsourcing.  The bio-
medical literature contains rich information on such relations, but the correct 
pairings are difficult to extract automatically because a single abstract may 
mention multiple genes and mutations. We ran an experiment presenting candi-
date gene-mutation relations as Amazon Mechanical Turk HITs (human intelli-
gence tasks).  We extracted candidate mutations from a corpus of 250 
MEDLINE abstracts using EMU combined with curated gene lists from NCBI. 
The resulting document-level annotations were projected into the abstract text 
to highlight mentions of genes and mutations for review. Reviewers returned re-
sults within 36 hours. Initial weighted results evaluated against a gold standard 
of expert curated gene-mutation relations achieved 85% accuracy, with the best 
reviewer achieving 91% accuracy. We expect performance to increase with fur-
ther experimentation, providing a scalable approach for rapid manual curation 
of important biological relations.  
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1 Introduction 

The decrease in genome sequencing costs has led to an explosion of information on 
mutations in the human genome and their relation to disease.  There are now a number 
of curated databases devoted to the capture of information on mutations in specific 
populations with associated phenotypes, including, e.g., OMIM [1], dbSNP [2], 
HGVbase [3], HGMD [4] and locus specific databases (LSDBs) [5].  Such databases 
are critical for downstream data integration, making it possible, for example, to inter-
pret patient genetic data (SNPs in genes) against variants known to be associated with 
disease. These resources are also critical for genome-wide association studies 
(GWAS) [6], phenotype-wide association studies (PheWAS) [7] and phar-



macogenomics [8]. However, much of the information about these gene-mutation-
disease associations is currently buried in the biomedical literature.  There is in-
creased demand to identify these results in a timely fashion and to make them availa-
ble in a computable form to support personalized medicine and translational medicine 
applications. 

In this paper, we focus on the curation challenges for a subportion of this problem: 
identifying relationships between genes and mutations from the biomedical literature.  
We investigate the efficacy of crowdsourcing to validate gene-mutation relations in 
MEDLINE abstracts. Crowdsourcing is the process of leveraging a large potential 
pool of non-experts for problem solving via the Web.  Here we employ crowdsourc-
ing to verify whether candidate gene-mutation associations in MEDLINE abstracts 
represent valid associations, using automated techniques to identify candidate genes 
and mutations in abstracts for presentation to reviewers.  

Identifying relevant associations automatically in the literature requires two steps: 
identifying the elements (genes and mutations), and determining which ones are relat-
ed.  For MEDLINE abstracts, one of these sets of elements (genes) is routinely anno-
tated by indexers at the National Library of Medicine, but mutation terms must be 
extracted directly from the abstract text, generally via regular expressions and/or natu-
ral language processing methods.   

Mutations are challenging to identify in the literature because of the many types of 
mutations (SNPs, indels, rearrangements) and the variability in how the mutations are 
described in the literature.  For example, SNPs (single nucleotide polymorphisms), the 
simplest class of mutation, can be described as a mutation in the DNA (in terms of 
nucleotides) or as a mutation in the protein (in terms of amino acids). Examples of 
SNPs found in the literature include condensed forms, such as “313A>G”, “E161K”, 
“Pro582Ser” or “AGG to AGT”, as well as whole phrases, such as “substitution of 
Met-69 by Ala or Gly in TEM-1 beta-lactamase”.  In spite of these complexities, lo-
cating a subset of these mutations (especially SNPs) in the literature has been shown 
to be a tractable task for text-mining tools based on pattern matching, as shown by 
MutationFinder [9], Extractor of MUtations (EMU) [10], MutationTagger [11] and 
elsewhere [12-14].   

The focus of the experiment described here is to establish the correct association 
between a mutation and the associated gene, otherwise known as mutation grounding 
[11]. When multiple mutations and genes are found in the same text, the association 
of mutations to genes is challenging, leading to false positives. Using EMU to extract 
mutations from abstracts, Doughty et al. [10] reported a high precision on detection of 
the mutation patterns (99 and 96% for prostate and breast cancer mutations, respec-
tively) but a significant decrease in precision, of up to 20%, when attempting to auto-
matically extract the correct gene-mutation pairs. Mutation grounding can be im-
proved by filtering based on match of wildtype sequence to a reference sequence, 
given gene and positional information, as described in [10, 11]; however, this results 
in a decrease in recall.  For these reasons, the mutation grounding task seemed like an 
interesting candidate for crowdsourcing.   



2 Data 

A gold standard gene-mutation-disease data set was created for three diseases 
(breast cancer, prostate cancer, and autism spectrum disorder) as follows. Mutation-
related MEDLINE abstracts were downloaded from the PubMed search engine using 
the MeSH terms “Mutation” (breast and prostate cancer) or “Mutation AND Poly-
morphism/genetic” (autism spectrum disorder). Abstracts related to breast (5967 cita-
tions) and prostate cancer (1721 citations) were identified by MetaMap [15] as de-
scribed in [10].  An additional set of abstracts related to autism spectrum disorder 
were identified using the MeSH term “Child Development Disorders, Pervasive.”  
The EMU tool was used to identify mutations in the three disease abstract corpora. 
Abstracts for which EMU identified at least one mutation were selected for expert 
curation, resulting in a corpus of 810 MEDLINE abstracts, with 1573 mutations; al-
most 50% of the abstracts had two or more curated gene-mutation relationships.   

For the initial crowdsourcing experiment, we focused only on the gene-mutation 
relations in the gold standard. Because of limitations of time and budget, we used a 
randomly selected 250-abstract subset of the full gold standard.  Of these, six con-
tained no mutations, 99 contained a single mutation, and the remaining 145 contained 
two or more mutations. The subset contained 568 gold-standard mutations altogether. 

3 Methods  

3.1  Overall Experimental Design 

We designed the gene-mutation relation validation as a two-stage process. The first 
stage automatically identified all candidate mutations and genes in each abstract and 
then projected these candidates back into the text to highlight the specific mentions.  
The second stage utilized Amazon Mechanical Turk, an online crowdsourcing plat-
form, to elicit judgments from multiple reviewers on correct gene-mutation pairings.  

In stage 1, we used a modified version of EMU to extract and normalize mutations.  
For genes, we took the union of the NLM-curated genes associated with each abstract 
in PubMed and any additional genes extracted by EMU.  We then generated all possi-
ble gene-mutation pairs for each abstract and constructed a separate item for each pair 
in each abstract for presentation to the reviewers.  Each item is a yes/no question ask-
ing whether the abstract discusses the candidate relation between the highlighted gene 
and mutation. In stage 2, the items were distributed via Amazon Mechanical Turk, 
and the results were aggregated to provide judgments on the validity of each present-
ed gene-mutation pair. To evaluate, we compared the aggregated reviewer judgments 
on gene-mutation pairs to the gold standard data. We also compared the output of the 
first stage pre-processing to the gold standard data, to determine loss of recall in pre-
paring the data, and amount of over-generation.  



3.2 Extraction of Candidate Genes, Mutations and Their Mentions  

EMU [10] extracts point mutations from text and identifies relevant genes found in 
the input text. Gene identification is done using string matching against a customized 
list of gene names derived from the Human Genome Organization (HUGO) and NCBI 
Gene databases. To ensure maximal coverage of potentially relevant gene names, we 
augmented the genes identified by EMU with any additional genes curated for each 
article by NCBI. We then found all occurrences of these genes in the input text using 
exact string matching. In the case of NCBI genes, we searched for occurrences of the 
gene symbol, the gene name and any synonyms for the gene that appeared in the data-
base.  For mutations, EMU detects SNPs through a two-step filter.  The first step col-
lects likely mutation spans using a list of positive regular expressions; the second 
rejects candidates based on a stop-list of negative regular expressions.  For both genes 
and mutations, we identified the text spans in the input text associated with each gene 
mention. To combine and visualize these tagged text spans, we relied on tools for 
human linguistic annotation found in the MITRE Identification Scrubber Toolkit [16]. 
These tools allowed us to create rich documents with standoff annotations that identi-
fy the type and location of the mention.  Standoff annotations are not embedded in the 
text, and are thus amenable to manipulation and processing.  The toolkit also provided 
a browser-based presentation library for highlighting the location of these mentions. 

3.3 Amazon Mechanical Turk for Gene-Mutation Association Identification 

Amazon Mechanical Turk (MTurk) is a web-based labor market for Human Intelli-
gence Tasks (HITs).  HITs are typically minimal problems that cannot easily be auto-
mated, such as categorizing a photograph or a text snippet.  Most HITs take a few 
seconds for a worker to perform, and pay a few cents.  In 2011, Amazon indicated 
that there were over 500,000 workers (Turkers) registered, although as with all online 
services, many more people sign up than are active at any time.  A number of re-
searchers have recently experimented with the use of MTurk to create and annotate 
human language data [17].  In particular, MTurk has been used to annotate medical 
named entities in clinical trials descriptions [18]. 

To prepare candidate gene-mutation pairs for presentation to the Turkers, we first 
grouped together multiple mentions of the same gene, and also multiple mentions of 
each mutation.  For genes, we used the gene ID, or if unavailable, the gene name.  
Mutations were canonicalized according to EMU by a triple of position, wild type and 
mutant nucleotide or amino acid.  We took the cross product of all genes and all muta-
tions found in an abstract, which resulted in 1299 pairs. Each of these gene-mutation 
candidates was presented as a separate HIT on MTurk. For each HIT, the Turker was 
asked a yes-or-no question to determine whether the given mutation and gene are in 
fact related.  (Turkers were also allowed to choose inconsistent annotation to indicate 
a problem in the projection—this option was rarely used, but was counted as a no 
answer.)  The mentions of the gene and mutation in the relevant pair were highlighted 
in the abstract’s text using the projection method described above.  Figure 1 shows a 



screen capture of the HIT design, in which a single gene-mutation pair candidate is 
presented. 

Because Turkers are typically not pre-qualified for any particular task, there are 
several strategies that requesters use to screen Turkers for tasks requiring specific 
expertise or skills. The requester can require that Turkers be from a particular region, 
or have a certain minimum approval rating on their previous HITs. In addition, the 
requester can leverage redundancy by asking for multiple Turkers to perform each 
HIT.  The responses can then be aggregated in some way, perhaps by simply choosing 
the majority response.  Another strategy is to insert control items into the HITs.  The-
se are items for which the correct answer is already known.  Each Turker has a persis-
tent ID that accompanies their responses, and by aggregating control item responses, 
each Turker’s efficacy can be measured. 

We used all of these strategies to control for Turker variability.  First, we required 
the Turkers for these HITs to be from the United States, in order to minimize second 
language effects.  We also limited participation to Turkers with 95% approval ratings, 
and we requested that five separate Turkers annotate each HIT.  Finally, we included 
a number of control items.  These were 44 gene-mutation pairs from a handful of 
separate abstracts developed in initial annotation experiments.  The control items were 
identified as relatively easy to annotate—that is, even non-experts should agree as to 
whether a candidate pair was positive or negative.  We created multiple HITs for each 
control item such that approximately 25% of the HITs each Turker encountered were 
these known items.   By injecting these control items into the HITs, we are able to 
estimate the efficacy of the Turkers as described above. 

 

 
Figure 1: HIT design for the gene-mutation task  



4  Results 

We measured how well the pre-processing captured the relevant mutations and 
genes by comparing them independently against the sets of mutations and genes that 
appeared in the gold-standard curated gene-mutation associations.  In the 250 ab-
stracts in our dataset, there were 568 unique mutations at the abstract level in the gold 
standard; the pre-processing via EMU correctly extracted 484 (recall of 85.2%). There 
were 279 unique genes at the abstract level; the gene pre-processing using EMU and 
NCBI gene lists extracted 260 of these genes (recall of 93.2%).   

Overall, there were 1299 candidate gene-mutation pairs presented to the Turkers, 
and 568 unique mutation-gene pairs in the gold standard, giving a distribution of 
44:56 positive to negative candidates.  Of the 250 abstracts, there were 181 for which 
all of the mutations and genes that appeared in the curated gene-mutation pairs were 
identified by our automated methods. These abstracts are of particular interest for our 
experiments since all of the curated gene-mutation relations for these documents 
could, in theory, be identified through crowdsourcing.  We refer to these below as 
perfect documents. 

1733 HITs were posted to MTurk, including 1299 candidate gene-mutation pairs 
generated from the 250 abstracts, with the rest being control items as described above.  
We requested that five Turkers work on each HIT, for a total of 8665 judgments.  
These were completed within 36 hours of posting them.  Altogether, 23 Turkers re-
sponded, although seven only performed one HIT.  Eight Turkers performed ten or 
more HITs, and six performed 100 or more.  We paid 7¢ per judgment, and with Am-
azon’s overhead fees the session cost approximately $670 (U.S.). 

In Table 1, we show Turker accuracy on the 1299 test items in the All Docs col-
umn.  The average response accuracy is 76.5%, which is higher than a random base-
line.  The average accuracy across Turkers is lower, due to a number of Turkers who 
only did a few HITs and performed poorly.  As we look at successively higher thresh-
olds for number of responses, we see increases in accuracy, with the best Turker per-
forming at an accuracy of 90.5%. We also show Turker performance on the candi-
dates drawn from the 181 perfect documents described above (Table 1, Perfect Docs).  
Comparing the results, the Turkers show some improvement (around 2 percentage 
points) on these documents. 

We can aggregate the annotations from multiple Turkers to produce a consensus 
judgment for each HIT, in order to compensate for poor performers. For example, a 
majority vote approach counts each Turker judgment as a vote for the correct label for 

 All Docs Perfect Docs 
Average response    76.5% 79.3 
Average Turker    62.0 68.7 
Average 10+ Turker    70.7 73.2 
Average 100+ Turker    76.0 78.6 
Best Turker    90.5 92.4 

Table 1: Accuracy for overall Turker responses and various subsets 



that HIT (candidate gene-mutation relation).  The accuracy for a simple majority ap-
proach over all documents (83.8%) is substantially better than the average response 
performance (76.5%). Another approach is to use each Turker’s control item accuracy 
to weight their vote, capitalizing on the intuition that the opinion of Turkers who 
score well on the control items should count for more.  However, this performs no 
better than the simple majority approach (83.7%).  More principled approaches in-
clude combining labels from different Turkers using probabilistic classifiers.  We can 
treat each Turker response as an observed feature on the candidate item, with the con-
trol items viewed as training data.  We applied two such frameworks to the data: a 
Naïve Bayes classifier achieved 84.5% accuracy, while logistic regression performed 
at 83.2% accuracy.  

5 Discussion 

Our initial results are promising. We had no difficulty recruiting qualified Turkers 
and—of particular note—they returned results remarkably quickly (36 hours from 
release of the HITs).  The best Turker achieved a very respectable accuracy of 90.5%, 
annotating 1144 of 1264 HITs correctly.      

Based on a preliminary error analysis, we believe that the reported results underes-
timate Turker performance. We reviewed 200 cases (ranked by confidence) where 
Turker aggregate judgments differed from the gold standard.  For 50 HITs, there was 
a mismatch between the gold standard and EMU (v1.0.16) in treatment of SNPs in 
non-coding regions of genes.  In addition, in some 20 HITs, there was a problem with 
normalization in the gold standard that caused a mismatch.  This suggests that overall 
Turker accuracy may be significantly higher once such discrepancies are resolved, 
which we plan to do in our follow up experiments.  

Feedback from Turkers leads us to believe that the interface provided an effective 
way to present annotation decisions to reviewers. Because the Turker/reviewer is 
presented with a binary decision with the relevant context made salient (by highlight-
ing the gene and mutation candidates in the text), these decisions can be made quite 
quickly. This particular task turned out to be well-suited to the use of Amazon Me-
chanical Turk, but we recognize that there may be significant limitations to the 
crowdsourcing approach for more complex tasks, such as gene-mutation-disease rela-
tions, where deep subject matter expertise is needed.  We also note that for this exper-
iment, per-abstract costs were significantly higher than curation done by smart under-
graduates: $2.50 (U.S.) per abstract done by five Turkers with aggregate accuracy of 
85% vs. $0.50 per abstract for undergraduates at an average accuracy of 92%.  How-
ever, we expect that these costs can be reduced by refinements in distribution of HITs 
to Turkers and more sophisticated ways of vetting Turkers and aggregating their re-
sults.  

Finally, we can make a rough estimate of the importance of the biomedical litera-
ture as a source of novel findings for human genetic variants. Of the 1770 explicit 
gene-mutation relations found from the 810 expert-curated abstracts, two thirds 
(1163) did not appear in OMIM, Swiss-Prot [19] or dbSNP, suggesting that the litera-



ture is a rich source of novel gene-mutation relations, even given the 85% recall of the 
tool chain.    

6  Conclusions 

Scalable timely capture of gene-mutation-disease information is of critical im-
portance for the rapidly growing field of personalized medicine. The biomedical liter-
ature remains a rich source of such information, and validation of relations extracted 
from the literature is an important step in this process.  We have presented a promis-
ing initial experiment using crowdsourcing to validate gene-mutation relations assem-
bled from automatically extracted genes and mutations. We were able to recruit high-
performing Turkers; they returned results within a day and a half and provided posi-
tive feedback on the task and the interface. This suggests that crowdsourced judg-
ments on the validity of candidate biological relations may provide a scalable rapid 
turn-around approach to obtaining such information.  
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