MTR-MNI-000-012

MITRE TECHNICAL REPORT

MITRE Implementation Recommendations
for MOSAIC:

A Workflow Architecture for
Analytic Enrichment

Contract No: DAABO7-01-C-C201 Analysis and recommendations for the
Project No.: 0710N7AZ-SF . . .

implementation of a cohesive method for
orchestrating analytics in a distributed model

Approved for Public Release. Distribution Ransom Winder
Unlimited. 12-2472 Nathan Giles
Joseph Jubinski

©2010 The MITRE Corporation.

All Rights Reserved. July, 2010 (updated, February, 2011)

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

Contents
1o o[8[i o] o PP TTPTPTPPPP 3
Architectural Goal Of MOSAIC ... e e e e e e e eeees 3
Architectural Options fOr MOSAIC.... ..o e e e e e e e e e e aaaeaeees 4
Case StUAY: METEORooeiiiiiiiiieie e et e e e ettt s s s e e e e e e e e e e e e eeaeeaesasasssn s e aaeaaaaaeaeeeeeennsnnnnns 10
Tightly Integrated Architecture Technology ANAlYSIS ... 12
[Y=ToTo] 141 04T 0 0 F= 14T] o PP TP TTOPPPPP 13
Discrete Process Architecture Technology ANaAlYSIS......cccciiiiiiiiiiiiiieeeecise e e e e e e, 13
Discrete Process Architecture Technology Analysis: Interface...........cccovvviiiiiiiiiiieeeeee 14
Discrete Process Architecture Technology Analysis: Inbound Gatewayccccceeeeviieeeeeennn. 14
Discrete Process Architecture Technology Analysis: EXECULIVE............ccoovvvvvvveiiiiiiiiiiiiee e, 15
UIMA @S EXECULIVE...... ettt e e e e e e e e e e e et e e e e ebba b e e e e e e e eeeeeaans 16
OPENPIPEIINE @S EXECULIVE ...cceeeeeeiiiieie ettt e e e e e e e e e e e e e e e e et e e e e e e aeeaaaeees 17
MUIE @S EXECULIVEoeiiiiieeee ettt e e e e e e e e e e e e e bbb b bttt e e et et e e e e aaeeeeeeeeenaaanns 18
LONI or Ptolemy/Kepler (Scientific Workflow Projects) as Executive...................... 19.....
Decision Points in Workflows across Possible Executive OptioNnSeeeeiiiiiinneeeeeeneenn. 20
A BPEL ENQINE EXECULIVE? ...ttt e e e e e e e e e e e e e e e e aaenrnannn e e e as 21
Other OptioNS fOr EXECULIVEcooiiiiiieiiiiieeei e e e e e e e e s 21
(qToto] o T T=T 0 6 F= 11 To] o HUu PR 21
Discrete Process Architecture Technology Analysis: Data BuS...........ccoeevvviiiiiiiiiiiiiie e, 21
Flat File System as Data BUSiiiiiiiicceeeieis et a e e e e e e e eees 22
AlfreSCO @S DAta BUS......coiiiiiiiiiiiiii e e e et e et et e e e e e e e e aeees 22
ODbJECtSIOre s DAta BUSuiiiiiii i e et s s e e e e e e e e e e e e e e et s s e e e e aeeaaeeaeeeeesennnnes 23
(qToto] o T T=T 0 6 F= 11 T0] o HU PP 23
Discrete Process Architecture Technology Analysis: ANAIYEICScooevviiiiiiiiiiiiiiiiee e 25
Specific Analytics and Analytic WOrkflowoeviiiiiiiiiii e 27
ANAIYEIC PIPEIINE ... e e e e e et ettt e et bbb e e e e e e e e e e e aaeeeeeeeeneee 28
Discrete Process Architecture Technology Analysis: Adapterscccoevveeieiiiiiieeieiiiiiiinn 29
CAS as Common Interchange FOIMALuuuuiiiiiiiie e e e e e e e e e e e eeeaeaenannnas 32
GrAF as Common Interchange FOrMAL............uuuuuiiiiiiiiee e e e eeeeaeeees 33
POSSIDIE BASIS ONEOIOGIES ...ccevviieiiiiiiieie ettt e e e e e e e e e e et e e tab st s e e e e e e e aeeeeeeeees 33
Summary of RECOMMENUALIONSovveiiiiiiiiiie e e e e e e e e e e e e e e ee e e e s e e eeaeas 33
I L= U= 1 TSRS 34

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

(€] [0 FS1ST= o YOO U PPPTUPPRPRTRPN: 36
Y 0] o L= T [39
A.1: Collection Reader Code and XMLuuuuiiiiiiiiiiiiiiieeeee e a e e e e e e 39
A.2: Tokenizer Wrapper Code and XMLcooooii oo 41
A.3: Decoder Wrapper Code and XIMLceuuuuiiiiiiiiiiei e e eeee ettt s e e e e e e e e e e eeeeeesnnnnnnns 44
A4 FIOW COAE INUIMA ...ttt e e e e e e e e e ettt et e e e e e e aeeeeas 46
Y o] o 1= T [= OSSO PPPPPPTRPTRRRP 48
B.1: Tokenizer WrapPer COUEcccciieeeiiiieeieeeeee e s s s e e e e e e e e e e e e e e et e e e e e e e e eeeaeaeeeeenennnne 48
A BT Tolo o [T YAV =T o] o 1= G o o = R 49
B.3: OULPUL COUEottt e e e e e e e e e e e e et e e e et sbabba e e e e e e e e eeeaeaeeeeeessnnnes 50
o R Y e - To PP POPPPPPP 52
Y 0] o L= T [53
(O IV | I o o PSR RPPPPPPPTPPPRUPRP 53
Y 0] o L= T LG I PSR 55
D.1: LONI GUI EXample WOIKIOWcooevveiiiiiiiiiiies e e e e e e e e e e e e e eeaennnnnes 55
D.2: Kepler GUI EXample WOIKIOWuueuueiiiiiee e 55
D.3: Ptolemy GUI EXample WOTIKFIOWcoiiiiiiiieicccc e 56
Y 0] o L= T LG = 57
e U 1 U 57
E.2: OPENPIPEIINE ... e e e e e e e e et e e e e 57
O Y 11 =TT PPPPPPPPPPPPPPP 58
Y o] o L= T [PSSP 60

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

Introduction

This is a companion document MOSAIC: A Workflow Architecture for Analytic
Enrichment that describes the current need for integratiodafument analytics and a general
approach to solving this problem. This documergatly addresses the implementation issues of
the candidate architecture, with specific frameworkor the different architectural
subcomponents analyzed and compared. Ultimatelgymenendations are offered.

Architectural Goal of MOSAIC

MosAIC’'s ROLE

Content
Frovider

Know/edge Base
Architecture

MITRE COPYRIGHT (C) 2010-2011

Figure 1. The MOSAIC Architecture’s role in a larger systéhat delivers it input from a
Content Provider and consumes its output in a Kedgé Base Architecture.

The goal of this effort is to develop a Natural gaage Processing architecture to be
used by subject matter experts who are researcdmisengineers, termed domain expert
engineers here. This architecture, titted MOSAIE,intended to be shared across multiple
projects and hosted in the sponsor’s environmendsis intended to be compatible with and
facilitate a streaming document flow as opposeéxecution on a static batch of documents,
which would require an entire corpus be preserntregbrocessing could commence.

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

In order that the overall goal is addressed, several high legairements need to be met
in order for the system to be considered successful. These requirementsifiesl $yeze:

1. The system shall maintain a consistent overall structure wialviag components,
where the consistent structure is the relationship of the frankelbwilt around the
analytics, which in turn are the chief evolving components, though the dodlvi
products that make up the framework shall be replaceable withtartodating the
interoperability.

2. The system shall at the least be able to accommodate a pipledinalytics such that
they can be run in sequence, potentially using the output of one as input to the other,

3. ldeally the system should be able to handle more complex workflmatsriake use
of splits, joins, and decision points.

4. The analytics involved in the system shall be stateless, gadigifin that they make
no assumptions about what happens in any workflow prior to their execution or
subsequent to their execution.

5. The system shall have the ability to handle streaming docuntbats arrive
asynchronously and in large quantities (generating and execuppgopaiate
workflow instances for each).

6. The system shall have the capability for a “debug” mode ailpw user to specify
execution of a workflow instance on a particular document.

7. The system shall leave audit trails for the purposes of provenance, in ordestitizt
are verifiable and repeatable.

Figure 1 depicts the larger system in which the MOSAIC tectire can fit. This system
can be essentially broken into three key components, from the perspettihe MOSAIC
architecture, which takes its input from one and provides its output to the other. MO 8¥pi@
arrives from a Content Provider and this input is expected todmewament stream. This is a
separate input avenue from a user-specified “debug” mode whicmammates ad hoc input.
MOSAIC’s output, which is some subset of relevant document artifsotiiced by workflow
instances operating on the input, is ingested by a Knowledge Base Argkitect

Architectural Options for MOSAIC

There are multiple approaches available for the design of hitestare that achieves the
goal requirements specified above. Here this document puts forthasdhese possibilities and
makes recommendations on which architecture most appropriatelyddigtent end users’
needs, the end users identified as being the domain expert engineers.

There appear to be two separate environmental needs that can be addresseygsteom a s
of integrated analytics such as this, and these are iderasiegbroduction environment and a
research environment. The production environment is characterized by a specified adiizty
needs to be accomplished in a highly efficient manner wheredasticollected throughout
processing are insignificant compared to the actual output. &keanch environment is
characterized by an emphasis on flexibility of activity to accdantnewly developed and
evolving workflows, provenance and repeatability for experimentagses, debugging in order
to correct errors in newly developed and evolving analytics, andnpéer tuning for the
analytics to refine the results of the executing workflows. Thege environments are not
incompatible. Indeed, it is likely that what is developed, explored,taneld in a research
environment would eventually be migrated into a production environment \whene be used
on high volumes of data and require less modification and greater efficiency.

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

Given these two different environments, it stands to reason thatifiecent approaches
to the architecture are likely to suit one or the other of themas determined that a production
environment would fit best with a tightly integrated architectuseng an off-the-shelf
technology, such as UIMAUpnstructured Information Management Architecjurehich is
specifically considered here, as an overarching framework s#fiteiency concerns are
paramount in this environment. It is further recommended that tharcbsenvironment would
be best addressed by a different architecture, one consistingcoftdi processes that are less
directly integrated but are more flexible when it comes ta thedition by researchers as new
workflows and analytics are frequently crafted. These two difteapproaches to the different
environments are detailed below, and Table 1 lays out the differbet@sen the approaches,
also showing which features best align with the requirementsesfeanch environment or those
of a production environment. These alignments with research and prodectibonments for
the two examined approaches are equivalent to the advantages contingenfional use case
environment. A lack of alignment between a use case environmentfimdeavork option does
not necessarily constitute a disadvantage, but in the instancesthisasetrue, it is indicated in
the discussion below.

Tightly Discrete ProcessRequired by

integrated Architecture

Architecture
Memory managed Yes No Production
Tied to a specific architecture Yes No Production
Tuned/optimized for targeted tasky Yes No Production
Low barrier to entry for domaihNo Yes Research
expert engineer
Flexibility across analytics written inNo Yes Research
multiple languages
Ease of integration of new analytice No Yes Research
Adaptability to evolving technology] No Yes Research

Table 1 Examination of features required by either production or relseamvironments and
supported by certain architectures.

The first option considered for architectural design makes usetightdy integrated
architecture of analytics. The architectural software tdolsrd in UIMA are ideal for this
manner of architecture as they allow for complex Natural Layglrocessing applications to
be decomposed into their incremental individual tasks and provide a faaknnmanage these
components and the flow of data from one to another. Users specifydébtiriptor files for the
transfer of data between the components, and the tight integratithe @omponents in the
framework means that UIMA can execute a workflow acrossiphellicomponents without
having to write to file, instead performing the task entirely within memory

When looking at the requirements that a production environment imposesitiles of
this tightly integrated architecture are readily apparent.erhghasis in such an environment is
on the efficiency of the overall system, and therefore thetyatwliperform the task in memory is
a benefit as it can forgo the expense of writing to files andvtkehead of having to perform the
file management of documents and document artifact collections lowdifé of a workflow
instance. The tasks in this environment should be quite specifich@nefore a consistent

5

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

architecture with individual implementations that are each higinhed and optimized for
particular tasks fits well. The memory usage and analytic inpptibetan be optimized for the
specific task in advance.

When considering a research environment though, the lack of aligrvmiténtertain
requirements reveals certain limitations to a UIMA-basektliigntegrated framework. One of
these limitations arises naturally from the tight integratbf components. UIMA components
are written typically in Java. The integration of other leages such as C++, Perl, and Python
are supported, but these are suboptimal when considering that the intergieate is Java. In a
research space though, it is highly likely that legacy componelhtexmst that were composed
in other languages while at the same time researchers magtttavrapidly create components
outside the Java language for convenience on a case by case basis.

In a research environment, a wide variety of analytic componentsdsbewvailable for
the purposes of workflows designed to conduct experiments, and thiseregnir reveals
another limitation of using a tightly integrated UIMA architeetuspecifically in terms of the
efficiency. Because there will be many different workflohattuse the components, it can occur
that artifacts will be generated for files by differentlgties that will not be used further in an
executed workflow. The size of document artifact collections eaguite large when compared
to the size of the original file, which means that the memarnybecome strained with excessive
information for a document on a particular workflow. If this pipelienformation should be
stateless, it is not possible to identify for any analytictverafacts will be necessary for later
points in any given workflow, which means that all the artifactst be maintained, potentially
bloating memory further and further with successive analytics.aRatytics that have to be
accessed outside UIMA, this efficiency concern extends to riree required for marshalling all
analytic output into UIMA’s common data format, CAS (Common Anal§ystem), when there
might only be some smaller subset of the artifacts that axessary for a given workflow. If
most of the artifacts were stored in a document managemennsystethe framework were less
tightly integrated, then only the information needed for any gwerkflow would need to be
handled by the executive and passed to the analytics. Additioitalypossible that multiple
workflow instances will execute simultaneously and asynchronousheisame system, which
creates a further burden for the memory.

There is also a potential risk in the research environment, wiexibility and
extensibility are highly valued, in committing to a specifghtly integrated architecture such as
UIMA. Because there are many competing and newly emergfiegnatives to UIMA (for
example, GATE, OpenPipeline), it is possible that UIMA could kendbned, leaving a final
architecture stagnant at that point, although the tight integraf the components means that
the commitment level to this specific technology would need to be high.

A more appropriate alternative in a research environment would bee#tecan
architecture that is more loosely coupled where components sunheasaitive and a data bus
are effectively separated from the analytics, which ar¢eess discrete components, such that
they are more easily replaceable as technology evolves.

A discrete process architecture would fulfill the same relarm architecture developed
entirely within UIMA, namely executing workflow instances ahalytics on incoming
documents for the purpose of annotation and information extraction iystangtic and
repeatable manner of operation. This architecture is charactdryzthe more modular nature of
its components, the major components being the inbound gateway where docammestior
processing by workflows, the executive that orchestratescthatyaof the executing workflows,

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

the independent analytics, the adapters that dbovwommunication between analytics, and the
data bus where document artifacts are stored batthed# use in different analytics. Key to this

architecture is the separation of the workflow exee from the analytic data, which is not part
and parcel of the executive. Instead the execudivply needs to know where to find the data
and where to send it. Figure 2 shows a representafithis architecture’s layout.

EXECUTION THREAD
o | DPata Bus
. A A
) Y
A doto |
/Ma rTers J
Inbound . A
Y
Gateway § 7)
A Analytics J
) Y
.| Execvtive
b A
f Y
6<—> /néerfaae]
User L

Figure 2. A high-level depiction of the thread of interactsobetween the services in a discrete
process architecture. The user accesses analytics tworkflows on a source document via an
interface attached to an executive. Adapters conaealytic output data to a common
interchange format (as well as converting from ftioisnat back into specific analytic-usable
formats) and this data persists over the life eftdsk in the data bus, which can route the data to
other analytics or to the executive.

The advantages of a system like this directly askitlbe issues raised when considering a
more tightly integrated system using a product liIKMA as the overarching framework for a
research environment. Compatibility issues thasearwith non-Java-based analytics are
mitigated here as the executive need not imposarticplar language on the analytics, each of
which can be handled as a discrete process actdependently of other analytics, consuming
input and producing output as the analytic wasioaily specified to do. This makes the

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

integration of current analytics much less onerous and more fleaidbléhey need not be
rewritten to accommodate the CAS format and operate on input and output in memory.

This last point indicates another advantage of this system when cedside research
environment. Because the input and output of the system (that is, docantkemtocument
artifact collections) are stored on the data bus, it is unnegdassaansfer all data from the data
bus to any individual analytic that requires it. This means that what datavedyaprocessed can
be specified online on an analytic by analytic basis, while thie dubny document artifact
collection can remain in storage until required at some point iwthnkflow. This allows for a
greater efficiency of what enters memory, whereas ifrdineedocument artifact collection was
held in memory at all times, a significant amount of unnecesstoymation would have to be
maintained over the life of the workflow. It is also the case tiheare will be many ongoing
workflow instances operating concurrently, so there may be memuests for memory for each
individual process that could operate on the same virtual machine.

Finally in a discrete process architecture with more looselypled components,
adaptability is much easier over the long term, something e$tafdlas important to a research
environment. As parts of the architecture are potentially od&td-or no longer supported by
the community, they can be more easily replaced with componehtseit@nme popular or new
standards, making the architecture capable of a natural evolutiecha®logies change and new
options become available.

There are potential downsides to the discrete process arcleteébtuwgh. The most
significant of these is that this manner of architectureptemized to handle the diversity of
analytics that appear in a research environment, and therefore is noalbke $ar tools used in a
production environment. In a production environment, a full-featured system asichis
supports is less applicable than something more targeted to a cspasKi and therefore
optimized in terms of resource costs to that particular task.

Which solution is appropriate really depends on the intended use caseakf initial
analysis it appears that a tightly integrated environment (gsicould use UIMA) is a good
choice for a production environment, bearing in mind certain cavedtsseT include
recomposing current analytics that are incompatible with thetacture and composing the new
analytics such that they plug-in to UIMA, consuming and producing @838yell as optimizing
the CAS’s content to make it lightweight enough to maintain theedkesfficiency of a memory-
based solution. This last point indicates that analytics and workflowten in this framework
need to be more targeted to specific tasks. Although we have docuseliscussion on UIMA,
alternatives in this role are considered below.

On the other hand it appears that a discrete process architihetureakes use of more
highly modular components is more suited to a research environmeng tige issues of
flexibility and generality are more important. This approach regumere investigation and
description, and the bulk of this document is devoted to providing the recontioaadar the
products to be used for the different identified sub-architecamdhow they would interact, in
particular emphasizing what must be a common interchange modébramat that will allow
different analytics to adapt their input and output limgua franca which requires definition in a
separate document.

While there has been an emphasis on the differences betweerthesed production
environments, it is worthwhile to note that targeted tools for produ@msronments can
naturally evolve out of the more general and flexible tools generatextearch environments.
While a research environment’s overall structure is not idealyeghing that is tightly

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

integrated, the individual analytics of that arehture are excellent candidates for being highly
optimized and targeted tools, such as can eveptuadicome parts of the production
environment. This is reflected in Figure 3, whigmtbnstrates the potential relationship between
frameworks for these two environments and how dmalydeveloped as components in a
research environment can be merged and emergghdly integrated production tools. A more
flexible architecture in a research environment mseghat the analytics can be matured
individually and potentially merged as necessargating individual tools that can then be
deployed in a production environment where thelegs interest in further modification, as this
refinement can be carried on in the research emviemt beforehand and in parallel with a tool
in current production use.

TRANSITION VIEW

RESEARCH FRAMEWORK PRODUCTION FRAMEWORK

Deploy Ready Analytic
" F/Ea//nad Ana/!éiis

\DDDDH

Analytic P?[/a)/ X

Anslytic Refresh

N INTEGRATED ANALYTICS (UMA)

SOURCE DATA\,

ANNOTATORS

PRODUCTION ANALYTIC
EXCHANGE FORMAT

INTEGRATED LIGHTWEIGHT ANALYTICS USING JAV A UIMA A

MITRE COPYRIGHT (C) 2010-2011

Figure 3. Potential relationship between research and ptadudrameworks, where tightly
integrated analytic components developed in thearef environment can eventually transition
to a production environment, just as existing poiidun analytics can be leveraged by the
research framework. UIMA stands as an examplebafsss for a given production architecture.

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

Case Study: METEOR

In the discussion of different architectures faxsl complex analytic tasks for research, it
is helpful to examine an actual workflow used imaqtice that could become part of either
framework proposed in this document. The chosemelais METEOR, a system for capturing
and reasoning over meeting and other events apgeiariraw text documents. Figure 4 depicts
the overall workflow and gives some indication loé tcomplexity involved in carrying out this
task with the various required analytic tools.

Breaking down this task, the ultimate goal is toyile reasoning about storyboards of
larger events from a set of smaller events direefracted from raw text as its source. This
involves a pre-processing followed by four differg@mases of analytic work in the workflow.
The pre-processing of the source file, such asnaailegenerates the text file that will be the
input to the extractor. This pre-processing paisexr discrete process which the domain expert
engineers in this case do not control, other tk&execution being a necessary first step in their
workflow to ready the documents for consumptiorth®y analytics in their system.

METEOR SYSTEM PR——,

.

Jjﬁ

cmMs
-Mail
E y Daevmcnt w

Repvr,wec«! Body

Senif I Serit ~
Svmmarizer W
\ Li-_éumm;r/
Y
vep
Reasoner
inf
R —
(—
Scenario "/
. Ovtput Dats Reasoner

MITRE COPYRIGHT (C) 2010-2011

Figure 4. Overview of the workflow in the METEOR system.

The first phase after the pre-processing uses ¢hié Bogram for automated information
extraction to produce a set of interim output. Tdugput includes the customary Serif dump data

10

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

that includes the parse tree, annotations, etc. as well assS&GE (Automatic Content
Extraction) output represented in APF (ACE Pilot Format), whprovides additional
information not found in the dump data such as numerical expressions and Timex annotations.

These artifacts, along with a WordNet to SUMO mapping thaucaptypes absent from
ACE, are then processed further in the second phase by a prodtadth SerifSum, which
aggregates the artifact collection and enriches it in anothesfs&6P format output, where
annotations that capture verb tense, attitude, entity recognition soldtien, and cardinality
information are introduced.

The third phase of this workflow involves METEOR’s VSD Reasoner, lwtakes the
enriched SSP from SerifSum as input, along with appropriate wordiglslexicons, and
produces INF files that include the interpretations and nominaimbf verbs as well as their
arguments and thematic roles. This in total amounts to capturingicgeent types. The events
of interest were originally meeting events, but have evolved imwmte covering travel and
criminal behavior as well.

The fourth and final phase of this workflow is the Scenario Reaserech takes as
input the INF files in order to produce a final output that recagn®hether a particular
document contains events of different types (e.g., meeting, crinaictality) as well as
recognizing larger event scenarios using a set of establistwgbsard templates” that specify
larger events that while perhaps not directly stated in theeawof the document are typically
characterized by a set of smaller events more likely to aapexplicitly in the text. These
templates are further input to this phase of the workflow.

One can further add to this information the fact that the apiplisato perform these
different actions are all discrete processes, most of whicwi@tten in C++ making use of F-
logic interpreters written in Prolog. Excluding time betweenetkecution of these processes, the
time for the system per document is on the order of approximhty2 minutes for Serif (the
system bottleneck), 1 to 2 seconds for SerifSum and the VSD Reasmhe and 10 seconds for
the Scenario Reasoner.

From this detailed description, some of the difficulties in thatiog of a workflow
architecture around this process become apparent. This is a cowptiaualling piece of
research work, and the flexibility to retune and improve the presessimportant element that
must be preserved in the architecture and made as flexiplesamble. Further, a straightforward
transition into UIMA would prove difficult for METEOR, which is nobmposed in Java but in
C++, which while capable of being handled by UIMA is not its primaompatible language.
More important than either of these issues though is the facthbadifferent parts of the
workflow are discrete processes and not directly integrated, wioald require recoding these
components for more tightly integrated systems should one be usedoas@ppan architecture
that has the discrete processes executed as is by an exarutivas their output handled by
separate adapters that prepare information for storage in dgukatéJsing a tightly integrated
UIMA architecture would also require further rework on the anadyduch that their output and
input is compatible with CAS. Additionally, a data bus allows for sgrarmanence of artifact
collections which allows for provenance, traceability, and repeayabilithe work, crucial for
verification in a research setting, where METEOR is intended to be used.

In contrast, were the intent of METEOR to be used in a productionoenvant then a
specific tightly integrated architecture would make sense, emier tradeoff of provenance and
flexibility with the efficient processing of incoming data diseprs in favor of efficiency. This

11

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

would ideally be an architecture though that supports and is optinuzedl this task, perhaps
matured in a research environment.

This distinction between a research and a production environment il cfac
determining which architecture is more appropriate. In situatakis to the complexity of
METEOR and its need for flexibility and to accommodate domain exgegineers who are
interested in collecting repeatable and traceable resultssaaetd process architecture as
described below appears to be the most suitable option as its sesdeast fits a research
environment.

Tightly Integrated Architecture Technology Analysis

It is worthwhile to detail some of the options as the differecttitectures are considered.
Although the consideration of a tightly integrated architecture uptbrgtipoint has been limited
to UIMA, which is intended for just such a purpose, here the discussmpened up to include
discussion of an alternative, GATE (General Architecture for Text Engiggefor comparison.

Both the GATE and UIMA frameworks take a similar approach iir tmdamental
design. Both frameworks define a common data format for a docurasatl around the concept
of an annotation. In UIMA, this takes the form of the CAS, which aldov the creation and
storage of data types and provides a base data type for annothtibm®ntain start and end
offsets. A CAS object has one or more views of its document, and/ieacls associated with a
unique SOFA (Subject of Analysis) for that view. A view of a CAS representbsii@et notion
of an interpretation, and the SOFA for a view represents thalad#tia associated with that
interpretation. In GATE, the data format takes the form of GAdJ&uments, which store
annotations that contain start and end offsets and a table of feétitihhesigh these data formats
are based on annotations, they are both general enough to repredgrametype of analysis
data.

Both frameworks also take a similar approach to incorporatingysesal In UIMA,
analysis engines are Java classes with an associated fH&lldescribing configuration
parameters. Analysis engines expose methods to get and set @aiitfigyarameters, and a
process method which takes a CAS as input and modifies its anno&iangput. In GATE,
language analyzers are also Java classes with an asdoXML file describing configuration
parameters. Language analyzers expose methods to get andfggtration parameters, and an
execute method which takes a GATE Document as input and modifami$ations as output.
Additionally, both frameworks reuse this approach to handle output. For examigier
framework could support an analysis which only writes its input tio @ithout modifying it;
placing such an analysis at the end of a workflow would effegts@e the results of previous
analyses.

UIMA additionally provides a more general notion of analyses whiéff Esdoes not,
called CAS multipliers. A CAS multiplier is an analysis ahimay produce any number of
output documents (including zero) for each input document. CAS multipliers can be uled to f
input documents by conditionally returning no output, to segment an inpunéot into many
smaller output documents, or to aggregate many input documents into rgee datput
document. All output documents produced by a CAS multiplier continue thtbegtemainder
of the workflow.

Both frameworks expose an interface for skilled developers to grogatically define
robust workflows, and they also provide their own implementationssohple, serial workflow

12

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

which users who lack significant programming experience canWgbk.regards to workflow
input, the frameworks take slightly different approaches. A UIMAkilow must include a
collection reader as its first element, which exposes amettiod that returns CAS objects. The
UIMA framework repeatedly calls the next method until tbikection reader indicates that input
is exhausted, and the collection reader is responsible for readingntgptiie CAS format and
returning it. A GATE workflow must be given a list of documentpitocess as input, and the
GATE framework provides built-in support for reading common formats@ATE Documents
with metadata (such as tags in HTML) represented as annotations.

Beyond what has been mentioned, the major advantages of both GATHMAddke
the form of tools which are not essential to the underlying dveonk. GATE comes with an
extensible GUI for loading documents and creating corpora, viewidgediting annotations,
and loading and running analyses. This user interface can be consigeeadrdo UIMA'’s user
interface, which consists of a plug-in for Eclipse and a catleatif shell scripts. GATE also
defines the JAPE (Java Annotation Patterns Engine) language, vgh&imilar to regular
expressions for annotations. Developers can express a seriensfbtmation rules based on
annotations in the JAPE language, and then automatically gere@E&TE analyzer which
performs those transformations on its input. Finally, GATE is Oistied with ANNIE (A
Nearly-New Information Extraction system), a set of infororagxtraction analyses for GATE
developed by the University of Sheffield.

Excluding support for CAS multipliers, the major advantage of UlbMer GATE is
scalability. UIMA provides support for deploying analyses to remobdes as part of a
distributed workflow, and support for duplicating a workflow on a single neieg threads.
Further, there is an addition to the base UIMA framework @¢dléVA AS (Asynchronous
Scaleout) which is integrated with middleware to allow remyoti#ployed analyses to be
duplicated across several nodes and work in parallel as parirgfl@ workflow. Finally, there
is also an addition to the base UIMA framework called UIMA Q@which allows analyses to be
written in C++. By using SWIG, an open source interface comfaiteC++, this framework can
also be used to write analyses in languages with which S¥#iGinterface, particularly Perl,
Python, Ruby, and Tcl.

Recommendation

Out of the two chief competing architectures that are intéride a tightly integrated
architecture, there appear to be greater advantages to using UIMA, isicapein a production
environment the recommendation is to use UIMA as this architegives its more general
notion of analyses and greater scalability.

Discrete Process Architecture Technology Analysis

When considering a research environment as the intended venue for @ Nahguage
Processing analytic architecture, a discrete processexnithi#g as suggested is the best fit for
domain expert engineers who are crafting workflows of aiealyT he following sections discuss
in detail the specific subcomponents of the architecture which muistvstoped along with an
examination of the available technologies for implementing each syloc@nt.
Recommendations for specific technologies are made for each as wellrigllibng analysis.

13

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

Discrete Process Architecture Technology Analysis: Interface

The interface provides the user with access to the architeatlowing for definition of
workflows and execution of specific instances of these. This s.weesbe provided in different
ways, including the user composing a configuration file that edtaklithe workflow and its
input requirements. Another possibility is a graphical user irderf&Ul) that can specify both
the restrictions on the documents to be analyzed and worked aogllas\the particulars of the
workflow that will operate on the data taken from these documiaiaisiding which analytics
are called and what data from different sources (in consideth@bran analytic might need to
execute on the output of a previous analytic) will serve as input.

While it is anticipated that most workflow instances will benggated as relevant
documents arrive in the inbound gateway, this interface provides the opportunity foraruser t
a single ad hoc workflow instance on a particular document. Theasalso specify where the
data is located or how to collect it rather than actually wgrkmom an initial document or
corpus of documents on hand. This layer of abstraction means the user can avoid both the need to
organize and maintain where the mid-workflow data is kept and avoutitexg each analytic in
the workflow manually, simplifying the input to the raw source domotmand the output to
whatever the user specifies in the interface.

Discrete Process Architecture Technology Analysis: Inbound Gateway

The inbound gateway is responsible for handling the input stream of doisuthat
arrive for processing. Based on the interactions with active veavkfistances specified in and
deployed by the executive, the inbound gateway will submit documeritse tdata bus for
processing by those workflow instances.

By way of document triage, this transfer of documents can tezefil before it ever
reaches the data bus, such that only particular documents (suchuasedtscthat match the
active workflow instances’ specification or those that are nouptrreach the data bus for
processing. Alternatively, there might be workflows that intendwtok on all incoming
documents, in which case everything that passes through the inboundypatkwater the data
bus.

In addition to this document triage, there is a set of documentagégion procedures
that all documents must undergo, including such analysis as languagmitien and genre
detection. This analytic work must happen before any of the activiflovas execute on the
incoming document, so it is necessarily a part of the inbound gatewagh prepares the
documents for use by any of the workflows. As suggested above, aweskihay be targeted to
documents of a particular language or genre and this information must be méddeat@all of
them up front. Any further or deeper analysis should not be pénedahbound gateway as the
key role here is not meant to be content extraction or annotation, rexgghtit is necessary in
the identified cases.

An issue that the inbound gateway must accommodate is the limitations on the sfstems
the amount of parallelism possible. There are going to be low and high marks in the
capacity of threads being executed, which require different inpag ot a given instance of the
system. When a high water mark of capacity is reached, the inbotewdagashould inform the
Content Provider to throttle back on documents being sent to it and wbenveater mark is
reached, this is also indicated to the Content Provider so thstréfaen of input can be resumed.

14

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

This prevents the thrashing of the executive between high and lowityadteeping a steady
wave of activity.

It should be noted that the inbound gateway is not a core competetinty system, but
this description has been included for completeness'sake.

Discrete Process Architecture Technology Analysis: Executive

This section considers and examines several technology options faeeutiee to a
discrete process architecture. The role of this executive escteestrate all the user-specified
behavior in the execution of a workflow. Ideally, an executive woldd automatically handle
some of the data or memory management issues for the userabthiatleast needs to provide
the opportunity for the user to specify the coordination and flow of docsnaent document
artifacts throughout the life of a workflow instance. In this dechure, the executive will either
receive input from an inbound gateway that supports the input streama specified file when
operating in a “debug” or ad hoc execution mode. This input is mowvedhie data bus and will
be used as input to the analytics, between which the executasked with handling the data
flow.

Workflows must be capable of persistent deployment by the executnd
communication with the inbound gateway determines the documents relewvtuet workflow
that will be processed in a workflow instance. This allowsnfoitiple instances of the same
workflow to operate on different documents that arrive for procesaitgrnatively, workflows
can be deployed temporarily to execute on user-specified documents in an ad hoc manner.

Workflow information, namely the succession of and parameter settorganalytics,
should be retained among the data in a document artifact amiestihe data bus and past the
life of the workflow in the resulting output. This allows for keepirack of the provenance of
what is produced by a collection of analytics making results traceablepeatakele.

Among the possible architectural technologies considered thdilld¢ars role examined
here are UIMA, OpenPipeline, Mule, and Ptolemy, the applicabilitg pitfalls of each
discussed in turn. Each discussed technology is open source, unless etlspeuisied. The
initial analysis was conducted for each of these in a simplease workflow of analytics. This
task involves two simple analytics. The first ist@kenizer that separates text based on
whitespace and puts each token in a document on a separate lineutpurfie. The usage is
“Java —jar Tokenizer.jar <input file name> <output file hame>". Beeond is alecoder that
outputs two files, the first a concatenation of the first ledfeeach line of its input and the
second a concatenation of the last letter of each line of its.itjgsuusage is “java —jar
Decoder.jar <token file name> <outputl file name> <output2 file name>".

The following directory structure is on the disk of a single, isdlahachine. There is a
top level directory called “Task”, which has four subfoldersiptit”, “Tokens”, “First”, and
“Last”. The input directory has some number of named text fileegssed with two toy
analyses. For each input file, thakenizer output is sent to the “Tokens” directory but with the
added extension “.tokens”, and the decoder output is sent into the irespEcst” and “Last”
directories with the added extensions “.first” and “.last”.

In each case the task is to executettkenizer first and then théelecoder on its output to
end up with two output files. This allows a reasonable comparisdahdatifficulty in crafting a
simple workflow using each considered technology as the executive.

! A description of the current implementation of theound gateway is provided in Appendix F. (FeblD)
15

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

UIMA as Executive

As discussed in the earlier examination, UIMA is a softvaanhitecture that supports
developing and deploying analytics that execute on potentially \aslyenes of unstructured
information. The ultimate intent of these analyses is knowledge digcauee most relevant use
case at hand which UIMA addresses is the consumption of ramtesder to enrich the source
material and extract elements such as entities, relations, ezents. While intended to
orchestrate components that plugged in to be part of the same applidais also capable of
executing a workflow that makes use of outside components. The exarapée was
implemented in UIMA with this in mind.

UIMA was examined in the role of an executive for discrete ggees, the details of
which are discussed here with the code implementation provided in App&n8i described
above, two “black box” toy analyses ran on input documents and produgeat éart, the
tokenizer and thedecoder.

In building this system in UIMA, the code necessary to crieguigt CAS objects is first
described. The collection reader at the start of a UIMA flmskis responsible for reading the
input files and formatting them into CAS objects. In this examplenitial CAS object creation
is trivial as the UIMA framework is packaged with a collectieader that can transform input
text files into CAS objects where the body of the text issile SOFA. It is worth noting that
this procedure is not as simple for more complex documents suchFasléX) or HTML files
that could require de-tagging. Additional UIMA collection readess $ome common file
formats exist as open source code, but it may occasionally dessaey to develop a new
collection reader. In consideration of this, a collection reagiethis task was written for the
purpose of demonstration.

The first step in building a collection reader is to write an Xiyihe descriptor. This file
and its details are described in Appendix A.1. Once the typeigtesdile is created using the
UIMA Eclipse plug-in, the plug-in will automatically generate aalasses for each type one
defines. This makes these Java classes useable in theiaolleetder Java class written next.
This class and its XML descriptor are further detailed ppéndix A.1. Next, similar XML
descriptors and Java classes are written to encapsulate efdit.ahle necessary XML type
descriptors and wrapper Java code for the discrete process, ob&adomponents in the task,
the tokenizer and thedecoder, are detailed in Appendices A.2 and A.3, respectively. Finally, an
output component is written to save the analysis data to disk. This fk@&and Java code is
similar to that for the analytics, and is not detailed for brevity.

With all the analysis engines defined, the next step is tmealef flow. Since only a
simple linear flow is required, the built-in flow control in UIM#&an be used. However, UIMA
does provide an interface for more complicated workflows to be definecessary. Both the
full flexibility of UIMA workflows and the flow controller usedof this task are detailed in
Appendix A.4. After writing another XML file to specify this woré&fl, it can be executed by
starting a script in the UIMA distribution, which launches a Jald @lowing a user to select
the designed workflow and run it once as a UIMA application.

While the task was successfully accomplished, it makes ceare of the severe
inefficiencies of using discrete processes in a tightgrdated framework. The collection reader
reads the input from a file into the in-memory CAS object. {bkenizer wrapper then writes the
CAS to disk so that thekenizer black box can take it as input. Ttokenizer black box then has

16

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

to read the input file into memory, do its work, and write theguwuback out to disk. The
tokenizer wrapper reads the output back into memory in the CAS; howeverkttheed format
cannot be immediately and unambiguously converted to annotations, so eg&ssprg must be
done.

After the tokenizer wrapper performs a linear search through the document in order to
format the token list as annotations, teeoder wrapper ignores that work by reconstructing the
token list, and writing it out to disk so tllecoder black box can take it as input. The black box
has to read that file, and then write out two output files. Therjdtusler wrapper has to read
both output files back into the CAS. Finally, the output engine read< At and writes
everything in it back out into files.

This constant exchange between the in-memory CAS object and on-didk lbx
formats is representative of a trade-off between efficiemm@y modularity. Having sacrificed
efficiency by repeatedly moving data in and out of memorytdkenizer analytic can now be
feasibly replaced with some other UIMA analytic which also prosluoken annotations, and
this would not alter the function of thlaecoder. However, this does not eliminate the need to
conform to a specific data model to facilitate communication Etve®mponents, something
discussed below when examining adapters.

Alternatively, it is unnecessary to use the CAS to storalatth. Consider that in the
collection reader, one could have only put the path to the input file @ABe and not bothered
to read the file data in to memory. Then, tblenizer wrapper could simply pass the input file
path to the black botokenizer, and then add the file path of ttuenizer output to the CAS. The
decoder wrapper could use this file path to send input todéwader black box. If the outputs
from each black box are then stored in their intended final destisatan output engine would
not be necessary, and extra memory-to-disk or disk-to-memory igenatiuld not be incurred.
However, this system lacks modularity because it does not tram#fie inputs and outputs into
a common format which might be recognized or produced by other analytics.

Various middle grounds could also be considered, such as keeping tinal aitjfact
data on disk and only storing a file path to it but storing aaoalysis data in the CAS. If
UIMA were to be used for the executive, this balance betwegneeify and modularity would
be determined by the developer.

OpenPipeline as Executive

An alternative technology to UIMA, though it covers much of the saapailities in
terms of acting as an executive, OpenPipeline is a softweln@exture intended for analyzing
documents. It has pre-built components, but it can integrate external modules.

In order to make a fair comparison with UIMA, it was atterdpti® recreate the same
workflow with the same black box components using OpenPipeline. One ainfbgunate
limitations of OpenPipeline is the lack of a Developer’'s Guidpresent and a spotty Javadoc.
Most of the analyses are gleaned from examining the source code.

OpenPipeline is tightly integrated with a web based GUI featang and executing
pipelines. As a result of this, OpenPipeline is not easily embeddathi® another application
or in a separate Ul. Further, because the format of required pgaftameters for workflow
definitions is not clearly specified and the generation of these il tied to the GUI, users are
forced to use the provided interface.

An OpenPipeline workflow is a Java class which exposes an exemiteod that is
responsible for the entire execution of the workflow. In this metlodlocument crawler

17

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

examines a data source specified in the workflow XML filerbw input and creates an Item
object from each document. The Item class is OpenPipeline’s cordatarformat, and stores

data in a tree structure of Nodes. It is rich enough to suppgram@alysis data, but unclearly

separates data into artifact data, artifact metadata,reatygses data. This could potentially cause
issues if analyses intended for data are performed on metadata or vace-vers

OpenPipeline next routes Item objects through a series of Jase<lbased on a list of
analytics also provided in the XML file. Each analytic provides execute method which
examines the Iltem object as input and modifies it as output.

The lack of documentation makes building a document crawler ourseltesogerous,
so an implementation provided by OpenPipeline is used. Concerning tiygcan#the details of
the creation of the wrapper for thekenizer are listed in Appendix B.1 and the details for the
creation of the wrapper for thiecoder are listed in Appendix B.2. This work is followed by the
output engine, the code for which is detailed in Appendix B.3. In ordehésetanalytics to
appear in OpenPipeline’s web interface, a JavaServer Pagebmugtitten as described in
Appendix B.4.

The class files created for this task are then put into B fik with a service
specification and added to the install directory for OpenPipeline.JBlRepage is placed into
OpenPipeline’s web directory together with the pages for othgestafter doing this, one can
start OpenPipeline and create and execute the workflow. It was thandt executed and
produced the correct output.

The lack of any Developer’'s Guide at present makes OpenPipalumeaitractive option
as a solution for developers to create new workflows with relathge, something that is key to
a research environment’s requirements, and having a focused DelglGoeie would be
necessary to fit the customer needs.

OpenPipeline has the same spectrum of modularity found in UIMA, antdatihe-off in
efficiency and modularity that is present in UIMA is presenttas well. The efficiency drops
when users are forced to map analyses in and out of the common format.

Mule as Executive

Mule is looked at next as an option for an executive to the déspretess architecture.
Mule is an enterprise service bus, a less tightly integrdtethative to the options discussed
thus far but one that scales well. Again for a fair comparistimtve earlier examples, the same
workflow involving the tokenizer and decoder discrete processes is recreated using the Mule
ESB in the role of executive. Appendix C.1 shows the XML filhveimbedded scripts, the full
extent of the code necessary to make this run. While Mule normsdly Java classes as its
components, this demonstrates how some scripting languages can be embedded in the XML

This implementation of Mule indicates that there is potentialtyremter simplicity in
developing workflows using multiple discrete processes. Whereasitigexity of crafting the
XML and Java code was somewhat heavy when using UIMA and Quaimiéj this is reducible
to a single XML specification file in this simple case, making Mule muclemm@nageable.

Unfortunately, this does not address the problem that a user wouliastllto learn the
specification for the XML in order to craft the workflows artdis not as trivial as simply
providing a list of analytics to the front end that need to be run in sequence.

Mule is also not quite comparable to the other examined candidatetigrs in how it
performs its workflow. Mule is built around a data-driven workflavihich leads to a slightly
more intuitive model for accommodating simple decision making angidegpoints (e.g. if-

18

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

then statements). However, complex decisions still require someapnogng experience,
meaning that as workflows begin to require these conditions, more wirkewnentailed to
implement them. This issue is not unique to Mule and will be disdwdength in a subsequent
section examining achieving decision points in executives.

Another advantage of Mule is that it is more flexible in termBaf data is represented
between analytics, which means that different formats liteelgmerge from different analytics
do not pose a compatibility problem from this executive’s perspedtitreough they would still
need to be resolved to communicate to one another. However, this resnovef the added
burden imposed by other executives.

It is also noteworthy that while Mule has a version that isla@vai as open source, there
is an enterprise version of the software that must be paid for.ahhiysis has examined the
open source version, but there might be features available to thisnvart available in the
open source. Though Mule of course states that this version is intemg@dduction use, it is
likely that the open source Mule is sufficient for the needs of this archgectur

LONI or Ptolemy/Kepler (Scientific Workflow Projects) as Executive

There exist scientific workflow products that are applicabldis wse case too. Here, the
LONI Pipeline is examined as an option for an executive to theetisprocess architecture.
This is a file-driven scientific workflow application. This section also provatesxamination of
Kepler, another project for creating scientific workflows builbe wrapped around the Ptolemy
Il open source workflow project. Ptolemy Il provides the foundation for Kepler.

Both LONI and Kepler are intended for end-users who are not expectgdte code,
and each provides a GUI that is intended for use in creating wenkiin each. Appendix D
shows sample graphical workflows constructed using either LONEptaK This provides some
added convenience over the required coding that is necessary fomwott#ow alternatives.
From the analysis of both of these, LONI has the simpler and merdrigndly interface than
Kepler, but neither of these make the assumption that their users need to be developers.

In terms of the data format and data transfer, LONI storesinldties passed through
input and output while Kepler can pass data in memory betweenaigies but also have the
capability to write to and read from the file system or network.

LONI and Kepler are capable of parallel execution of workflonaimses, though Kepler
does not support the simultaneous duplication of an actor (that is dicspeeilytic). Both
workflow projects allow for using grid computing.

While LONI and Kepler are each documented for users, a key tiomtan LONI is that,
while free, it is closed source, unlike the other technologies sbricassidered here. This
means that it cannot be executed programmatically. This dogsnpr@ long-term limitation to
using LONI as the executive as it eliminates any abilityektend it to be more robust if
necessary, while Kepler is extensible and its user intedackl be extended to be more user
friendly to a research environment where components.

Another potential limitation of LONI is that it places a r&s$ton on its analytics in that
they must take input as files and produce output as files. This, aitimghe closed source of
LONI, makes Kepler the more attractive alternative of the #vfurther examination was made
of the open source workflow project around which Kepler was built, nartelgmy, and it was
found this had a greater generality while capable of the same featuresesitidescribed above.

19

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

Decision Points in Workflows across Possible Executive Options

Naturally, the examined workflow instance is a trivial examatel one might wish to
consider workflows of greater complexity as well. What has beasidered up until this point
has been really more in the manner of single sequence pipelines, as opposed te tuenpiax
structures that can make up workflows. This will be considered next across caagatattves.

Workflows are distinguished from simple sequences of activities dgpability for more
complex behaviors past simple chaining of analytics. While far fatimnclusive, the most
crucial of these capabilities is to provide for decision points,ishatsay places in the workflow
where the thread of execution can follow one of multiple branchingspaésed on some
condition being met or not met. Although many workflows that are liteelye executed will not
make use of this and are sufficiently captured by a complségjyential list of activities, there
could be others that do require decision points or they could be creathd future if the
executive is capable of handling these.

The difficulty in making use of the robustness of UIMA has beeuiqusly discussed,
but it bears mentioning again. Developers are required to haveaainocgegree of skill and
experience in Java in order that they can make use of the wordfittens such as conditionals,
splits, and joins that advance the process past being a sequguelalepiln the simplest case
this would involve implementing at the minimum two non-trivial Java classes.

With regard to OpenPipeline, this limitation is even more severiat anything other
than a linear workflow is not achievable at the executive levelnandd have to be embedded
into the analyses themselves, which undoes the crucial benefit of modularity.

This is not quite the case with Mule though. Filters can be ¢ghlagehe input and output
to the components that effectively act as decision points, selgctv@ping messages and
determining what destination they reach. This allows for at thelgast simple conditionals by
filtering messages and message properties that returntisoanalytics (via regular expressions,
for instance). This issue of decision points in the different @tees for the executive are
detailed further in Appendix E.

While this might not handle highly complex decisions, those can be sempo a script
or Java class to make the decision. It is also worth notingwthidéd messages might not be
passed from analytics directly to Mule as the executive, tdoeyd be wrapped in a manner
similar to what has been demonstrated for other technologies to pribnvgdénteraction if
necessary, avoiding recoding the analytics. These instances waaildneore work than just a
single XML file, but this work would be not more difficult than whatréquired by UIMA and
OpenPipeline to execute a single linear pipeline of analytitmaionality that Mule would be
overtaking and one that would require even further work in UIMA or OpetiRe to match.
Therefore when comparing equal levels of capability (a lipgegline, a workflow with decision
points, etc.), Mule requires less work than UIMA or OpenPipeline.

In comparison to UIMA, OpenPipeline, and Mule, the scientific workflewsh as LONI
and Ptolemy/Kepler are more robust with less effort in crgatiecision points. In LONI,
workflows are created by matching input and output files of diffezgatutables and splits can
be created by duplicating files while basic conditionals couldcheaed based on the existence
or length of a file. In Ptolemy and Kepler, workflows are t@ddy chaining together the input
and output ports of actors, and it is rich enough to support splits, joins, and conditionals.

20

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

A BPEL Engine Executive?

One of the considerations that arose in examining the differémtnatives for an
executive in a discrete process architecture intended for archsenvironment was using a
BPEL (Business Process Execution Language) engine. BPElfleweskare composed in XML
and invoke services, operating on both their input and what the servigas kénlike most of
the other workflows, which lean more to being pipelines in theiremphtation, BPEL provides
a sufficiently rich workflow to manage the situations that waaride in this field. It has an
added advantage that it is becoming a de facto standard in wetesgorkflow. However, this
very fact raises the immediate concern with BPEL astamailtive for capturing workflow. It is
intended to invoke web services, something that one cannot presume ablegadlyeanalytics.
This could require a heavy amount of conversion of this existing aatvand further
stipulations on writing new software in the future, the minimaratf which is intended for the
sake of the analytic composers in the research space. IndeddjBely far too heavyweight
a technology for what is required in the executive of this sydB&mause of this need to scale it
down significantly, it was not considered further here.

Other Options for Executive

The Blackbook project back in 2005-6 examined the existing technologidabderdor
performing workflow with the intent to use the most appropriatelesitechnology, but this
resulted in no suitable solution being discovered. From their ligcbhblogies that might show
some future promise, a more up-to-date investigation was madéiisodacument. These
technologies included BigBross Bossa, Ruote, con:cern, YAWL, ZebrapSialma, and
GridAnt. As of now these technologies are outdated, still too immatumeot applicable to this
project, and they were not considered further.

Recommendation

The difficulty in examining technologies for this role is tHare does not appear to be a
perfectly ideal choice, but the trade-offs between these diffeyptibns appear clear and
distinguish them from one another. Out of the examined possibilitestithngest alternatives
for this context of a research environment appear to be PtolemierKer Mule, particularly in
the simplicity of integrating analytics, creating workflows, andreneasily allowing for more
complex behaviors within the workflow, such as handling decision points. pitweyde the
flexibility that a system for a research environment needstlzey should be replaceable should
an alternative prove more suitable in the future. Of theseraptiPtolemy is most attractive
given its built-in graphical user interface while configuratidesfistill are required to be written
by hand in Mule and given Ptolemy’s greater generality Kepler, which makes use of it. This
replacement, if necessary, could be affected with minimahdochange in the analytics
themselves.

Discrete Process Architecture Technology Analysis: Data Bus
In the modular discrete process architecture, an inherent liomitat efficiency is that

because an attempt is being made to reuse analytics withirhreum amount of redesign and
recoding, most of the analytics as they are written and asatfeelikely to be written in the

21

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

future are or originate as standalone applications that are notedteo integrate with one
another. This limitation means that the desire to have thesgiem@ommunicate directly via
information stored exclusively in memory during the life of akflow instance is not feasible
in this system design. It bears mentioning that this memorydiieta bus modes feasible in a

more tightly integrated architecture, but this entails thedbsise flexibility afforded by what is
being described here.

Therefore from the perspective of a discrete process airthgechis section proceeds
facing the limitation that there needs to be some file-basedramianagement system acting as
a data bus for the overall architecture. At this point we exarsamee of the alternatives
available for storage of documents and document artifact colhsctiver the life of a workflow
instance as well as potentially over a longer term. The discugstézhs include simple file
systems (specifically, a flat file system), Alfresco, aDbjectStore. Other alternatives are
Documentum and FileNet, but these are heavy cost options and not investigated here.

Flat File System as Data Bus

The simplest solution for handling the documents and document artvidoetn passed
between analytics is a flat file system. This systerhass the need for hierarchies of folders as
this involves essentially a directory. This leads naturallyé¢oréquirement that all the different
files produced by the analytics must have different names, natiiel should distinguish the
files based on uniquely identifying information. This information shaoddlide versioning as
well so that provenance can be established.

Despite its simplicity for storage, it creates some reguants that must be met by either
the analytics or wrappers created for the analytics. These must betadued uniquely identify
the document artifact collections and correlate them with theeatowurrently executing
workflow instance (or past workflow instances if data is preskrior provenance and
repeatability). The analytics must also have their output reddeotthis data bus’s location. In
the cases where analytics are hardcoded to send their outpspéziic location or give the
output a specific name, then transferring analytic output (and pokgnngut to further
analytics that have hardcoded input paths) must be accomplished wdtherwrapper or by
recoding the analytics to support parameters that specdyentb send their output and what to
name it. Because it lacks any kind of structure except fot ishmposed in the naming scheme
though, it seems evident that this would grow and become unmanagesaileguickly,
especially as many workflow instances begin to operate simedtsly and leave behind
artifacts. A solution here though is to only keep the version documeéatiacollections in this
data bus over the life of each instance, transferring them els2wdhenaintain the long term
provenance after an instance is finished executing.

Alfresco as Data Bus

Alfresco is an open source enterprise content management syi$teniollowing is a
rundown of key elements of Alfresco that are of interest to dpee$ and end users. While the
system is established and running in the Amazon cloud, Alfresdsasdawnloadable and is
capable of running locally on a user’'s machine. Alfresco has pabitidy to be deployed across
multiple platforms and is highly scalable. Therefore, at tis¢ ékamination it seems to aptly fit
what is envisioned as being an appropriate content management gystgoport the data bus in
the discrete process architecture.

22

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

Alfresco operates by managing spaces, essentially smagt$abr containers that have a
hierarchical structure. A straightforward implementation would legegle space in Alfresco
associated with the discrete process architecture. Differemkflaw instances would create sub-
spaces in this space that are identified by uniquely idergifyames. These sub-spaces can have
any hierarchy that fits the definition provided when discussing dagtars and the common
interchange format, so the key point at this stage is that themegreat deal of flexibility
afforded by such an architecture that reshapes itself wffeeent instances that are created and
disappear. Users can be associated with the space and witlduadligub-spaces such that
workflow instances and users can be easily correlated. Thissalhowy number of uniquely
identified runs to be created and maintained during and eventadtives of specific workflow
instances (necessary, for example, in the cases where thimeleds to be maintained for
repeatability comparisons and provenance).

Three additional benefits to using Alfresco are its capabdityé&rsioning, its capability
for indexing, and facilitation of a central repository. Versionigiocument artifact collections
and analytic support data is an inherent requirement of this systéexing facilitates granular
searching of the content, another capability that could be levknadke research environment.
A central repository allows for an easy distribution of artfdot a consistent location that is
easily accessible from many locations.

ObjectStore as Data Bus

ObjectStore stands as an example of technology for object datgenaeva, specifically
providing an embedded database that is targeted to provide datgesforaobject-based
languages, in particular C++ and Java. One of the key advantagesl dffethis data bus is that
it offers object data to be delivered in-memory, achievingeatgr level of efficiency between
different applications. It is also capable of concurrent access by rawpplications.

Among the potential pitfalls of following ObjectStore as the blmsishe data bus is that
because it is dedicated to storing objects for C++ and Javapdkiss integration more awkward
for any legacy analytics written in other languages, Perl antioRyfor instance. Even
integration with C++ or Java-based analytics would require tlwobe tecoded to communicate
with ObjectStore. Following the option that allows these analyieet independently and then
coordinates a mapping of their output into the ObjectStore repatisenseems wasteful as it in
many cases will involve writing to disk only to then write agaimtemory, losing any of the
benefits of efficiency ObjectStore would offer.

Recommendation

Out of the examined technologies, Alfresco appears to be the best suihe discrete
process architecture data bus for a research environment.calfiesa fairly mature content
management system and is widely used and well understood. It app@aovide the level of
detail and malleability required by this architecture while beinggétifarward to use.

23

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

DPata Bus
Content Management Systems (Alfresco)]

Outfyu'l: Store

Analytic
Refag)::ary ’

| | -

pZA | H AZD | ’ ‘ pZA N H AZD N ’

-~ -

~ H
‘ Anzlytic | ’ v ‘ Analytic N ’

! !

‘ Execvtive ’

MITRE COPYRIGHT (C) 20102011

Figure 5. The data bus of the research environment MOSAtGitcture broken into expected
sub-components, including a content managemenersysind an output store for the final
results. Also depicted is a long-term storage fiathe analytics used by the system.

It should be noted that this recommendation isifipalty for the data as stored between
the analytics during the life of a workflow inst@ncData must be maintained somewhat
persistently, even if the analytics themselvesstageless and unaware of what processes have
preceded and will follow them. It is also necesdarymaintaining the various results that are not
the intended output but required for the purposgeg@/enance and traceability or repeatability.
Once a workflow instance has terminated though,ren&ins faced with the issue of storage of
the results that will be picked up by any subsetjpbase of processing outside the purview of
the discrete process architecture. This could beedtin Alfresco, but it seems that for this use
case, a faster access of the objects might belusefan alternative to Alfresco could be used
here.

Figure 5 shows a more detailed view of the datathaisreflects this potential division of
function. In this depiction the data bus contain€MS (Content Management System) that
handles the documents and document artifact calecover the life of the different workflow
instances as well as an output store where theubthpbe collected by the Knowledge Base
Architecture that ingests the output of MOSAIC abheé kept in a quickly-accessible cache.

24

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

In addition to these elements of the data bussialso recognized that given the
potentially large number of analytics that can g of the discrete process architecture that a
long-term storage for those not in use should brided. Frequently or recently used analytics
would be in a cache outside this storage, but tiogeare called upon which are not presently
deployed can be brought out from this long-ternnagje.

Container Layovt

!Mosa/a Root

A .

System Global User
Pata Pata

cso—see

Local User
DPata

Local Run
DPata

Artitact Meta Data

Pocvment

MITRE COPYRIGHT (C) 20102011

Figure 6. Suggested hierarchy for the content managemetgrays

Figure 6 examines the anticipated hierarchy withie data bus’s content management
system. The root folder is associated with thererdiscrete process system, including a folder
that maintains all the required global informatiimnthe system. In subfolders below the root,
each user has a folder containing the user’s lodatmation along with subfolders for each
executed or executing workflow instance associati¢iil that user. These subfolders also include
the necessary local information along with subfddi®r the source document, its document
artifacts, and document metadata.

Discrete Process Architecture Technology Analysis: Analytics

In a modular discrete process architecture, it refgoable that there not be any
requirements at the outset in terms of what langsiage allowed or disallowed. This is due to

25

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

the need to support legacy analytics that were written to be indepieof other analytics, but
could potentially integrate into a larger system. By virtue of the flexjlohithis discrete process
architecture, analytics written across many different daggs, even those written without the
intent to have been integrated, can be added as subcomponent analytiesylcases, the
appropriate action for including these pieces of software raridhem with adapters that can
handle conversion into a common interchange format as well assagge¢he data bus for both

retrieval and inter-analytic storage.

Analytic Data Models

Description

Chunking

Identifying sentence constituents (noun phrases, verb phrases, etc.)

Concept analysis

Characterizing documents by concepts explicitly/implicitly expressed in them

Co-referencing

Matching multiple textual mentions of the same entity/relation/event

Document classification

Categorizing a document based on its content

Document metadata

Data about the document as opposed to its textual content

Extract entities

Objects or sets of objects in the world, often people, organizations, locations

Extract entity mentions

Textual instances of entities

Extract event mentions

Textual instances of events

Extract events

Specific occurrences involving participants

Extract relation mentions

Textual instances of relations

Extract relations

An ordered pair of entities that indicates a relationship between them

Language recognition

Identifying the language in which the text is written

Morphological analysis

Analysis of the structure of words

Part-of-speech tags

Categorization of words in a text to their grammatical tag

Semantic role labels

Recognizing roles nouns have in relation to the actions stated in a sentence

Sentences Parsing documents into sentences
Sentiment Recognizing the attitudes of a document’s author
Sequences Parsing documents into a specified recognizable sequence of words usually

String transliteration

Transfer of text in one writing system to another

Syntactic parse

Determining grammatical structure of the text

Time Points or durations of time that appear in the text; possible subset of entities
Tokens Breaking documents down into tokens, usually words
Value Further information about or characterization of an entity

Table 2 Growing list of required analytic output the common interchange format must support.

This flexibility does not exclude the utility of a best-preet guideline for future
analytics that can be written with the intention of integratity the overall architecture. Indeed
it is expected that analytics here can eventually become mpalan a production environment
after being implemented, debugged, and refined in a research environment.

An examination of the more tightly integrated frameworks tlzat support what are
considered modular analytics as well as accounts of theurésaand their inherent advantages
and disadvantages in this use case was examined earlier in cien sentitled “Tightly
Integrated Architecture Technology Analysis.” Specific anedytequired for the system, many

26

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

with existing implementations, are listed in Table 2, and somatkalytics are discussed further
in the following section.

The overall recommendation arrived in this previous discussion was cibiompas
individual analytics in UIMA, but this does not mean that all aiedyteed to be written in this
language for research purposes. Because of the heavier WngigbtiMA has as a framework, it
is very likely that initial analytics can be more easilymposed and tested outside that
framework so as to be verified as useful before more timgerramitted to them and integrating
them into what is more akin to a production environment. This systeuatdshot impede rapid

prototyping.
Specific Analytics and Analytic Workflow

Although MOSAIC is capable of supporting a wide variety of amaltibcomponents to
be used in large-scale workflows, it is useful to provide particlilestrative examples of the
types of analytics and analytic workflows we expect to haadtethat make sense in a setting
involving workflows going from Natural Language Processing to kadgé representation. In
addition, a sample workflow that makes use of some of these subcongptmreamtarger task is
also described to further demonstrate the architectural capability.

The basic definition of an analytic is that of processing soézat extracts or generates
new data from the source files or the data in analytic artdalections produced by other
analytics. In this field, there are a wide variety of individaaklytical tasks that can be
performed on raw text, processed text, and previous natural langnaty#ic results. A few of
these are described here to give a representative picture of what areredresidytics.

Entity extraction from text is a prime example of such anyéioallypically, given either
a raw or zoned piece of text, these analytics recognize antifydéhe pieces of text that
represent entities and classify them based on the set of giuds they are programmed to
discover. Usually these analytics preserve the original t@ppst where the entity appears,
either identifying it inline or providing offsets to its location in a sepdfitg. Often this includes
the co-referencing of these specific mentions to indicate they spedfyra@n entity.

Some analytics instead try to extract information about the docuitsetft Concept
extractors examine the document in order to discover terms andtdsythat describe or appear
in the content. This can be a very broad class of terms, saltyptoncepts are identified by
short keywords, and rather than being attached to specific spang,dhey are associated with
the document as a whole.

Still other analytics are targeted to produce results basedeowdrd and grammatical
structure of the source text, and these include tasks such as ¢husdguence or sentence
tagging, part-of-speech tagging, and syntactic parse. Thosnistenes supporting information to
future analytics that make use of this structural information.

Standing as examples of analytics that build on previous arfifesttgion extractors
often require the extraction of entities first so there gopulation among which to discover
relations. Similarly for event extraction, participants in thesents (again entities) are
frequently prerequisites for recognizing and defining events found itette Some analytics
include entity extraction as a part of the process leadingapturing relations and events, but
there are others which expect it as input to be provided by a previously execuytid.anal

Perhaps the most critical example of an analytic that releshe input of previous
analytics is one that resolves the results of two or more tamatymponents that endeavor to
extract the same class of information. This is a need most commonly fetheitlisambiguation

27

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

of entities, as the same entity found by different extracturald be recognized as such instead
of being considered two separate entities as would be the dhseitwgoftware to handle their
resolution. The results of this resolution provides a list of estiiedieved to be distinct, while
preserving the provenance in terms of which extractor produced the original inputs.

There are also various supporting analytics that provide a necessaument level
analysis for the purposes of triage in advance of selection offisp@orkflow activities or
perform essential pre-processing on the document, such as zoning thediocioregions that
distinguish content from metadata. These analytics are typicadlin advance of the rest of the
system, and while they do not produce information that will necssarry on past the life of a
workflow instance, they do enable the content extracting analytics to function.

It is crucial that the distinction between an analytic and whatlled an “adapter” is
made clear. The analytic is concerned with the extraction argion of artifacts from a given
input, the emphasis here being production. The adapter is concerned withngfertof one
analytic format to another, the emphasis here being conversiorisfisn a subtle distinction,
as some analytic tasks have elements of conversion as a part of their prodwtitmni@king a
determination of whether something serves an analytic purpose as epgpode role of an
adapter is whether the content of the input undergoes more thanaaycexamination to
determine the output. In the case of an adapter, this examination shbulte cursory, simply
enough to follow preset and rigorous rules for making consistent fexohanges. Fundamental
changes in the content, such as entity resolution or mapping betwesectezk text strings and
hard data types (i.e. bridging the semantic gap) should be consateigtic tasks and not the
province of adapters.

Analytic Pipeline

As for an example of a combination of analytics that MOSAICamdle, a pipeline is
presented consisting of analytics targeted to the task of comyeatntext data into knowledge
objects and relationships between them. This pipeline orchestratedppmited by MOSAIC is
depicted conceptually in Figure 7.

The fundamental task here is to extract knowledge objects frommatesdurces (in this
instance, email). Various analytics developed independently profgleditferent required
functionality for achieving this. The executive of MOSAIC orchagsis the activation of these
analytics as necessary, providing them with data that is adapt®daf common interchange
format (CIF) into the analytics’ standard input. The output of these anabytiosn adapted back
into the CIF, and this material is stored in MOSAIC’s datafbushe life of a given workflow
instance until a final output is produced.

In this particular workflow of analytics, entities and evemesextracted from the text as
well as broad concepts that define the source document. Analytiticius depicted in this
figure, such as entity extraction, can consist of multiple analtthat perform the same task but
provide different results. Because entity objects can be producedigythan a single analytic,
potentially redundant results are resolved into single objects békrey converted into
knowledge, the ultimate output. While the conceptual pipeline is arrangederial fashion in
Figure 7, many of the depicted components can run simultaneouslyeg@adence permitting.
For instance, there are event extraction analytics that regresreously extracted entities to
supplement their input.

28

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

FPIFPELINE

FITEE COPTRDGET GE) D i - |
+
I

Figure 7. A current implementation use-case of the MOSAIC architedeatiring serialized
analytics for extracting entities, concepts, and events asatektthen resolving them into
knowledge objects.

Discrete Process Architecture Technology Analysis: Adapters

In order to achieve success with a discrete process arclatebatr involves multiple
legacy and newly developed analytics, it is crucial to provideesoammon model for the
communication between them. It is unreasonable in the research eremtotinexpect that all
domain expert engineers will have composed and will continue to compuasprototypes that
all output to and accept input from a specific model of repreggtitmresults. This diversity of
input requirements and output formats among the analytics will rethatethere be some
method to resolve these communications from the discrete processelngt@a & anca that can
be stored in the data bus between the document artifact colléatgm$dy the analytics. This
lingua franca is termed a common interchange model here. Developing thisl mmodethe
corresponding CIF (Common Interchange Format) is a major paecdnticipated upcoming
research and development necessary for the orchestration of thetedi@ocess architecture.
This section examines what is anticipated to be required and iahspiculation as to how best
to achieve this common interchange format.

29

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

Adzpters

 Common “ on
3 Interchange Interchange 33
Marshaller Parser

’

W"‘ %

K

MITRE COPYRIGHT (C) 20102011

Figure 8. Examination of the interior of the adapters, A8D the left and D2A on the right,
which handle communication between an analytic i&AF (Raw Analytic Format) and the
data bus and its CIF. The three chief parts of emdtdypter are a parser, a mapper, and a
marshaller/unmarshaller.

As observed, analytics typically produce not a camnnguage, but a format that
amounts to their own intermediate data objects.gagh analytic that produces its own particular
output, an adapter must be written that will cobvieis output to the interchange format. These
are referred to as A2D Adapters. For each analytat consumes its own particular input,
another adapter must be written that will creat&da this format from data in the common
interchange format. These are referred to as D2Apfats. This means that there are likely
going to be a pair of adapters required for exgstinalytics that are not directly compatible with
the common interchange format. This is also truamf new analytics that are written to be
plug-ins to the system if they are not designetke in and produce the interchange format.

Figure 8 shows the exchange of information betwbenanalytics and the data bus that
takes place in the adapter. An A2D Adapter consiten analytic parser to read in and interpret
the raw analytic output, a mapper that maps tha detween the two formats’ definitions, and a
common interchange marshaller that takes the meguhapping and marshals it into the final
common interchange format. A D2A Adapter essentialberates in the opposite direction,
reading in the common interchange format with tlenmon interchange parser, running a

30

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

mapper that maps the data between the two forntBhitions, and running an analytic
unmarshaller that unmarshals the mapping into imgaeptable to the analytic. Some analytics
might also take the common interchange format a@sitinand the adapter can provide this
without any changes to formatting as well.

Apart from using adapters that convert to a comnmberchange format, the users can
also specify as a part of their workflow how thejslwvto map and integrate the output of
different analytics if their tasks require specifmnversions from one data format to another that
are not supported by the common interchange foriftais amounts to allowing the user to
specify a customizable interchange format for ugkimvindividual workflows.

LAYERED VIEW

Pata Bus
Peveloper £
Detined = -
------- e e o
PZA | AZpP | PZA N AZP N
petond \ f-} \ fj
Analytic | Analytic N
Developer £ Execvtive |
Defined S

MITRE COPYRIGHT (C) 20102011

Figure 9. A depiction of the analytics and how they intenath the executive that orchestrates
their behavior and the data bus that routes thpintiand output.

Figure 9 depicts in more detail how the adapters amalytics are interrelated with one
another and the data bus and executive. Each anpbtentially has adapters going in and out,
allowing for data transfer between analytics in @nmon interchange format. Once the
architecture is developed, the executive and dagsashould be fixed from the users’ perspective,
though requests for changes to the architecturalioeed and implemented when appropriate
as part of the natural refinement of the architectWsers themselves can directly define the
analytics and their adapters, making them immelgiagensible and able to evolve.

31

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

In the subsequent sections, different potential models for the cormtawohange are
proposed and discussed. This includes both ontological descriptions of teatcmtwell as
options for structures into which a given ontology can be incorpor@edause this effort
requires a great deal more research and examination of wiaiptanally cover all desired
analytics than can be provided in this context, this document refreoms fmaking a
recommendation in this case as of yet.

Before looking at potential structures on which a common interchtorgeat will be
built, some of the anticipated features of the most basic atsmeqquired should be specified. In
a system of Natural Language Processing of text, fundamebjatts found (the pieces
considered the most basic document artifacts) are likely teleeated into broad categories
based on type (e.g., entity mentions, sentences) and require fahaireetail textual extent,
along with starting and ending offsets in the source document, aasMatlds that specify both
the unique identifier for the object as well as sub-classifinatdf the type. Other objects could
then build upon these basic structures (e.g., entities, syntacsie) pardifferent hierarchies.
There are also likely desired representations that do notditthji into this model, but the intent
of the subsequent stage of research is to identify and accommodaeatheell as specify in
great detail the ontology that describes in total what thegesy and all its potential analytics
requires while keeping it extensible to future analytics as necessary.

CAS as Common Interchange Format

The UIMA framework models documents as CAS objects. A CAS bbjge one or
more views of the document, and each view is associated with a ur@jft® Br that view.
This model is intended to facilitate the simultaneous analysiaulfiple interpretations of a
single document. For example, a document which was authored in Chinetaratated to
English may be represented as a single CAS with two viewdporach language. Similarly, a
document representing a video may have one view for only the visuahddtanother view for
only the audio data. A view of a CAS represents the abstract raitian interpretation; the
SOFA for a view represents the actual data associated withntlegpretation, such as the
translated text or binary video frame data. SOFA data candod atting, an array of primitive
data (boolean, byte, short, integer, long, float, double, or string), or a URI for renate dat

Each CAS view stores its own analysis data as featurews®actvhich are collections of
features in the same manner that Java classes are colleztiamgance variables (ignoring
methods). Feature structures make up a typed, single inheritgsteenswith a built-in feature
structure type called “TOP” at the root of the inheritance. fiée® TOP feature structure type
contains no associated features; developers define their owrefeaitustures by subtyping TOP
or some other feature structure type, and adding features to thgpeewreatures are also typed,
and may be one of the built-in primitive types (boolean, byte, simbeger, long, float, double,
or string), or an existing feature structure type, or an aifaye of those previous types. UIMA
additionally provides built-in types for linked lists (derived fro®H) and three other built-in
feature structure types for convenience:

* AnnotationBase derives from TOP and adds a single feature which contains the 1D
number of the SOFA the annotation references

* Annotation derives from AnnotationBase and adds two features which gives the start and

end offsets of the annotation within the document
* DocumentAnnotation derives from Annotation and adds one feature which gives the
language of the SOFA the annotation references.

32

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

This appears to be an inherently useful architecture to use assaftradescribing a
common interchange between analytics. The analytics’ input and aatplsk be mapped to a
language that uses this established structure. It has the atidedamge of being usable again in
a production environment if necessary as it is anticipated tba&neh components are likely to
be gradually merged into more tightly integrated systemshé&uexamination of what needs to
be built to accommodate all analytics desired before making a recomimaridanecessary.

GrAF as Common Interchange Format

Another alternative data representation for linguistic annotat®onGrAF (Graph
Annotation Framework), which has been demonstrated to be interapesdibl two key
annotation systems that could populate the discrete processes, @ATEJIMA? This
representation uses a graph model represented in an XML séioalwath elements of <node>
and <edge> creating the fundamental structures necessary. phestrecture of the linguistic
annotations that GrAF makes use of is described by LAF (theguistic Annotation
Framework), which formally consists of a data model for annotatiang dgected graphs (sets
of nodes and edges labeled with one or more features), a segmerttthierclzaracter level of
the source document that provides the base for multiple layers of ammotand methods for
manipulating the data model. The key elements left to be defieeth@ specifications for the
labeling of the content contained in the structure.

GrAF provides a different perspective on representing documefdcartiata and is
something that will be considered.

Possible Basis Ontologies

There are several annotation or content representations thatprogide a good basis
for a general and encompassing description suitable for a commormamgecmodel. Examples
of these include the ACE pilot language, WordNet, SUMO (SuggestedrUdpeged
Ontology), or OntoNotes. It is unlikely that any of these options westdpe the need for some
significant alteration or extension if chosen as a basis. Asdstdue to the further research and
examination required in order to discover or create an ontologyctmabptimally cover all
desired analytics, this document currently refrains from making a reendation in this case.

Summary of Recommendations

In this section recommendations are summarized, bearing in mind¢havision two
separate environments where these recommendations hold, a productiammeentr and a
research environment.

In a production environment where domain expert engineers areribyinmierested
developing a single fixed interaction of analytics for a spewibrkflow type and considerations
of efficiency far exceed the need for flexibility and provesgrthe recommendation made here
is to use UIMA as the overarching architecture given its litenief scalability and generality
over similar rivals (e.g. GATE). A possible alternative to cdesin this case is Ptolemy, which

2 |de, N. and Suderman, Bridging the Gaps: Interoperability for GrAF, GATE, and UIMA. ACL-IJCNLP 2009,
pp. 27-34.

33

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

can achieve much of the same tight integration that UIMA or BAWould, can operate in
memory, and is also a stable, mature product. Its limitationsnastly as a result of Natural
Language Processing not being its specifically intended use lmatsit has an added advantage
over UIMA in that the creation of more fully-fledged workflowspahle of decision points is
assisted with a graphical user interface, where achievingnttu$MA is more difficult. This is
only a consideration if workflows more complex than sequential pipelines aresalces

In a research environment where domain expert engineers areilgrimarested in the
frequent creation of new analytics and workflows with frequent debggand retuning and
where preservation of the provenance of workflow instance executions is alsodeguligcrete
process architecture as depicted in Figure 2 is the recomnmendadr the key pieces of this
architecture Ptolemy is recommended be used to build the execamide Alfresco is
recommended to be used to build the data bus. This should more easitynamtate the
diversity of analytics likely to be found in a research environment.

Takeaways

There are certain key points of this document apart frompbeif&c recommendations
made. These observations are restated and summarized here.

Most important is the distinction made between what were idestdis two working
environments, research and production. A research environment is a eseheas domain
expert engineers are primarily interested in the frequeatioreof new analytics and workflows
with frequent debugging and retuning, also requiring preservation of the provenavarftdw
instance executions. A production environment is a use case wherendepart engineers are
primarily interested developing a single fixed interaction rwdlgics for a specific workflow
type, where considerations of efficiency far exceed the need for flexdmld provenance.

A research environment requires flexibility across analyticdem in multiple languages
and perhaps without the prior intent to integrate, the ability tdyeasegrate new analytics, a
high adaptability to evolving technology, and a low barrier to entrddonain expert engineers,
whose focus should be on prototyping and refining the specific analytics.

A discrete process architecture is more appropriate forrédsearch environment as
opposed to a tightly integrated technology for these reasons assvélle potential risk of
committing to a single non-modular architecture that could be abandbsethe point leaving a
final architecture stagnant. A discrete process architechakes these technologies easily
replaceable as new and more appropriate options become availhideal3o effectively
separates the workflow executive from the analytic data, makangxecutive data agnostic and
devoted simply to the orchestration of the workflow of analytics anddhpters that allow them
to communicate.

Many production environments require a tightly integrated archi¢hat is defined by
a specific overarching framework that handles the data betweayties organized and
optimized for a targeted task, operating in memory exclusiveljgsoanalytic pipeline. These
requirements allow for the high efficiency, something that istkey production environment,
sacrificing modularity, which is less important here.

These environments are not mutually exclusive. Analytics develapeal research
environment can be subsequently moved into production after sufficierement, and these
analytic pieces can evolve during development into optimized collectibssnaller analytic
components, such as is achievable in a framework such as UIMArthieless, this does not
eliminate the need for some architecture to accommodate earchs space where this

34

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

development can occur with some organization and potential for intgreHheetween analytics.
Figure 3 depicts the vision for this potential migration from research to producti

Regardless of whether a research or production environment isneknai common
interchange model for the communication between the analyticsbraudtveloped so that the
outputs of analytics can be used universally as inputs to futurgiasaRdditionally a common
interchange format will also be needed for the research enwrnimnce this common
interchange model is specified.

35

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

Glossary

A2D Adapter: data converter that changes from a format readable by spac#lytic tools into
the common interchange format.

Ad Hoc Workflow Instance: a workflow instance that is executed on a particular document,
specified by a user via the interface as opposed to a deployedowotkat has instances
executed based on documents that appear in the inbound gateway.

Advanced Analytic: a higher-order document analytic typically building on fundamental analytics
and examining topics that can include but are not limited tonsenti analysis and concept
extraction.

Analytic: software used for text to information processing, which estracgenerates data from
the source documents or the data in document artifact collections produced byalytersa

Analytic Repository: a program store of all analytics, including multiple versidhat are not
necessarily in current and common use, but are still accessible to be usadkiyws.

Architecture: the overall system as described here, including the inbound gatemecutive,
analytics, adapters, and data bus.

Black Box: equivalent to a “discrete process”; see below.

CAS Common Analysis System, which is UIMA’'s common data format.

Common Interchange Format: a general, default, all-encompassing format that can be codsume
by or transformed into input for further analytics, effectivelyking it a lingua franca that can

be converted to or from with adapters.

Content Management System: the part of the data bus that stores and indexes documentt artifac
collections over the life of the workflow instance.

Customizable Interchange Format: a specific interchange format that integrates or converts
between analytics and is specified by a user in the workfloimitieh for a specific task and is
used when invoked in place of the default common interchange format.

D2A Adapter: data converter that changes from the common interchangetfortoaa format
readable by specific analytic tools.

Data Bus: organizes, routes, and stores the data produced by the anaiyicthe life of a
workflow as well as being the access point for the source documents thatansgt

Data: what is produced by analytics and resides in the data bus.

Decision Point: a branching conditional statement in either code or the workflow specification.

36

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

Discrete Process. an independent program that can be accessed through defined inputs and
outputs, as opposed to integrated analytics which allow for programmatis.acces

Document: a file that is the fundamental unit of source material on whighanalysis workflow
in this architecture will execute.

Document Artifact Collection: a set of data that includes the source document as wetlyas a
results the analytics produced for or extracted from that docuoventthe life of a particular
workflow.

Domain Expert Engineer: person who can craft the analytics that plug into the archieeearuo
can execute the workflows of these analytics on the documents.

Executive: orchestrates the activities of workflows specified by ther tisrough the interface,
including the sequence and flow of analytics and adapters executechaddata is retrieved
for each of these analytics from the data and document artifact collections.

Fundamental Analytic. a basic document analytic typically executed on the source dogument
examples of which include, but not are limited to, part-of-speechn@ggstemming, chunking,
entity extraction, coreference resolution, relation extraction, and eveattsr.

Inbound Gateway: the service supporting the input stream of documents for thetemtcine,
which can arrive asynchronously with user activity or specifinatalthough it can be filtered
such that only user-specified documents are operated upon for any given workfloweinstanc

Integrated Analytic: an independent program that allows users programmatic acseggy@sed
to discrete processes, which can be accessed through definesl angubutputs and disallow
users interposing programmatically.

Interface: the part of the executive the user interacts with to speedykflows and what
documents and data those workflows will analyze.

Output Store: a repository of objects in a persistent store that reprakenfinal output of
workflow instances.

Plug-in: a modular analytic that is integrated with the frameworkaambe accessed as part of
the workflow in the overall architecture.

Production Environment: a use case where domain expert engineers are prinrgghgsted in
developing a single fixed interaction of analytics for a speciorkflow type, where
considerations of efficiency far exceed the need for flexibility andgmrance.

Provenance: the workflow trail of analytics that led to a particulasult produced at the end

which is included with the final output of a workflow to allow for résub be traceable and
repeatable.

37

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

Research Environment: a use case where domain expert engineers are primarilgsige in the
frequent creation of new analytics and workflows with frequent debggand retuning, also
requiring preservation of the provenance of workflow instance executions.

Sateless: a type of architecture where individual discrete componentgren@are of the overall
workflow and which analytics will execute before or after them.

Sreaming Document Flow: the influx of documents that arrive at non-user specified ratds t
vary over time as opposed to documents that are a part of a user-specified corpus or batc

Triage: the preprocessing of inbound documents to remove corrupt or irreldvaminents, a
preprocessing that can be targeted to specific workflows as well.

Workflow: the sequence and flow of analytics specified by the user whitbe& deployed in the
system and will execute on both source documents and data generated from thosetdocume

Wor kflow Instance: a specific execution of a workflow of analytics on a specific document.

38

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

Appendix A: Code for UIMA as a Discrete Process Architecture Executive

A.1: Collection Reader Code and XML

Ouir first task was to write an XML type descriptor for aallection reader. The name of
the input file needed to be saved for later when processing the adpime collection reader
will have to place that in the CAS. The type we createdHis is named “InputName” and
consists of a single string which will be the file name of tipali document. We used the UIMA
Eclipse plug-in to get a GUI for building this XML. It also coudé written it by hand by
referencing the user guide. The end result is shown below.

<?xml version="1.0" encoding="UTF-8"?>

<typeSystemDescription xmIns="http://uima.apache.or g/resourceSpecifier">
<name>ReaderTypeSystem</name>
<description>Types for the collection reader.</de scription>

<version>1.0</version>
<vendor>Nathan Giles</vendor>
<types>
<typeDescription>
<name>mitre.ngiles.mosaic.InputName</name>
<description/>
<supertypeName>uima.cas.TOP</supertypeName>
<features>
<featureDescription>
<name>FileName</name>
<description/>
<rangeTypeName>uima.cas.String</rangeType Name>
</featureDescription>
</features>
</typeDescription>
</types>
</typeSystemDescription>

The collection reader class must implement the CollectionRéaigeface. UIMA also
provides the abstract class CollectionReader_ImplBase, whichnrmapte the interface and
provides default implementations for some of the interface methodscdection reader will
extend this abstract class. There are five key methods thattamdxdimplemented: initialize
performs its namesake, hasNext returns true until the input source is exhaubtext, iggtassed
an empty CAS object and fills it in by reading the next inputident, close will be called after
input is exhausted if we need to do any cleanup, and getProgresd s/uke framework to run
a progress indicator. The simplified implementation is shown below.

public class InputReader extends CollectionReader _| mplBase {
File[] inputFiles;
int nextFile;

public void initialize()
throws ResourcelnitializationException {
File inputDirectory = new File(
(String) this.getConfigParameterValue("InputDirecto ry"));
inputFiles = inputDirectory.listFiles();
nextFile = 0;

39

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

public boolean hasNext()

}

throws IOException, CollectionException {

return (nextFile < inputFiles.length);

public void getNext(CAS newCAS)

}

throws IOException, CollectionException {

BufferedReader reader = new BufferedReader(
new FileReader(inputFiles[nextFile]));
String text =",
String line = reader.readLine();
while(line !'= null)
{
text +=line + "\n";
line = reader.readLine();

}
JCas jCAS = null;
try {
JCAS = newCAS.getJCas();
} catch(CASException e) {
throw new CollectionException(e);

JCAS.setDocumentText(text);

InputName inName = new InputName(jCAS);
inName.setFileName(inputFiles[nextFile].getName()
inName.addTolndexes();

reader.close();

nextFile++;

public void close()
throws IOException {

}

/INothing special to do to close this collection

public Progress[] getProgress() {

return new Progress[] {new Progressimpl(

nextFile, inputFiles.length ,Progress.ENTITIES)};

reader

After writing the code for the collection reader, the nexp st@s to generate an XML
descriptor for this class. Particularly, we needed to speldyexistence of the configuration
parameter “InputDirectory” that we used in the initialize moett and its default value. Users of
this collection reader will be able to change the input diredigrghanging the XML. The XML
descriptor also describes the output types we produce in the CAHjcglg the InputName
type. As before, we used the UIMA Eclipse plug-in to get a ®Ubuilding this XML, though
it could be written by hand by referencing the user guide. The end result is shown bel

<?xml version="1.0" encoding="UTF-8"?>

<collectionReaderDescription

xmlns="http://uima.apache.org/resourceSpecifier">
<frameworklmplementation>org.apache.uima.java</fr
<implementationName>mitre.ngiles.mosaic.InputRead

ameworklmplementation>
er</implementationName>

40

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

<processingResourceMetaData>
<name>Input Reader</name>
<description>Reads text files from a directory into the document
string.</description>
<version>1.0</version>
<vendor>Nathan Giles</vendor>
<configurationParameters searchStrategy="langua ge_fallback">
<configurationParameter>
<name>InputDirectory</name>
<description>Path to the directory which is searched (non-
recursively) for input.</description>
<type>String</type>
<multiValued>false</multivValued>
<mandatory>true</mandatory>
</configurationParameter>
</configurationParameters>
<configurationParameterSettings>
<nameValuePair>
<name>InputDirectory</name>
<value>
<string>C:\Documents and Settings\ngiles\ My
Documents\Task\Input</string>
</value>
</nameValuePair>
</configurationParameterSettings>
<typeSystemDescription>

<imports>
<import location="file:/C:/Documents and Se ttings/ngiles/My
Documents/UIMA/examples/workflow/ReaderTypeSystem.x ml"/>
</imports>

</typeSystemDescription>
<typePriorities/>
<fsindexCollection/>
<capabilities>
<capability>
<inputs/>
<outputs>
<type
allAnnotatorFeatures="true">mitre.ngiles.mosaic.Inp utName</type>
</outputs>
<languagesSupported/>
</capability>
</capabilities>
<operationalProperties>
<modifiesCas>true</modifiesCas>
<multipleDeploymentAllowed>false</multipleDep loymentAllowed>
<outputsNewCASes>true</outputsNewCASes>
</operationalProperties>
</processingResourceMetaData>
<resourceManagerConfiguration/>
</collectionReaderDescription>

A.2: Tokenizer Wrapper Code and XML

The next step is to write the annotator that will wrap our blawk tokenizer. In the
interest of conforming to the UIMA framework as much as possit@edecided to represent the
tokens generated by thekenizer as a subclass of annotation. Our first step in writing the

41

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

tokenizer annotator was to define its type system XML file. The onpetgur annotator needed
to know about is the Token annotation type that it places in the &A&itput, so we have to
define no more than that. Again, we used the UIMA Eclipse plug-inite tis XML file. The
end result is shown below.

<?xml version="1.0" encoding="UTF-8"?>

<typeSystemDescription xmIns="http://uima.apache.or g/resourceSpecifier">
<name>TokenizerTypeSystem</name>
<description>Type System for the Tokenizer.</desc ription>

<version>1.0</version>
<vendor>Nathan Giles</vendor>
<types>
<typeDescription>
<name>mitre.ngiles.mosaic.Token</name>

<description>A Token from the Tokenizer</desc ription>
<supertypeName>uima.tcas.Annotation</supertyp eName>
</typeDescription>
</types>

</typeSystemDescription>

Again the plug-in automatically generates Java classes fdiolten type as it did before
with the InputName type. The next step was to write the wramuks itself, which implements
the AnalysisComponent interface. UIMA provides an abstract d@ssAnnotator_ImplBase,
which implements this interface and provides default implementafitwnaost of the methods,
and we inherited from that. The code for our wrapper ofdkemizer is shown below.

public class TokenizerWrapper extends JCasAnnotator _ImplBase {

public void process(JCas JCAS)
throws AnalysisEngineProcessException {

try {

File input = File.createTempFile("tokenizer", ".in ");
File output = File.createTempFile("tokenizer", ".o ut");
input.deleteOnEXxit();

output.deleteOnExit();

String text = JCAS.getDocumentText();

BufferedWriter writer = new BufferedWriter(new Fil eWriter(input));
writer.write(text);

writer.close();

String[] commands = { “java" , "-jar"

"C:\\Documents and Settings\\ngiles\My Documents\\ BIN\Tokenizer.jar"
input.getCanonicalPath(), output.getCanonicalPath() h

Process process = Runtime. get Runt i ne().exec(commands);

process.waitFor();

BufferedReader reader = new BufferedReader(new Fil eReader(output));
String token = reader.readLine();
int textPos = 0;
while(token != null) {
int start = text.indexOf(token, textPos);
int end = start + token.length();
Token tokenAnnotation = new Token(jCAS, start, en d);

42

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

tokenAnnotation.addTolndexes();
textPos = end;
token = reader.readLine();

reader.close();
} catch(Exception €) {
throw new AnalysisEngineProcessException(e);

}

Having written our annotator, we next created an XML descrijtoit.f This descriptor
included the previous type system descriptor, specifying which tgpesput and which are
output and describing configuration parameters. We had no configuratimeiars, no input
types, and one output. The descriptor XML for this annotator is shown below.

<?xml version="1.0" encoding="UTF-8"?>
<analysisEngineDescription xmIns="http://uima.apach
<frameworklmplementation>org.apache.uima.java</fr
<primitive>true</primitive>
<annotatorimplementationName>mitre.ngiles.mosaic.
</annotatorimplementationName>
<analysisEngineMetaData>
<name>Tokenizer Wrapper</name>
<description>Wraps the Tokenizer black box.</de
<version>1.0</version>
<vendor>Nathan Giles</vendor>
<configurationParameters/>
<configurationParameterSettings/>
<typeSystemDescription>
<imports>
<import location="file:/C:/Documents and Se

Documents/UIMA/examples/workflow/TokenizerTypeSyste

</imports>
</typeSystemDescription>
<typePriorities/>
<fsindexCollection/>
<capabilities>
<capability>
<inputs/>
<outputs>
<type allAnnotatorFeatures="true">mitre.n
</outputs>
<languagesSupported/>
</capability>
</capabilities>
<operationalProperties>
<modifiesCas>true</modifiesCas>
<multipleDeploymentAllowed>true</multipleDepl
<outputsNewCASes>false</outputsNewCASes>
</operationalProperties>
</analysisEngineMetaData>
<resourceManagerConfiguration/>
</analysisEngineDescription>

e.org/resourceSpecifier'>
ameworklmplementation>

TokenizerWrapper

scription>

ttings/ngiles/My
m.xml"/>

giles.mosaic.Token</type>

oymentAllowed>

43

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

A.3: Decoder Wrapper Code and XML

Next we wrote the wrapper for thiecoder black box, following the same set of steps.
First, we defined the type system. Téeoder takes the tokens from the previous analysis as
input, so we imported the previous type system. For outputddtmder produces two long
strings, one for the first characters in each token, and one ftaistheharacters in each token.
We chose to make these outputs into two new SOFAs in the CAS, noirmg@ny new types.
The type system descriptor XML is shown below.

<?xml version="1.0" encoding="UTF-8"?>

<typeSystemDescription xmIns="http://uima.apache.or g/resourceSpecifier">
<name>DecoderTypeSystem</name>
<description>Type system for the decoder black bo x.</description>

<version>1.0</version>
<vendor>Nathan Giles</vendor>

<imports>
<import location="file:/C:/Documents and Settin gs/ngiles/My
Documents/UIMA/examples/workflow/TokenizerTypeSyste m.xml"/>
</imports>

</typeSystemDescription>

Because the wrapper for tldecoder uses multiple SOFAs, it is slightly different from
the tokenizer wrapper. Annotators that support multiple views are initiallkegia base CAS
object from which they must choose named views to work on. Annotatordahadt need to
support multiple views are automatically given the default vieamed “ InitialView”.
Therefore, we selected that view from the base CAS beforetimgeom it in order to get the
input. The code for théecoder wrapper is shown below.

public class DecoderWrapper extends JCasAnnotator_| mplBase {

public void process(JCas base jCAS)
throws AnalysisEngineProcessException {

try {

File input = File.createTempFile("decoder", ".in") ;
File outputl = File.createTempFile("decoderl”, ".0 ut");
File output2 = File.createTempFile("decoder2", ".0 ut");
input.deleteOnExit();

outputl.deleteOnExit();
output2.deleteOnExit();

JCas jCAS = base_jCAS.getView("_InitialView");
FSlterator<Annotation> iterator =
JCAS.getAnnotationindex(Token.type).iterator();
BufferedWriter writer = new BufferedWriter(new Fil eWriter(input));
while(iterator.hasNext())

{

Annotation token = iterator.next();
writer.write(token.getCoveredText() + "\n");

writer.close();

String[] commands = { “java" , "-jar"

44

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

"C:\\Documents and Settings\\ngiles\\My Documents\\ BIN\\Decoder.jar" ,
input.getCanonicalPath(), outputl.getCanonicalPath(),
output2.getCanonicalPath()};

Process process = Runtime. get Runt i me().exec(commands);

process.waitFor();

BufferedReader readerl = new BufferedReader(new Fi leReader(outputl));
String firstChars = readerl.readLine();
JCas first_jCAS = base jCAS.createView("FirstChara ctersView");

first_jCAS.setDocumentText(firstChars);
readerl.close();

BufferedReader reader2 = new BufferedReader(new Fi leReader(output2));
String lastChars = reader2.readLine();
JCas last_jCAS = base_jCAS.createView("LastCharact ersView");

last_jCAS.setDocumentText(lastChars);
reader2.close();

} catch(Exception e) {

throw new AnalysisEngineProcessException(e);

}

The XML descriptor file for thelecoder declares the names of SOFAs it requires as input
and produces as output. Doing so declares it as an analysis engafe swpports multiple
SOFAs. The XML is shown below.

<?xml version="1.0" encoding="UTF-8"?>

<analysisEngineDescription xmIns="http://uima.apach e.org/resourceSpecifier'>
<frameworklmplementation>org.apache.uima.java</fr ameworkimplementation>
<primitive>true</primitive>
<annotatorimplementationName>mitre.ngiles.mosaic. DecoderWrapper

</annotatorimplementationName>

<analysisEngineMetaData>
<name>DecoderDescriptor</name>
<description>Wrapper for the decoder black box. </description>
<version>1.0</version>
<vendor>Nathan Giles</vendor>
<configurationParameters/>
<configurationParameterSettings/>
<typeSystemDescription>

<imports>
<import location="file:/C:/Documents and Se ttings/ngiles/My
Documents/UIMA/examples/workflow/DecoderTypeSystem. xml"/>
</imports>

</typeSystemDescription>
<typePriorities/>
<fsindexCollection/>
<capabilities>
<capability>
<inputs>
<type allAnnotatorFeatures="true">mitre.n giles.mosaic.Token</type>
</inputs>
<outputs/>
<inputSofas>
<sofaName>_InitialView</sofaName>

45

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

</inputSofas>
<outputSofas>
<sofaName>FirstCharactersView</sofaName>
<sofaName>LastCharactersView</sofaName>
</outputSofas>
<languagesSupported/>
</capability>
</capabilities>
<operationalProperties>
<modifiesCas>true</modifiesCas>
<multipleDeploymentAllowed>true</multipleDepl oymentAllowed>
<outputsNewCASes>false</outputsNewCASes>
</operationalProperties>
</analysisEngineMetaData>
<resourceManagerConfiguration/>
</analysisEngineDescription>

A.4: Flow Code in UIMA

A UIMA flow controller implements the FlowController interfadd]MA also provides
the abstract class JCasFlowController_ImplBase which implenbist interface and provides
default implementations for some methods. FlowController objects mevkey method, named
computeFlow. This method is called on each CAS object as it ehtegorkflow; it returns a
Flow object for that CAS which will guide it through the workflolow controllers and Flows
are provided with information about every loaded analysis to which they could plbtentite.

The Flow object implements the UIMA Flow interface; UIMA@lsrovides the abstract
class JCasFlow_ImplBase, which implements this interfacal agmovides default
implementations for some methods. The Flow object has a next methold ishiepeatedly
called to determine which analysis engine should process the CASThe next method can
return more than one analyses at a time, which indicateshthaet of returned analyses can be
executed in parallel (though the framework does not guaranteeh#ainill). Because Flow
objects are attached to the CAS they are responsible for, dimeghymamically route that CAS
based on the artifact or analysis results by examining the @& The Flow object is also
responsible for creating new Flows for any child CAS objectshvare produced as a result of
this CAS passing through a CAS multiplier. Finally, the Flow objantalso define what actions
to take if an error is encountered while processing the CAS.

In order to create a flow using UIMA'’s built in flow controllgralled “fixedFlow”), we
combine the three analysis engines we have created (the takéimézeecoder, and the output
writer) into one aggregate analysis engine. This is done bygvah aggregate XML descriptor
which references the XML for descriptors for each analgsigine we are combining. The
aggregate descriptor is shown below.

<?xml version="1.0" encoding="UTF-8"?>

<analysisEngineDescription xmIns="http://uima.apach e.org/resourceSpecifier">
<frameworklmplementation>org.apache.uima.java</fr ameworklmplementation>
<primitive>false</primitive>
<delegateAnalysisEngineSpecifiers>

<delegateAnalysisEngine key="TokenizerDescripto r'>
<import location="file:/C:/Documents and Sett ings/ngiles/My
Documents/UIMA/examples/workflow/TokenizerDescripto r.xml"/>

</delegateAnalysisEngine>
<delegateAnalysisEngine key="OutputDescriptor">

46

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

<import location="file:/C:/Documents and Sett
Documents/UIMA/examples/workflow/OutputDescriptor.x
</delegateAnalysisEngine>
<delegateAnalysisEngine key="DecoderDescriptor"
<import location="file:/C:/Documents and Sett

Documents/UIMA/examples/workflow/DecoderDescriptor.

</delegateAnalysisEngine>
</delegateAnalysisEngineSpecifiers>
<analysisEngineMetaData>
<name>AggregateDescriptor</name>
<description>Aggregate of tokenizer, decoder, a
<version>1.0</version>
<vendor>Nathan Giles</vendor>
<configurationParameters/>
<configurationParameterSettings/>
<flowConstraints>
<fixedFlow>
<node>TokenizerDescriptor</node>
<node>DecoderDescriptor</node>
<node>OutputDescriptor</node>
</fixedFlow>
</flowConstraints>
<fsindexCollection/>
<capabilities>
<capability>
<inputs>
<type allAnnotatorFeatures="true">
mitre.ngiles.mosaic.InputName</type>
</inputs>
<outputs>
<type allAnnotatorFeatures="true">mitre.n
</outputs>
<inputSofas>
<sofaName>_InitialView</sofaName>
</inputSofas>
<outputSofas>
<sofaName>FirstCharactersView</sofaName>
<sofaName>LastCharactersView</sofaName>
</outputSofas>
<languagesSupported/>
</capability>
</capabilities>
<operationalProperties>
<modifiesCas>true</modifiesCas>
<multipleDeploymentAllowed>true</multipleDepl
<outputsNewCASes>false</outputsNewCASes>
</operationalProperties>
</analysisEngineMetaData>
<resourceManagerConfiguration/>
</analysisEngineDescription>

ings/ngiles/My
ml"/>

>
ings/ngiles/My
xml"/>

nd output.</description>

giles.mosaic.Token</type>

oymentAllowed>

a7

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

Appendix B: Code for OpenPipeline as a Discrete Process Architecture Executive

B.1: Tokenizer Wrapper Code

An OpenPipeline workflow implements the PipelineJob interface. Lookihghis
interface immediately revealed the first key differermetween OpenPipeline and UIMA:
OpenPipeline is tightly integrated with its web server basesifate. The interface specifies
methods such as getPageName and getLogLink which are used by the OpenPipeline G

With regards to the actual workflow, the only relevant methodearPipelineJob were
setParams and execute. The setParams method takes an XML@wnebgas a parameter; this
object is basically a Java object representation of an XML Alll the parameters for the
workflow need to be contained in this object in some format. Theuexenethod takes no
parameters, and returns no result. It is responsible for doing tmetermt the workflow, and
there is no hindrance from performing all the work inside it.

Since there was a StageList object, we presumed that analgsetages, and find that
there is indeed an abstract class named Stage. It only has one important nhéthos abstract,
called processltem, and it takes an Item object as a parameterding to the Javadoc, we saw
that the Item object is indeed supposed to represent the document @ndtegsanalysis data,
and that it has an XML like format. Unfortunately, the Javadocndidreveal how to get the
document text out of an item so we can send it to our first blacksboxe turned to the source
code to find out. There is a SimpleTokenizer stage distributed vaémRipeline; looking at its
source reveals that it uses a visitor pattern to explore thetgndf a tree structure of Node
objects that exists within each Item object, and then tokenizeexhedsociated with each
Node. This revealed part of the structure of an Item to us, butesties the location of the
document text a mystery.

We did some exploring by using the GUI to create a Pipelinaddbseeing what the
output looks like. We created a new PipelineJob consisting of a &ile8c DockFilter,
SimpleTokenizer, and DiskWriter, and fed it a single text fdargput. Looking at the output
(which is an XML file which appears to be a representation oftéme object), there are 5 tag
groups which seem to correspond to what we guess are Node objects. These qe(dasthe
value “txt”), URL (has the file path of the input file), lastupdéias a number which probably
corresponds to the file’s modification date), filesize (has the &f the file in bytes), and text
(has the text of the document). The SimpleTokenizer has tokenizecbke#uobse tag groups
(only one of which was reasonable), producing standoff annotations whighcamiain the
annotated text and no offsets into the original text. From thisletermined that the FileScanner
class provided by OpenPipeline puts the document text in a Node naxtedstde the item,
which is what we needed to write our first wrapper stage.

Of note is that each stage is responsible for calling the mibeesmethod of the next
stage for the workflow to continue. The framework sets the negydSittribute in each stage
based on the list of stages the user gave in the Ul. Howeigeugtto each Stage individually to
honor this. In order to define a workflow, one has to build it into the Stages oneself.

The code for our TokenizerWrapper is shown below.

public class TokenizerStage extends Stage {

public String getDescription() {
return "Wrapper for the black box tokenizer";
}

48

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

public String getDisplayName() {

}

return "Tokenizer";

public void processitem(ltem item) throws PipelineE

}
}

try {
File input = File.createTempFile("tokenizer", ".in

File output = File.createTempFile("tokenizer", ".o
input.deleteOnExit();

output.deleteOnExit();

Node textNode = item.getRootNode().getChild("text"
String text = textNode.getValue().toString();
BufferedWriter writer = new BufferedWriter(new Fil
writer.write(text);
writer.close();

String[] commands = {"java", "-jar",

"C:\\Documents and Settings\\ngiles\My Documents\\
input.getCanonicalPath(), output.getCanonicalPath()
Process process = Runtime.getRuntime().exec(comman
process.waitFor();

TokenList tokenList = (TokenList) textNode.getAnno
if(tokenList == null) {
tokenList = new TokenList();
textNode.putAnnotations("token", tokenList);

}

BufferedReader reader = new BufferedReader(new Fil
String token = reader.readLine();
while(token != null) {
Token newToken = new Token(token);
tokenList.append(newToken);
token = reader.readLine();
}
reader.close();
Stage nextStage = this.getNextStage();
if(nextStage = null) {
nextStage.processltem(item);

} catch(Exception €) {
throw new RuntimeException(e);

}

B.2: Decoder Wrapper Code

We write our DecoderWrapper in a similar manner to that fotakemizer. The

shown below.

public class DecoderStage extends Stage {

public String getDescription() {

}

return "Wrapper for the black box decoder";

xception {

");
ut");

);

eWriter(input));

BIN\Tokenizer.jar",
3
ds);

tations("token");

eReader(output));

code is

49

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

public String getDisplayName() {
return "Decoder”;
}

public void processitem(ltem item) throws PipelineE xception {
try {
File input = File.createTempFile("decoder", ".in") ;
File outputl = File.createTempFile("decoderl”, ".0 ut");
File output2 = File.createTempFile("decoder2", ".0 ut");
input.deleteOnEXxit();
outputl.deleteOnExit();
output2.deleteOnExit();

BufferedWriter writer = new BufferedWriter(new Fil eWriter(input));
Node textNode = item.getRootNode().getChild("text");
Iterator<Token> tokenlter = ((TokenList)
textNode.getAnnotations("token")).iterator();
while(tokenlter.hasNext()) {
Token token = tokenlter.next();
writer.write(token.toString() + "\n");

writer.close();

String[] commands = {"java", "-jar",

“C:\\Documents and Settings\\ngiles\\My Documents\\ BIN\\Decoder.jar",
input.getCanonicalPath(), outputl.getCanonicalPath(),
output2.getCanonicalPath()};

Process process = Runtime.getRuntime().exec(comman ds);
process.waitFor();

BufferedReader readerl = new BufferedReader(new Fi leReader(outputl));
String firstChars = readerl.readLine();

item.getRootNode().addNode("FirstCharacters", firs tChars);
readerl.close();

BufferedReader reader2 = new BufferedReader(new Fi leReader(output2));
String lastChars = reader2.readLine();
item.getRootNode().addNode("LastCharacters”, lastC hars);
reader2.close();
Stage nextStage = this.getNextStage();
if(nextStage = null) {
nextStage.processltem(item);
}

} catch(Exception €) {
throw new RuntimeException(e);
}

}
}

B.3: Output Code

The code for our output stage is slightly more complicated, bedanseds to take the
location to place the output files as parameters. However, bedesuisestas no documentation,
how to take parameters remains unclear. Looking at existingsséggexamples, we realized we

50

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

needed to provide a JSP webpage that asks for the configuration gasaaret then extract

them from the XML object given to us by the Ul. So we wrote the code shown below.

public class OutputStage extends Stage {

public String getDescription() {
return "Output stage for the tokenizer and decoder ;
}

public String getDisplayName() {
return "Output™;
}

public String getConfigPage() {
return "stage_output.jsp";
}

public void processltem(ltem item) throws PipelineE xception {
try {
File inputFile = new File(item.getRootNode().getCh ildvalue("url"));
String tokenDir = super.params.getProperty("token_ directory");
String firstDir = super.params.getProperty(“first_ directory");
String lastDir = super.params.getProperty("last_di rectory");
File tokenFile = new File(tokenDir, inputFile.getN ame() + ".tokens");
File firstFile = new File(firstDir, inputFile.getN ame() + "first");
File lastFile = new File(lastDir, inputFile.getNam e() +".last");

BufferedWriter writer = new BufferedWriter(new Fil eWriter(tokenFile));
Node textNode = item.getRootNode().getChild("text");
Iterator<Token> tokenlter = ((TokenList)
textNode.getAnnotations("token")).iterator();
while(tokenlter.hasNext()) {
Token token = tokenlter.next();
writer.write(token.toString() + "\n");

writer.close();

BufferedWriter firstWriter =

new BufferedWriter(new FileWriter(firstFile));
firstWriter.write(item.getRootNode().getChildValue ("FirstCharacters"));
firstWriter.close();

BufferedWriter lastWriter =
new BufferedWriter(new FileWriter(lastFile));
lastWriter.write(item.getRootNode().getChildValue("LastCharacters"));
lastWriter.close();
Stage nextStage = this.getNextStage();
if(nextStage !'= null) {
nextStage.processltem(item);

} catch(Exception e) {
throw new RuntimeException(e);

}

51

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

B.4.]JSP Page
Then we had to write the JSP page that we returned from tGergefPage method. We
based it on examples from the source code. Our page is shown below.

<%@ page import = "org.openpipeline.server.pages.*" %>
<%
ConfigureStagesPage currPage =
(ConfigureStagesPage)session.getAttribute("currpage ");
%>
<table>

<tr>

<th colspan="3">Output Stage</th>
</tr>

<tr valign="top">
<td colspan="3">Writes the output from the Tokeni zer and Decoder
Stages</td>
</tr>

<tr valign="top">
<td>Token Directory:</td>

<td><%=currPage.textField("token_directory")%></t d>
<td>
Example: C:\Documents and Settings\ngiles\My Docume nts\Task\Tokens</td>

</tr>

<tr valign="top">
<td>First Directory:</td>

<td><%=currPage.textField("first_directory")%></t d>
<td>
Example: C:\Documents and Settings\ngiles\My Docume nts\Task\First</td>

</tr>

<tr valign="top">
<td>Last Directory:</td>

<td><%=currPage.textField("last_directory")%></td >
<td>
Example: C:\Documents and Settings\ngiles\My Docume nts\Task\Last</td>
</tr>
</table>

52

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

Appendix C: XML Code for Mule as a Discrete Process Architecture Executive

C.1: XML Code

This is a description of the XML code needed to run as an execotivbd example
process using the Mule ESB.

The top level “mule” tag defines namespaces and schemas andrmidé.the “mule”
tag, two connector types were defined. The first was &dilamector type named “HotFolder”. It
was specified as options that itrist streaming (meaning that Mule should not deliver it as a
stream of bytes), that the file should not be deleted aftarimgpeand that the folder should be
polled every 10 seconds. The second was a Virtual Machine connectofatype-memory
gueue of Java objects) that named “VmQueue”.

Next a model (which is a bundle of related services) was dkflnside the model, two
services, called Tokenizer and Decoder, were defined. In Muleyiaeses something which can
take input and return output. The most common case is a Java classcdmtalso support
various web services. In this case, a script (in the Groawukge) was used as the service,
because this scripting language can be used easily to make sg@lenand the script can be
embedded in the XML file itself.

The Tokenizer service specifies that it wants to use the HotFyjde of connector for
its input, and specifies a specific file path. It specifi@gaihts to use the VmQueue for its output,
and gives a named path for that as well. An inline script wasewiititthe connector which takes
a file name as input. The script passes that file name to tble libx executable, which creates
an output file, and then the script returns the name of that output file.

The Decoder service specifies that it uses the VmQueue as patscript for that
service takes a file name as input and passes it to thelmaottecoder executable. It does not
return any output.

When Mule is executed with this XML file, the HotFolder conneatonitors its folder
every 10 seconds. Each time, if it finds any files in that foldenoves them to a secondary
folder (to ensure they are not processed twice), and then invokes thed¢olkscript with the
moved file name as input. The tokenizer script invokesdkemizer black box, which creates a
token file on disk. The script returns the name of this file, and [dule the returned string in
the output queue. The decoder service reads from the queue as itsampueglls its script
passing that string. The script runs tleeoder black box with that input, which creates output
files in the correct places, and then the script ends.

<?xml version="1.0" encoding="UTF-8" ?>

- <mule xmIns="http://www.mulesource.org/schema/mule/core/2.2"
xmins:spring="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:file="http:/ /www.mulesource.org/schema/mule/file/2.2"
xmins:scripting="http://www.mulesource.org/schema/mule/scripting/2.2"
xmlns:vm="http://www.mulesource.org/schema/mule/vm/2.2"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.mulesource.org/schema/mule/file/2.2
http://www.mulesource.org/schema/mule/file/ 2.2/ mule-file.xsd
http://www.mulesource.org/schema/mule/scripting/2.2
http://www.mulesource.org/schema/mule/scripting/2.2/mule-scripting.xsd
http://www.mulesource.org/schema/mule/core/2.2

53

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

http://www.mulesource.org/schema/mule/core/2.2/mule.xsd
http://www.mulesource.org/schema/mule/vm/2.2
http://www.mulesource.org/schema/mule/vm/2.2/mule-vm.xsd">

<file:connector name="HotFolder" streaming="false" autoDelete="false"
pollingFrequency="10000">

<service-overrides messageAdapter="org.mule.transport.file.FileMessageAdapter"
inboundTransformer="org.mule.transformer.NoActionTransformer" />
</file:connector>

<vm:connector name="VmQueue" queueEvents="true" />

<model name="main">

<service name="Tokenizer">

<inbound>

<file:inbound-endpoint connector-ref="HotFolder" path="C:/Documents and
Settings/ngiles/My Documents/Task/Input" moveToDirectory="C:/Documents and
Settings/ngiles/My Documents/Task/InputArchive" />
</inbound>

<scripting:component>

<scripting:script engine="groovy">tokenDir = "C:\\Documents and
Settings\\ngiles\\My Documents\ \Task\\Tokens"; tokenFile = new
File(tokenDir, payload.getName() + ".tokens"); commands = ["java", "-jar",
"C:\\Documents and Settings\\ngiles\\My Documents\\BIN\\Tokenizer.jar",
payload.getCanonicalPath(), tokenFile.getCanonicalPath()]; process =
commands.execute(); process.waitFor(); return tokenFile;</scripting:script>
</scripting:component>

<outbound>

<pass-through-router>

<vm:outbound-endpoint path="DecodelIn" connector-ref="VmQueue" />
</pass-through-router>
</outbound>
</service>

<service name="Decoder">

<inbound>

<vm:inbound-endpoint path="DecodelIn" connector-ref="VmQueue" />
</inbound>

<scripting:component>

<scripting:script engine="groovy">firstDir = "C:\\Documents and
Settings\\ngiles\\My Documents\\Task\ \First"; firstFile = new File(firstDir,
payload.getName() + ".first"); lastDir = "C:\\Documents and
Settings\\ngiles\\My Documents\\Task\ \Last"; lastFile = new File(lastDir,
payload.getName() + ".last"); commands = ["java", "-jar", "C:\\Documents and
Settings\\ngiles\\My Documents\ \BIN\\Decoder.jar",
payload.getCanonicalPath(), firstFile.getCanonicalPath(),
lastFile.getCanonicalPath()]; process = commands.execute();
process.waitFor(); </scripting:script>
</scripting:component>
</service>
</model>
</mule>

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

Appendix D: Scientific Workflow GUI examples

D.1: LONI GUI Example Workflow

Figure 10 shows an example workflow created in LONI for the tokerand decoder
described in earlier workflow examinations. This is a faingpde to create, each triangle set to
read files from a certain directory or write to a certaneatory while the executables have their
paths set and the names of the files they take as input and produce as output specified.

'} Input

Tokenizer
mitretoys
localhost

v ¥ Tokens
_.," localhost

/ Decoder
mitre.toys
localhost

F Ei V Last
v Flrst Y localhost

localhost
Figure 10. An example workflow involving botkokenizer anddecoder in LONI

D.2: Kepler GUI Example Workflow

Figure 11 shows an example workflow created in Kepler for tokeénmizarthis is more
complex than what LONI presents in the earlier figure, but Kdpds other advantages over
LONI in its extensibility and lacking any restriction ofefilnput/output for its analytics, which
gives Kepler a greater flexibility than LONI.

55

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

String Consfant

"C:Documents and Settings'ngiles'\My Documents'BIN'Tokeni...
Array Length

String Accumulator

Exdernal Execution
gt

J E 0y arer
il ode

DirectoryListing Array To Sequence String Splitter

Array Element

PN Director

String Consta
\Tokens\

Figure 11. An example workflow for théokenizer in Kepler.

D.3: Ptolemy GUI Example Workflow

Figure 12 shows an example workflow created in Ptolemy for te&gon. This is
similar to the workflow presented in Kepler and also more compiax tvhat LONI presents,
but Ptolemy has all the same advantages over LONI in its éxtépsand lacking any
restriction of file input/output for its analytics that Ptolemy sla@ addition to being a more
general purpose product than Kepler.

StringConst
PN Director "CiDocuments and Settings'ngiles\My Documents\BIN\Tokenizer bat"
DirectonyListing ArrayToSequence StringReplace

AddSubtract Exec

oulput
| b
_ i b cvilCece

v

B (T repisomen
g T, .“.E.ME_ _— +

StringConst2

[> \Tokens\

AddSubtract2

¥

Figure 12. An example workflow for théokenizer in Ptolemy.

56

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

Appendix E: Decision Points across Different Candidate Executives

E.1: UIMA

In UIMA, there are primitive and aggregate analysis enginggirAitive analysis engine
is an XML file that describes a single Java annotator clHSiS class provides a method that
takes a CAS object as input and modifies it as output. An aggragalgsis engine is an XML
file that lists a collection of other analysis engines, eiffténitive or aggregate. These sub-
analysis engines are referred to as its delegates. A dempdekflow in UIMA is created by
first writing a primitive analysis engine XML descripfor each individual Java annotator. Then
a developer builds a tree hierarchy upward by collecting delagatgsis engines into aggregate
analysis engines until there is a single aggregate abfheftthe tree which contains all the
necessary annotators. The simplest way to do this is to wsitegke aggregate which contains
all the required primitives as delegates; however, it make logical sense to first create
aggregate subgroups and then combine those subgroups as delegates.

Each aggregate analysis engine also specifies a Javaalassa Flow Controller. The
Flow Controller class must expose a method catt@dputeFlow which takes a CAS object as
input and returns a Flow object. For every CAS object that isngas input to this aggregate
analysis engine, the UIMA framework will catbmputeFlow and will save the returned Flow
object together with the CAS object. Each Flow object is respengibimanaging the workflow
of the CAS object it is associated with. Note that this arctite allows different Flow objects
to be created based on the initial state of the CAS object.

A Flow object exposes a method calleekt which takes no input and returns a set of
delegate analysis engines. Although it does not take expimit,i each Flow object is always
able to inspect the CAS object it is associated with and thef Idelegate analysis engines from
the aggregate XML file. Whenever the UIMA framework needs terdehe which delegate
analysis engine should process a CAS object next, it callse#henethod of the Flow object
associated with that CAS. If it returns a one element set, ttiegndelegate analysis engine
receives the CAS next. If it returns a multi-element den tthose delegate analysis engines
should process the CAS in parallel next; however, the UIMA frasnedoes not guarantee that
it will actually use parallel processing and may simply dake them in a random sequential
order. If thenext method returns the empty set, it indicates that this CAS olsjéicished with
this workflow and should be returned from the analysis engine.

The UIMA framework only provides an implementation of a Flow Control¢hich
returns Flow objects that schedule every CAS to pass through eledegate analysis
sequentially and exactly once in the same order as theyshed In the XML descriptor.
Anything more complicated would require a developer to implemenElthe Controller and
Flow interfaces. This would be non-trivial Java code and would requperierce with Java
programming and either familiarity with or a strong willingnesgearn how to write to UIMA’s
API. In order to provide decision points in UIMA to people without angfréava background, a
tool with a simplified interface to decision points that autorafificgenerates Flow Controller
and Flow classes would need to be provided.

E.2: OpenPipeline

OpenPipeline uses a pipeline descriptor XML file to list treges$ in a pipeline, in a
manner similar to UIMA. Each processing stage in a pipelinefasmed about the full list of
stages. It is the responsibility of each processing stageaiibtlse next stage; otherwise, the
pipeline will end at the point. In practice, the OpenPipeline freonle provides a convenience

57

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

method for a processing stage to search the list of stages amldeggthge after it. All the
processing stages provided by OpenPipeline call this method atotmdusion of their
processing to determine which stage is next and start ithwiesults in a sequential flow.
Theoretically, the developer of a stage does not have to honor thigtenwule and could
manipulate the workflow after his stage in any way desireds 3étup, in which control of the
workflow is embedded into the processing stages is fairly robust, but leads taaonfus

E.3: Mule

Recall that Mule is a data driven manager of services. A set of serkgcggeified in an
XML file; each services specifies an inbound endpoint, a comporteah werforms processing,
and an outbound endpoint. Mule supports a variety of transports to which endpaictsnnect;
the most relevant transports for us are the file transport inhwtide polls a directory on the
file system for new files and the virtual machine transpowthich Mule creates an in-memory
gueue of objects. When data appears at one of the service’'s inpstpracessed by that
service’s component and sent to that service’s output. If this owmlso the input of some
other service, then a chained workflow is created. For refereghe XML file for the toy
workflow in Mule is attached.

Before discussing decisions in Mule, a brief discussion of service componesgsiied,
because there are several ways to consider an implementationlen TWe basic notion of a
service component in Mule is a Java class. Based on the forrieg imfput, Mule dynamically
searches the class for a method which has an argument tisathakermat as input and calls it,
and returns the result as output. Given this, Mule could be used to perfaisk in nearly the
exact same way as in UIMA; annotators could be Java cléssetake CAS objects as input,
and Mule could pass the CAS objects around in its in-memory queue®veipwiule can
become more general than that because it is not tied to the @Aftf We could instead
envision an implementation where annotators take the filenamélefcantaining their input as
input, then produce a result file and return its flename as output. ddulel then only pass
around the filenames as data in in-memory queues.

Additionally, while Java classes are the default notion of a proces®mponent in
Mule, processing components can also be web services, or JSR-22B. st8R-223 is
essentially a framework for interpreting scripts inside &l,J%nd there are currently engines for
Groovy, Ruby, and Python among others. This was essential famghismentation because it
allows one to embed a script inside the XML, and scripting languagesnonly have
straightforward ways to execute local processes. Specoyfidhié toy example uses Groovy
scripts as components, as shown in the inline excerpt below.

<scripting:component>
<scripting:script engine="groovy">
tokenDir =
"C:\\Documents and Settings\\ngiles\My Documen ts\\Task\\Tokens";
tokenFile = new File(tokenDir,
payload.getName() + ".tokens");
commands = ["java", "-jar",
"C:\\Documents and Settings\\ngiles\My Documen ts\BIN\\Tokenizer.jar",
payload.getCanonicalPath(), tokenFile.getCanoni calPath()];
process = commands.execute();
process.waitFor();
return tokenFile;
</scripting:script>

58

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

</scripting:component>

Understanding this, we can discuss the possible ways to implen@siodepoints in
Mule. The first and most general way is to write a custom outbmutdr. This would be a Java
class that would implement the Outbound Router interface and couktirtee data being sent
and determine where to send it as a result. This option is stmilae routing UIMA provides in
that it is robust but requires Java experience and familiaatty or a willingness to learn the
Mule API.

Moving down the scale in difficulty, the second means for implemengagsion points
in Mule would be to use a filtering router. Based on the typeat# Heing sent, Mule supports
some basic filters which can be used to select an endpoint frisino possible endpoints. The
basic filters allow selection based on the type of output, regxjaressions for string data,
XPath for XML data, and OGNL for Java objects. Additionally, if anable to write Java code,
one can also implement one’s own filters by extending the hilterface, but this is non-trivial
in a similar manner to implementing an outbound router.

Given all of this, we can consider the following strategy forpéendecision points in
Mule. The script shown previously, which executes a local praresshen returns the filename
of the output is modified to also return the exit code of the proBassed on the exit code, a
filtering router is able to select among several endpoim agere to send the data next. As an
alternative to having an explicit code, the script could inspeabubut after completion of the
process and general something like an exit code from that, and then proceed in thersane ma

59

MOSAIC — Implementation Recommendations
The MITRE Corporation, 2010-2011

Appendix F: Initial Implementation of the Inbound Gateway

The initial inbound gateway, which represents the first step thto MOSAIC
architecture, is implemented with a JMS (Java Messagec8emieue. A message is put on the
gueue containing a URL that refers to the raw document to be peddagdOSAIC. As stated
in the recommendations, this is not a core competency to the cuetatiecture, and MOSAIC
does not require the use of JMS to serve as its input technologytAer application that can
be used to queue documents or references to documents are alsoalteiplatives (e.g. hot
folders). The need for a queue is directly due to the requiremdranafing a stream of input
data, and this would be alleviated were MOSAIC applied to tasks that had a batch mode of input

The inbound gateway has been simplified to some extent from thal ini
recommendations out of consideration of the fact that the andiytationality it might be
expected to have within the MOSAIC architecture is more appteprieendered in the context
of how analytics have been characterized, as they perform cantgsis and production. This
includes any triage, workflow selection, or zoning work, the lattevto€th in fact is treated as
an analytic in the current implementation.

60

	Introduction
	Architectural Goal of MOSAIC
	Architectural Options for MOSAIC

	Case Study: METEOR
	Tightly Integrated Architecture Technology Analysis
	Recommendation

	Discrete Process Architecture Technology Analysis
	Discrete Process Architecture Technology Analysis: Interface
	Discrete Process Architecture Technology Analysis: Inbound Gateway
	Discrete Process Architecture Technology Analysis: Executive
	UIMA as Executive
	OpenPipeline as Executive
	Mule as Executive
	LONI or Ptolemy/Kepler (Scientific Workflow Projects) as Executive
	Decision Points in Workflows across Possible Executive Options
	A BPEL Engine Executive?
	Other Options for Executive
	Recommendation

	Discrete Process Architecture Technology Analysis: Data Bus
	Flat File System as Data Bus
	Alfresco as Data Bus
	ObjectStore as Data Bus
	Recommendation

	Discrete Process Architecture Technology Analysis: Analytics
	Specific Analytics and Analytic Workflow
	Analytic Pipeline

	Discrete Process Architecture Technology Analysis: Adapters
	CAS as Common Interchange Format
	GrAF as Common Interchange Format
	Possible Basis Ontologies

	Summary of Recommendations
	Takeaways

	Glossary
	A.1: Collection Reader Code and XML
	A.2: Tokenizer Wrapper Code and XML
	A.3: Decoder Wrapper Code and XML
	A.4: Flow Code in UIMA
	B.1: Tokenizer Wrapper Code
	B.2: Decoder Wrapper Code
	B.3: Output Code
	B.4.
	C.1: XML Code
	D.1: LONI GUI Example Workflow
	D.2: Kepler GUI Example Workflow
	D.3: Ptolemy GUI Example Workflow
	E.1: UIMA
	E.2: OpenPipeline
	E.3: Mule

