

Implementation Recommendations
for MOSAIC:
A Workflow Architecture for
Analytic Enrichment

Analysis and recommendations for the
implementation of a cohesive method for
orchestrating analytics in a distributed model

Ransom Winder
Nathan Giles
Joseph Jubinski
July, 2010 (updated, February, 2011)

MT R - MN I - 0 0 0 - 01 2

MIT R E T E C H N IC A L R E P OR T

Contract No.: DAAB07-01-C-C201

Project No.: 0710N7AZ-SF

Approved for Public Release. Distribution

Unlimited. 12-2472

©2010 The MITRE Corporation.

All Rights Reserved.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

1

Contents

Introduction ... 3

Architectural Goal of MOSAIC .. 3

Architectural Options for MOSAIC.. 4

Case Study: METEOR .. 10

Tightly Integrated Architecture Technology Analysis ... 12

Recommendation .. 13

Discrete Process Architecture Technology Analysis .. 13

Discrete Process Architecture Technology Analysis: Interface.. 14

Discrete Process Architecture Technology Analysis: Inbound Gateway 14

Discrete Process Architecture Technology Analysis: Executive .. 15

UIMA as Executive... 16

OpenPipeline as Executive ... 17

Mule as Executive ... 18

LONI or Ptolemy/Kepler (Scientific Workflow Projects) as Executive 19

Decision Points in Workflows across Possible Executive Options 20

A BPEL Engine Executive? .. 21

Other Options for Executive ... 21

Recommendation .. 21

Discrete Process Architecture Technology Analysis: Data Bus ... 21

Flat File System as Data Bus .. 22

Alfresco as Data Bus ... 22

ObjectStore as Data Bus ... 23

Recommendation .. 23

Discrete Process Architecture Technology Analysis: Analytics .. 25

Specific Analytics and Analytic Workflow .. 27

Analytic Pipeline ... 28

Discrete Process Architecture Technology Analysis: Adapters ... 29

CAS as Common Interchange Format .. 32

GrAF as Common Interchange Format... 33

Possible Basis Ontologies ... 33

Summary of Recommendations .. 33

Takeaways... 34

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

2

Glossary .. 36

Appendix A: .. 39

A.1: Collection Reader Code and XML ... 39

A.2: Tokenizer Wrapper Code and XML ... 41

A.3: Decoder Wrapper Code and XML .. 44

A.4: Flow Code in UIMA ... 46

Appendix B: .. 48

B.1: Tokenizer Wrapper Code .. 48

B.2: Decoder Wrapper Code ... 49

B.3: Output Code .. 50

B.4. JSP Page .. 52

Appendix C: .. 53

C.1: XML Code .. 53

Appendix D: .. 55

D.1: LONI GUI Example Workflow .. 55

D.2: Kepler GUI Example Workflow ... 55

D.3: Ptolemy GUI Example Workflow .. 56

Appendix E: .. 57

E.1: UIMA .. 57

E.2: OpenPipeline ... 57

E.3: Mule... 58

Appendix F: .. 60

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

3

Introduction

This is a companion document to MOSAIC: A Workflow Architecture for Analytic

Enrichment that describes the current need for integration of document analytics and a general
approach to solving this problem. This document directly addresses the implementation issues of
the candidate architecture, with specific frameworks for the different architectural
subcomponents analyzed and compared. Ultimately, recommendations are offered.

Architectural Goal of MOSAIC

Figure 1. The MOSAIC Architecture’s role in a larger system that delivers it input from a
Content Provider and consumes its output in a Knowledge Base Architecture.

The goal of this effort is to develop a Natural Language Processing architecture to be

used by subject matter experts who are researchers and engineers, termed domain expert
engineers here. This architecture, titled MOSAIC, is intended to be shared across multiple
projects and hosted in the sponsor’s environments and is intended to be compatible with and
facilitate a streaming document flow as opposed to execution on a static batch of documents,
which would require an entire corpus be present before processing could commence.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

4

In order that the overall goal is addressed, several high level requirements need to be met
in order for the system to be considered successful. These requirements are specified here:

1. The system shall maintain a consistent overall structure with evolving components,
where the consistent structure is the relationship of the framework built around the
analytics, which in turn are the chief evolving components, though the individual
products that make up the framework shall be replaceable without deteriorating the
interoperability.

2. The system shall at the least be able to accommodate a pipeline of analytics such that
they can be run in sequence, potentially using the output of one as input to the other,

3. Ideally the system should be able to handle more complex workflows that make use
of splits, joins, and decision points.

4. The analytics involved in the system shall be stateless, specifically in that they make
no assumptions about what happens in any workflow prior to their execution or
subsequent to their execution.

5. The system shall have the ability to handle streaming documents that arrive
asynchronously and in large quantities (generating and executing appropriate
workflow instances for each).

6. The system shall have the capability for a “debug” mode allowing a user to specify
execution of a workflow instance on a particular document.

7. The system shall leave audit trails for the purposes of provenance, in order that results
are verifiable and repeatable.

Figure 1 depicts the larger system in which the MOSAIC architecture can fit. This system
can be essentially broken into three key components, from the perspective of the MOSAIC
architecture, which takes its input from one and provides its output to the other. MOSAIC’s input
arrives from a Content Provider and this input is expected to be a document stream. This is a
separate input avenue from a user-specified “debug” mode which accommodates ad hoc input.
MOSAIC’s output, which is some subset of relevant document artifacts produced by workflow
instances operating on the input, is ingested by a Knowledge Base Architecture.

Architectural Options for MOSAIC

There are multiple approaches available for the design of an architecture that achieves the

goal requirements specified above. Here this document puts forth some of these possibilities and
makes recommendations on which architecture most appropriately suits different end users’
needs, the end users identified as being the domain expert engineers.

There appear to be two separate environmental needs that can be addressed from a system
of integrated analytics such as this, and these are identified as a production environment and a
research environment. The production environment is characterized by a specified activity that
needs to be accomplished in a highly efficient manner where artifacts collected throughout
processing are insignificant compared to the actual output. The research environment is
characterized by an emphasis on flexibility of activity to account for newly developed and
evolving workflows, provenance and repeatability for experimental purposes, debugging in order
to correct errors in newly developed and evolving analytics, and parameter tuning for the
analytics to refine the results of the executing workflows. These two environments are not
incompatible. Indeed, it is likely that what is developed, explored, and tuned in a research
environment would eventually be migrated into a production environment where it can be used
on high volumes of data and require less modification and greater efficiency.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

5

Given these two different environments, it stands to reason that two different approaches
to the architecture are likely to suit one or the other of them. It was determined that a production
environment would fit best with a tightly integrated architecture using an off-the-shelf
technology, such as UIMA (Unstructured Information Management Architecture), which is
specifically considered here, as an overarching framework since efficiency concerns are
paramount in this environment. It is further recommended that the research environment would
be best addressed by a different architecture, one consisting of discrete processes that are less
directly integrated but are more flexible when it comes to their addition by researchers as new
workflows and analytics are frequently crafted. These two different approaches to the different
environments are detailed below, and Table 1 lays out the differences between the approaches,
also showing which features best align with the requirements of a research environment or those
of a production environment. These alignments with research and production environments for
the two examined approaches are equivalent to the advantages contingent on the final use case
environment. A lack of alignment between a use case environment and a framework option does
not necessarily constitute a disadvantage, but in the instances where this is true, it is indicated in
the discussion below.

 Tightly

integrated
Architecture

Discrete Process
Architecture

Required by

Memory managed Yes No Production
Tied to a specific architecture Yes No Production
Tuned/optimized for targeted tasks Yes No Production
Low barrier to entry for domain
expert engineer

No Yes Research

Flexibility across analytics written in
multiple languages

No Yes Research

Ease of integration of new analytics No Yes Research
Adaptability to evolving technology No Yes Research
Table 1. Examination of features required by either production or research environments and
supported by certain architectures.

The first option considered for architectural design makes use of a tightly integrated

architecture of analytics. The architectural software tools found in UIMA are ideal for this
manner of architecture as they allow for complex Natural Language Processing applications to
be decomposed into their incremental individual tasks and provide a framework to manage these
components and the flow of data from one to another. Users specify XML descriptor files for the
transfer of data between the components, and the tight integration of the components in the
framework means that UIMA can execute a workflow across multiple components without
having to write to file, instead performing the task entirely within memory.

When looking at the requirements that a production environment imposes, the virtues of
this tightly integrated architecture are readily apparent. The emphasis in such an environment is
on the efficiency of the overall system, and therefore the ability to perform the task in memory is
a benefit as it can forgo the expense of writing to files and the overhead of having to perform the
file management of documents and document artifact collections over the life of a workflow
instance. The tasks in this environment should be quite specific and therefore a consistent

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

6

architecture with individual implementations that are each highly tuned and optimized for
particular tasks fits well. The memory usage and analytic input/output can be optimized for the
specific task in advance.

When considering a research environment though, the lack of alignment with certain
requirements reveals certain limitations to a UIMA-based tightly integrated framework. One of
these limitations arises naturally from the tight integration of components. UIMA components
are written typically in Java. The integration of other languages such as C++, Perl, and Python
are supported, but these are suboptimal when considering that the intended language is Java. In a
research space though, it is highly likely that legacy components will exist that were composed
in other languages while at the same time researchers might want to rapidly create components
outside the Java language for convenience on a case by case basis.

In a research environment, a wide variety of analytic components should be available for
the purposes of workflows designed to conduct experiments, and this requirement reveals
another limitation of using a tightly integrated UIMA architecture, specifically in terms of the
efficiency. Because there will be many different workflows that use the components, it can occur
that artifacts will be generated for files by different analytics that will not be used further in an
executed workflow. The size of document artifact collections can be quite large when compared
to the size of the original file, which means that the memory can become strained with excessive
information for a document on a particular workflow. If this pipeline of information should be
stateless, it is not possible to identify for any analytic what artifacts will be necessary for later
points in any given workflow, which means that all the artifacts must be maintained, potentially
bloating memory further and further with successive analytics. For analytics that have to be
accessed outside UIMA, this efficiency concern extends to the time required for marshalling all
analytic output into UIMA’s common data format, CAS (Common Analysis System), when there
might only be some smaller subset of the artifacts that are necessary for a given workflow. If
most of the artifacts were stored in a document management system and the framework were less
tightly integrated, then only the information needed for any given workflow would need to be
handled by the executive and passed to the analytics. Additionally, it is possible that multiple
workflow instances will execute simultaneously and asynchronously in the same system, which
creates a further burden for the memory.

There is also a potential risk in the research environment, where flexibility and
extensibility are highly valued, in committing to a specific tightly integrated architecture such as
UIMA. Because there are many competing and newly emerging alternatives to UIMA (for
example, GATE, OpenPipeline), it is possible that UIMA could be abandoned, leaving a final
architecture stagnant at that point, although the tight integration of the components means that
the commitment level to this specific technology would need to be high.

A more appropriate alternative in a research environment would be to create an
architecture that is more loosely coupled where components such as an executive and a data bus
are effectively separated from the analytics, which are treated as discrete components, such that
they are more easily replaceable as technology evolves.

A discrete process architecture would fulfill the same role as an architecture developed
entirely within UIMA, namely executing workflow instances of analytics on incoming
documents for the purpose of annotation and information extraction in a systematic and
repeatable manner of operation. This architecture is characterized by the more modular nature of
its components, the major components being the inbound gateway where documents arrive for
processing by workflows, the executive that orchestrates the activity of the executing workflows,

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

7

the independent analytics, the adapters that allow for communication between analytics, and the
data bus where document artifacts are stored between their use in different analytics. Key to this
architecture is the separation of the workflow executive from the analytic data, which is not part
and parcel of the executive. Instead the executive simply needs to know where to find the data
and where to send it. Figure 2 shows a representation of this architecture’s layout.

Figure 2. A high-level depiction of the thread of interactions between the services in a discrete
process architecture. The user accesses analytics to run workflows on a source document via an
interface attached to an executive. Adapters convert analytic output data to a common
interchange format (as well as converting from this format back into specific analytic-usable
formats) and this data persists over the life of the task in the data bus, which can route the data to
other analytics or to the executive.

The advantages of a system like this directly address the issues raised when considering a

more tightly integrated system using a product like UIMA as the overarching framework for a
research environment. Compatibility issues that arise with non-Java-based analytics are
mitigated here as the executive need not impose a particular language on the analytics, each of
which can be handled as a discrete process acting independently of other analytics, consuming
input and producing output as the analytic was originally specified to do. This makes the

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

8

integration of current analytics much less onerous and more flexible as they need not be
rewritten to accommodate the CAS format and operate on input and output in memory.

This last point indicates another advantage of this system when considered in a research
environment. Because the input and output of the system (that is, document and document
artifact collections) are stored on the data bus, it is unnecessary to transfer all data from the data
bus to any individual analytic that requires it. This means that what data is actively processed can
be specified online on an analytic by analytic basis, while the bulk of any document artifact
collection can remain in storage until required at some point in the workflow. This allows for a
greater efficiency of what enters memory, whereas if an entire document artifact collection was
held in memory at all times, a significant amount of unnecessary information would have to be
maintained over the life of the workflow. It is also the case that there will be many ongoing
workflow instances operating concurrently, so there may be many requests for memory for each
individual process that could operate on the same virtual machine.

Finally in a discrete process architecture with more loosely coupled components,
adaptability is much easier over the long term, something established as important to a research
environment. As parts of the architecture are potentially out-of-date or no longer supported by
the community, they can be more easily replaced with components that become popular or new
standards, making the architecture capable of a natural evolution as technologies change and new
options become available.

There are potential downsides to the discrete process architecture though. The most
significant of these is that this manner of architecture is optimized to handle the diversity of
analytics that appear in a research environment, and therefore is not as suitable for tools used in a
production environment. In a production environment, a full-featured system such as this
supports is less applicable than something more targeted to a specific task and therefore
optimized in terms of resource costs to that particular task.

Which solution is appropriate really depends on the intended use case. From an initial
analysis it appears that a tightly integrated environment (such as would use UIMA) is a good
choice for a production environment, bearing in mind certain caveats. These include
recomposing current analytics that are incompatible with the architecture and composing the new
analytics such that they plug-in to UIMA, consuming and producing CAS, as well as optimizing
the CAS’s content to make it lightweight enough to maintain the desired efficiency of a memory-
based solution. This last point indicates that analytics and workflows written in this framework
need to be more targeted to specific tasks. Although we have focused our discussion on UIMA,
alternatives in this role are considered below.

On the other hand it appears that a discrete process architecture that makes use of more
highly modular components is more suited to a research environment, where the issues of
flexibility and generality are more important. This approach requires more investigation and
description, and the bulk of this document is devoted to providing the recommendations for the
products to be used for the different identified sub-architectures and how they would interact, in
particular emphasizing what must be a common interchange model and format that will allow
different analytics to adapt their input and output to a lingua franca which requires definition in a
separate document.

While there has been an emphasis on the differences between research and production
environments, it is worthwhile to note that targeted tools for production environments can
naturally evolve out of the more general and flexible tools generated in research environments.
While a research environment’s overall structure is not ideally something that is tightly

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

9

integrated, the individual analytics of that architecture are excellent candidates for being highly
optimized and targeted tools, such as can eventually become parts of the production
environment. This is reflected in Figure 3, which demonstrates the potential relationship between
frameworks for these two environments and how analytics developed as components in a
research environment can be merged and emerge as tightly integrated production tools. A more
flexible architecture in a research environment means that the analytics can be matured
individually and potentially merged as necessary, creating individual tools that can then be
deployed in a production environment where there is less interest in further modification, as this
refinement can be carried on in the research environment beforehand and in parallel with a tool
in current production use.

Figure 3. Potential relationship between research and production frameworks, where tightly
integrated analytic components developed in the research environment can eventually transition
to a production environment, just as existing production analytics can be leveraged by the
research framework. UIMA stands as an example of a basis for a given production architecture.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

10

Case Study: METEOR

In the discussion of different architectures for these complex analytic tasks for research, it

is helpful to examine an actual workflow used in practice that could become part of either
framework proposed in this document. The chosen example is METEOR, a system for capturing
and reasoning over meeting and other events appearing in raw text documents. Figure 4 depicts
the overall workflow and gives some indication of the complexity involved in carrying out this
task with the various required analytic tools.

Breaking down this task, the ultimate goal is to provide reasoning about storyboards of
larger events from a set of smaller events directly extracted from raw text as its source. This
involves a pre-processing followed by four different phases of analytic work in the workflow.
The pre-processing of the source file, such as an email, generates the text file that will be the
input to the extractor. This pre-processing parser is a discrete process which the domain expert
engineers in this case do not control, other than its execution being a necessary first step in their
workflow to ready the documents for consumption by the analytics in their system.

Figure 4. Overview of the workflow in the METEOR system.

The first phase after the pre-processing uses the Serif program for automated information

extraction to produce a set of interim output. This output includes the customary Serif dump data

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

11

that includes the parse tree, annotations, etc. as well as Serif’s ACE (Automatic Content
Extraction) output represented in APF (ACE Pilot Format), which provides additional
information not found in the dump data such as numerical expressions and Timex annotations.

These artifacts, along with a WordNet to SUMO mapping that captures types absent from
ACE, are then processed further in the second phase by a program called SerifSum, which
aggregates the artifact collection and enriches it in another set of SSP format output, where
annotations that capture verb tense, attitude, entity recognition and resolution, and cardinality
information are introduced.

The third phase of this workflow involves METEOR’s VSD Reasoner, which takes the
enriched SSP from SerifSum as input, along with appropriate wordlists and lexicons, and
produces INF files that include the interpretations and nominalizations of verbs as well as their
arguments and thematic roles. This in total amounts to capturing specific event types. The events
of interest were originally meeting events, but have evolved into events covering travel and
criminal behavior as well.

The fourth and final phase of this workflow is the Scenario Reasoner, which takes as
input the INF files in order to produce a final output that recognizes whether a particular
document contains events of different types (e.g., meeting, criminal activity) as well as
recognizing larger event scenarios using a set of established “storyboard templates” that specify
larger events that while perhaps not directly stated in the raw text of the document are typically
characterized by a set of smaller events more likely to appear explicitly in the text. These
templates are further input to this phase of the workflow.

One can further add to this information the fact that the applications to perform these
different actions are all discrete processes, most of which are written in C++ making use of F-
logic interpreters written in Prolog. Excluding time between the execution of these processes, the
time for the system per document is on the order of approximately 1 to 2 minutes for Serif (the
system bottleneck), 1 to 2 seconds for SerifSum and the VSD Reasoner each, and 10 seconds for
the Scenario Reasoner.

From this detailed description, some of the difficulties in the crafting of a workflow
architecture around this process become apparent. This is a continually evolving piece of
research work, and the flexibility to retune and improve the process is an important element that
must be preserved in the architecture and made as flexible as possible. Further, a straightforward
transition into UIMA would prove difficult for METEOR, which is not composed in Java but in
C++, which while capable of being handled by UIMA is not its primary compatible language.
More important than either of these issues though is the fact that the different parts of the
workflow are discrete processes and not directly integrated, which would require recoding these
components for more tightly integrated systems should one be used as opposed to an architecture
that has the discrete processes executed as is by an executive and has their output handled by
separate adapters that prepare information for storage in a data bus. Using a tightly integrated
UIMA architecture would also require further rework on the analytics such that their output and
input is compatible with CAS. Additionally, a data bus allows for some permanence of artifact
collections which allows for provenance, traceability, and repeatability of the work, crucial for
verification in a research setting, where METEOR is intended to be used.

In contrast, were the intent of METEOR to be used in a production environment then a
specific tightly integrated architecture would make sense, where the tradeoff of provenance and
flexibility with the efficient processing of incoming data disappears in favor of efficiency. This

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

12

would ideally be an architecture though that supports and is optimized for only this task, perhaps
matured in a research environment.

This distinction between a research and a production environment is crucial for
determining which architecture is more appropriate. In situations akin to the complexity of
METEOR and its need for flexibility and to accommodate domain expert engineers who are
interested in collecting repeatable and traceable results, a discrete process architecture as
described below appears to be the most suitable option as its use case best fits a research
environment.

Tightly Integrated Architecture Technology Analysis

It is worthwhile to detail some of the options as the different architectures are considered.

Although the consideration of a tightly integrated architecture up until this point has been limited
to UIMA, which is intended for just such a purpose, here the discussion is opened up to include
discussion of an alternative, GATE (General Architecture for Text Engineering), for comparison.

Both the GATE and UIMA frameworks take a similar approach in their fundamental
design. Both frameworks define a common data format for a document based around the concept
of an annotation. In UIMA, this takes the form of the CAS, which allows for the creation and
storage of data types and provides a base data type for annotations that contain start and end
offsets. A CAS object has one or more views of its document, and each view is associated with a
unique SOFA (Subject of Analysis) for that view. A view of a CAS represents the abstract notion
of an interpretation, and the SOFA for a view represents the actual data associated with that
interpretation. In GATE, the data format takes the form of GATE Documents, which store
annotations that contain start and end offsets and a table of features. Although these data formats
are based on annotations, they are both general enough to represent nearly any type of analysis
data.

Both frameworks also take a similar approach to incorporating analyses. In UIMA,
analysis engines are Java classes with an associated XML file describing configuration
parameters. Analysis engines expose methods to get and set configuration parameters, and a
process method which takes a CAS as input and modifies its annotations as output. In GATE,
language analyzers are also Java classes with an associated XML file describing configuration
parameters. Language analyzers expose methods to get and set configuration parameters, and an
execute method which takes a GATE Document as input and modifies its annotations as output.
Additionally, both frameworks reuse this approach to handle output. For example, either
framework could support an analysis which only writes its input to disk without modifying it;
placing such an analysis at the end of a workflow would effectively save the results of previous
analyses.

UIMA additionally provides a more general notion of analyses which GATE does not,
called CAS multipliers. A CAS multiplier is an analysis which may produce any number of
output documents (including zero) for each input document. CAS multipliers can be used to filter
input documents by conditionally returning no output, to segment an input document into many
smaller output documents, or to aggregate many input documents into one larger output
document. All output documents produced by a CAS multiplier continue through the remainder
of the workflow.

Both frameworks expose an interface for skilled developers to programmatically define
robust workflows, and they also provide their own implementations of a simple, serial workflow

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

13

which users who lack significant programming experience can use. With regards to workflow
input, the frameworks take slightly different approaches. A UIMA workflow must include a
collection reader as its first element, which exposes a next method that returns CAS objects. The
UIMA framework repeatedly calls the next method until the collection reader indicates that input
is exhausted, and the collection reader is responsible for reading input into the CAS format and
returning it. A GATE workflow must be given a list of documents to process as input, and the
GATE framework provides built-in support for reading common formats into GATE Documents
with metadata (such as tags in HTML) represented as annotations.

Beyond what has been mentioned, the major advantages of both GATE and UIMA take
the form of tools which are not essential to the underlying framework. GATE comes with an
extensible GUI for loading documents and creating corpora, viewing and editing annotations,
and loading and running analyses. This user interface can be considered superior to UIMA’s user
interface, which consists of a plug-in for Eclipse and a collection of shell scripts. GATE also
defines the JAPE (Java Annotation Patterns Engine) language, which is similar to regular
expressions for annotations. Developers can express a series of transformation rules based on
annotations in the JAPE language, and then automatically generate a GATE analyzer which
performs those transformations on its input. Finally, GATE is distributed with ANNIE (A
Nearly-New Information Extraction system), a set of information extraction analyses for GATE
developed by the University of Sheffield.

Excluding support for CAS multipliers, the major advantage of UIMA over GATE is
scalability. UIMA provides support for deploying analyses to remote nodes as part of a
distributed workflow, and support for duplicating a workflow on a single node using threads.
Further, there is an addition to the base UIMA framework called UIMA AS (Asynchronous
Scaleout) which is integrated with middleware to allow remotely deployed analyses to be
duplicated across several nodes and work in parallel as part of a single workflow. Finally, there
is also an addition to the base UIMA framework called UIMA C++ which allows analyses to be
written in C++. By using SWIG, an open source interface compiler for C++, this framework can
also be used to write analyses in languages with which SWIG can interface, particularly Perl,
Python, Ruby, and Tcl.

Recommendation

Out of the two chief competing architectures that are intended for a tightly integrated

architecture, there appear to be greater advantages to using UIMA, so specifically in a production
environment the recommendation is to use UIMA as this architecture given its more general
notion of analyses and greater scalability.

Discrete Process Architecture Technology Analysis

When considering a research environment as the intended venue for a Natural Language

Processing analytic architecture, a discrete process architecture as suggested is the best fit for
domain expert engineers who are crafting workflows of analytics. The following sections discuss
in detail the specific subcomponents of the architecture which must be developed along with an
examination of the available technologies for implementing each subcomponent.
Recommendations for specific technologies are made for each as well following this analysis.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

14

Discrete Process Architecture Technology Analysis: Interface

The interface provides the user with access to the architecture, allowing for definition of

workflows and execution of specific instances of these. This access can be provided in different
ways, including the user composing a configuration file that establishes the workflow and its
input requirements. Another possibility is a graphical user interface (GUI) that can specify both
the restrictions on the documents to be analyzed and worked on as well as the particulars of the
workflow that will operate on the data taken from these documents, including which analytics
are called and what data from different sources (in consideration that an analytic might need to
execute on the output of a previous analytic) will serve as input.

While it is anticipated that most workflow instances will be generated as relevant
documents arrive in the inbound gateway, this interface provides the opportunity for a user to run
a single ad hoc workflow instance on a particular document. The user can also specify where the
data is located or how to collect it rather than actually working from an initial document or
corpus of documents on hand. This layer of abstraction means the user can avoid both the need to
organize and maintain where the mid-workflow data is kept and avoid executing each analytic in
the workflow manually, simplifying the input to the raw source document and the output to
whatever the user specifies in the interface.

Discrete Process Architecture Technology Analysis: Inbound Gateway

The inbound gateway is responsible for handling the input stream of documents that

arrive for processing. Based on the interactions with active workflow instances specified in and
deployed by the executive, the inbound gateway will submit documents to the data bus for
processing by those workflow instances.

By way of document triage, this transfer of documents can be filtered before it ever
reaches the data bus, such that only particular documents (such as documents that match the
active workflow instances’ specification or those that are not corrupt) reach the data bus for
processing. Alternatively, there might be workflows that intend to work on all incoming
documents, in which case everything that passes through the inbound gateway will enter the data
bus.

In addition to this document triage, there is a set of document interrogation procedures
that all documents must undergo, including such analysis as language recognition and genre
detection. This analytic work must happen before any of the active workflows execute on the
incoming document, so it is necessarily a part of the inbound gateway, which prepares the
documents for use by any of the workflows. As suggested above, workflows may be targeted to
documents of a particular language or genre and this information must be made available to all of
them up front. Any further or deeper analysis should not be part of the inbound gateway as the
key role here is not meant to be content extraction or annotation, even though it is necessary in
the identified cases.

An issue that the inbound gateway must accommodate is the limitations on the systems of
the amount of parallelism possible. There are going to be low and high water marks in the
capacity of threads being executed, which require different input rates on a given instance of the
system. When a high water mark of capacity is reached, the inbound gateway should inform the
Content Provider to throttle back on documents being sent to it and when a low water mark is
reached, this is also indicated to the Content Provider so that the stream of input can be resumed.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

15

This prevents the thrashing of the executive between high and low activity, keeping a steady
wave of activity.

It should be noted that the inbound gateway is not a core competency of this system, but
this description has been included for completeness sake.1

Discrete Process Architecture Technology Analysis: Executive

This section considers and examines several technology options for an executive to a

discrete process architecture. The role of this executive is to orchestrate all the user-specified
behavior in the execution of a workflow. Ideally, an executive would also automatically handle
some of the data or memory management issues for the user, but it at the least needs to provide
the opportunity for the user to specify the coordination and flow of documents and document
artifacts throughout the life of a workflow instance. In this architecture, the executive will either
receive input from an inbound gateway that supports the input stream or as a specified file when
operating in a “debug” or ad hoc execution mode. This input is moved into the data bus and will
be used as input to the analytics, between which the executive is tasked with handling the data
flow.

Workflows must be capable of persistent deployment by the executive, and
communication with the inbound gateway determines the documents relevant to the workflow
that will be processed in a workflow instance. This allows for multiple instances of the same
workflow to operate on different documents that arrive for processing. Alternatively, workflows
can be deployed temporarily to execute on user-specified documents in an ad hoc manner.

Workflow information, namely the succession of and parameter settings for analytics,
should be retained among the data in a document artifact collection in the data bus and past the
life of the workflow in the resulting output. This allows for keeping track of the provenance of
what is produced by a collection of analytics making results traceable and repeatable.

Among the possible architectural technologies considered that can fill this role examined
here are UIMA, OpenPipeline, Mule, and Ptolemy, the applicability and pitfalls of each
discussed in turn. Each discussed technology is open source, unless otherwise specified. The
initial analysis was conducted for each of these in a simple use case workflow of analytics. This
task involves two simple analytics. The first is a tokenizer that separates text based on
whitespace and puts each token in a document on a separate line in an output file. The usage is
“java –jar Tokenizer.jar <input file name> <output file name>”. The second is a decoder that
outputs two files, the first a concatenation of the first letter of each line of its input and the
second a concatenation of the last letter of each line of its input. Its usage is “java –jar
Decoder.jar <token file name> <output1 file name> <output2 file name>”.

The following directory structure is on the disk of a single, isolated machine. There is a
top level directory called “Task”, which has four subfolders: “Input”, “Tokens”, “First”, and
“Last”. The input directory has some number of named text files processed with two toy
analyses. For each input file, the tokenizer output is sent to the “Tokens” directory but with the
added extension “.tokens”, and the decoder output is sent into the respective “First” and “Last”
directories with the added extensions “.first” and “.last”.

In each case the task is to execute the tokenizer first and then the decoder on its output to
end up with two output files. This allows a reasonable comparison for the difficulty in crafting a
simple workflow using each considered technology as the executive.

1 A description of the current implementation of the inbound gateway is provided in Appendix F. (Feb. 2011)

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

16

UIMA as Executive

As discussed in the earlier examination, UIMA is a software architecture that supports

developing and deploying analytics that execute on potentially large volumes of unstructured
information. The ultimate intent of these analyses is knowledge discovery. The most relevant use
case at hand which UIMA addresses is the consumption of raw text in order to enrich the source
material and extract elements such as entities, relations, and events. While intended to
orchestrate components that plugged in to be part of the same application, it is also capable of
executing a workflow that makes use of outside components. The example case was
implemented in UIMA with this in mind.

UIMA was examined in the role of an executive for discrete processes, the details of
which are discussed here with the code implementation provided in Appendix A. As described
above, two “black box” toy analyses ran on input documents and produced output for, the
tokenizer and the decoder.

In building this system in UIMA, the code necessary to create input CAS objects is first
described. The collection reader at the start of a UIMA workflow is responsible for reading the
input files and formatting them into CAS objects. In this example, the initial CAS object creation
is trivial as the UIMA framework is packaged with a collection reader that can transform input
text files into CAS objects where the body of the text is the sole SOFA. It is worth noting that
this procedure is not as simple for more complex documents such as PDF files, or HTML files
that could require de-tagging. Additional UIMA collection readers for some common file
formats exist as open source code, but it may occasionally be necessary to develop a new
collection reader. In consideration of this, a collection reader for this task was written for the
purpose of demonstration.

The first step in building a collection reader is to write an XML type descriptor. This file
and its details are described in Appendix A.1. Once the type descriptor file is created using the
UIMA Eclipse plug-in, the plug-in will automatically generate Java classes for each type one
defines. This makes these Java classes useable in the collection reader Java class written next.
This class and its XML descriptor are further detailed in Appendix A.1. Next, similar XML
descriptors and Java classes are written to encapsulate each analytic. The necessary XML type
descriptors and wrapper Java code for the discrete process, or black box, components in the task,
the tokenizer and the decoder, are detailed in Appendices A.2 and A.3, respectively. Finally, an
output component is written to save the analysis data to disk. This XML file and Java code is
similar to that for the analytics, and is not detailed for brevity.

With all the analysis engines defined, the next step is to define a flow. Since only a
simple linear flow is required, the built-in flow control in UIMA can be used. However, UIMA
does provide an interface for more complicated workflows to be defined if necessary. Both the
full flexibility of UIMA workflows and the flow controller used for this task are detailed in
Appendix A.4. After writing another XML file to specify this workflow, it can be executed by
starting a script in the UIMA distribution, which launches a Java GUI allowing a user to select
the designed workflow and run it once as a UIMA application.

While the task was successfully accomplished, it makes clear some of the severe
inefficiencies of using discrete processes in a tightly integrated framework. The collection reader
reads the input from a file into the in-memory CAS object. The tokenizer wrapper then writes the
CAS to disk so that the tokenizer black box can take it as input. The tokenizer black box then has

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

17

to read the input file into memory, do its work, and write the output back out to disk. The
tokenizer wrapper reads the output back into memory in the CAS; however, the returned format
cannot be immediately and unambiguously converted to annotations, so extra processing must be
done.

After the tokenizer wrapper performs a linear search through the document in order to
format the token list as annotations, the decoder wrapper ignores that work by reconstructing the
token list, and writing it out to disk so the decoder black box can take it as input. The black box
has to read that file, and then write out two output files. Then, the decoder wrapper has to read
both output files back into the CAS. Finally, the output engine reads the CAS and writes
everything in it back out into files.

This constant exchange between the in-memory CAS object and on-disk black box
formats is representative of a trade-off between efficiency and modularity. Having sacrificed
efficiency by repeatedly moving data in and out of memory, the tokenizer analytic can now be
feasibly replaced with some other UIMA analytic which also produces token annotations, and
this would not alter the function of the decoder. However, this does not eliminate the need to
conform to a specific data model to facilitate communication between components, something
discussed below when examining adapters.

Alternatively, it is unnecessary to use the CAS to store all data. Consider that in the
collection reader, one could have only put the path to the input file in the CAS, and not bothered
to read the file data in to memory. Then, the tokenizer wrapper could simply pass the input file
path to the black box tokenizer, and then add the file path of the tokenizer output to the CAS. The
decoder wrapper could use this file path to send input to the decoder black box. If the outputs
from each black box are then stored in their intended final destinations, an output engine would
not be necessary, and extra memory-to-disk or disk-to-memory penalties would not be incurred.
However, this system lacks modularity because it does not transform the inputs and outputs into
a common format which might be recognized or produced by other analytics.

Various middle grounds could also be considered, such as keeping the original artifact
data on disk and only storing a file path to it but storing actual analysis data in the CAS. If
UIMA were to be used for the executive, this balance between efficiency and modularity would
be determined by the developer.

OpenPipeline as Executive

An alternative technology to UIMA, though it covers much of the same capabilities in

terms of acting as an executive, OpenPipeline is a software architecture intended for analyzing
documents. It has pre-built components, but it can integrate external modules.

In order to make a fair comparison with UIMA, it was attempted to recreate the same
workflow with the same black box components using OpenPipeline. One of the unfortunate
limitations of OpenPipeline is the lack of a Developer’s Guide at present and a spotty Javadoc.
Most of the analyses are gleaned from examining the source code.

OpenPipeline is tightly integrated with a web based GUI for creating and executing
pipelines. As a result of this, OpenPipeline is not easily embeddable within another application
or in a separate UI. Further, because the format of required XML parameters for workflow
definitions is not clearly specified and the generation of these files is tied to the GUI, users are
forced to use the provided interface.

An OpenPipeline workflow is a Java class which exposes an execute method that is
responsible for the entire execution of the workflow. In this method, a document crawler

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

18

examines a data source specified in the workflow XML file for raw input and creates an Item
object from each document. The Item class is OpenPipeline’s common data format, and stores
data in a tree structure of Nodes. It is rich enough to support any analysis data, but unclearly
separates data into artifact data, artifact metadata, and analysis data. This could potentially cause
issues if analyses intended for data are performed on metadata or vice-versa.

OpenPipeline next routes Item objects through a series of Java classes based on a list of
analytics also provided in the XML file. Each analytic provides an execute method which
examines the Item object as input and modifies it as output.

The lack of documentation makes building a document crawler ourselves quite onerous,
so an implementation provided by OpenPipeline is used. Concerning the analytics, the details of
the creation of the wrapper for the tokenizer are listed in Appendix B.1 and the details for the
creation of the wrapper for the decoder are listed in Appendix B.2. This work is followed by the
output engine, the code for which is detailed in Appendix B.3. In order for these analytics to
appear in OpenPipeline’s web interface, a JavaServer Page must be written as described in
Appendix B.4.

The class files created for this task are then put into a JAR file with a service
specification and added to the install directory for OpenPipeline. The JSP page is placed into
OpenPipeline’s web directory together with the pages for other stages. After doing this, one can
start OpenPipeline and create and execute the workflow. It was found that it executed and
produced the correct output.

The lack of any Developer’s Guide at present makes OpenPipeline an unattractive option
as a solution for developers to create new workflows with relative ease, something that is key to
a research environment’s requirements, and having a focused Developer’s Guide would be
necessary to fit the customer needs.

OpenPipeline has the same spectrum of modularity found in UIMA, and the trade-off in
efficiency and modularity that is present in UIMA is present here as well. The efficiency drops
when users are forced to map analyses in and out of the common format.

Mule as Executive

Mule is looked at next as an option for an executive to the discrete process architecture.

Mule is an enterprise service bus, a less tightly integrated alternative to the options discussed
thus far but one that scales well. Again for a fair comparison with the earlier examples, the same
workflow involving the tokenizer and decoder discrete processes is recreated using the Mule
ESB in the role of executive. Appendix C.1 shows the XML file with embedded scripts, the full
extent of the code necessary to make this run. While Mule normally uses Java classes as its
components, this demonstrates how some scripting languages can be embedded in the XML.

This implementation of Mule indicates that there is potentially a greater simplicity in
developing workflows using multiple discrete processes. Whereas the complexity of crafting the
XML and Java code was somewhat heavy when using UIMA and OpenPipeline, this is reducible
to a single XML specification file in this simple case, making Mule much more manageable.

Unfortunately, this does not address the problem that a user would still have to learn the
specification for the XML in order to craft the workflows and it is not as trivial as simply
providing a list of analytics to the front end that need to be run in sequence.

Mule is also not quite comparable to the other examined candidate executives in how it
performs its workflow. Mule is built around a data-driven workflow, which leads to a slightly
more intuitive model for accommodating simple decision making and decision points (e.g. if-

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

19

then statements). However, complex decisions still require some programming experience,
meaning that as workflows begin to require these conditions, more work will be entailed to
implement them. This issue is not unique to Mule and will be discussed at length in a subsequent
section examining achieving decision points in executives.

Another advantage of Mule is that it is more flexible in terms of how data is represented
between analytics, which means that different formats likely to emerge from different analytics
do not pose a compatibility problem from this executive’s perspective, although they would still
need to be resolved to communicate to one another. However, this removes some of the added
burden imposed by other executives.

It is also noteworthy that while Mule has a version that is available as open source, there
is an enterprise version of the software that must be paid for. This analysis has examined the
open source version, but there might be features available to this version not available in the
open source. Though Mule of course states that this version is intended for production use, it is
likely that the open source Mule is sufficient for the needs of this architecture.

LONI or Ptolemy/Kepler (Scientific Workflow Projects) as Executive

There exist scientific workflow products that are applicable in this use case too. Here, the

LONI Pipeline is examined as an option for an executive to the discrete process architecture.
This is a file-driven scientific workflow application. This section also provides an examination of
Kepler, another project for creating scientific workflows built to be wrapped around the Ptolemy
II open source workflow project. Ptolemy II provides the foundation for Kepler.

Both LONI and Kepler are intended for end-users who are not expected to write code,
and each provides a GUI that is intended for use in creating workflows in each. Appendix D
shows sample graphical workflows constructed using either LONI or Kepler. This provides some
added convenience over the required coding that is necessary for other workflow alternatives.
From the analysis of both of these, LONI has the simpler and more user-friendly interface than
Kepler, but neither of these make the assumption that their users need to be developers.

In terms of the data format and data transfer, LONI stores data in files passed through
input and output while Kepler can pass data in memory between its analytics but also have the
capability to write to and read from the file system or network.

LONI and Kepler are capable of parallel execution of workflow instances, though Kepler
does not support the simultaneous duplication of an actor (that is a specific analytic). Both
workflow projects allow for using grid computing.

While LONI and Kepler are each documented for users, a key limitation on LONI is that,
while free, it is closed source, unlike the other technologies seriously considered here. This
means that it cannot be executed programmatically. This does present a long-term limitation to
using LONI as the executive as it eliminates any ability to extend it to be more robust if
necessary, while Kepler is extensible and its user interface could be extended to be more user
friendly to a research environment where components.

Another potential limitation of LONI is that it places a restriction on its analytics in that
they must take input as files and produce output as files. This, along with the closed source of
LONI, makes Kepler the more attractive alternative of the two. A further examination was made
of the open source workflow project around which Kepler was built, namely Ptolemy, and it was
found this had a greater generality while capable of the same features of interest described above.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

20

Decision Points in Workflows across Possible Executive Options

Naturally, the examined workflow instance is a trivial example, and one might wish to

consider workflows of greater complexity as well. What has been considered up until this point
has been really more in the manner of single sequence pipelines, as opposed to the more complex
structures that can make up workflows. This will be considered next across candidate executives.

Workflows are distinguished from simple sequences of activities by a capability for more
complex behaviors past simple chaining of analytics. While far from all inclusive, the most
crucial of these capabilities is to provide for decision points, that is to say places in the workflow
where the thread of execution can follow one of multiple branching paths based on some
condition being met or not met. Although many workflows that are likely to be executed will not
make use of this and are sufficiently captured by a completely sequential list of activities, there
could be others that do require decision points or they could be created in the future if the
executive is capable of handling these.

The difficulty in making use of the robustness of UIMA has been previously discussed,
but it bears mentioning again. Developers are required to have a certain degree of skill and
experience in Java in order that they can make use of the workflow options such as conditionals,
splits, and joins that advance the process past being a sequential pipeline. In the simplest case
this would involve implementing at the minimum two non-trivial Java classes.

With regard to OpenPipeline, this limitation is even more severe, in that anything other
than a linear workflow is not achievable at the executive level and would have to be embedded
into the analyses themselves, which undoes the crucial benefit of modularity.

This is not quite the case with Mule though. Filters can be placed on the input and output
to the components that effectively act as decision points, selectively dropping messages and
determining what destination they reach. This allows for at the very least simple conditionals by
filtering messages and message properties that return from the analytics (via regular expressions,
for instance). This issue of decision points in the different alternatives for the executive are
detailed further in Appendix E.

While this might not handle highly complex decisions, those can be composed in a script
or Java class to make the decision. It is also worth noting that while messages might not be
passed from analytics directly to Mule as the executive, they could be wrapped in a manner
similar to what has been demonstrated for other technologies to provide this interaction if
necessary, avoiding recoding the analytics. These instances would entail more work than just a
single XML file, but this work would be not more difficult than what is required by UIMA and
OpenPipeline to execute a single linear pipeline of analytics, a functionality that Mule would be
overtaking and one that would require even further work in UIMA or OpenPipeline to match.
Therefore when comparing equal levels of capability (a linear pipeline, a workflow with decision
points, etc.), Mule requires less work than UIMA or OpenPipeline.

In comparison to UIMA, OpenPipeline, and Mule, the scientific workflows such as LONI
and Ptolemy/Kepler are more robust with less effort in creating decision points. In LONI,
workflows are created by matching input and output files of different executables and splits can
be created by duplicating files while basic conditionals could be achieved based on the existence
or length of a file. In Ptolemy and Kepler, workflows are created by chaining together the input
and output ports of actors, and it is rich enough to support splits, joins, and conditionals.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

21

A BPEL Engine Executive?

One of the considerations that arose in examining the different alternatives for an

executive in a discrete process architecture intended for a research environment was using a
BPEL (Business Process Execution Language) engine. BPEL workflows are composed in XML
and invoke services, operating on both their input and what the services return. Unlike most of
the other workflows, which lean more to being pipelines in their implementation, BPEL provides
a sufficiently rich workflow to manage the situations that would arise in this field. It has an
added advantage that it is becoming a de facto standard in web service workflow. However, this
very fact raises the immediate concern with BPEL as an alternative for capturing workflow. It is
intended to invoke web services, something that one cannot presume about the legacy analytics.
This could require a heavy amount of conversion of this existing software and further
stipulations on writing new software in the future, the minimization of which is intended for the
sake of the analytic composers in the research space. Indeed, BPEL is likely far too heavyweight
a technology for what is required in the executive of this system. Because of this need to scale it
down significantly, it was not considered further here.

Other Options for Executive

The Blackbook project back in 2005-6 examined the existing technologies available for

performing workflow with the intent to use the most appropriate single technology, but this
resulted in no suitable solution being discovered. From their list of technologies that might show
some future promise, a more up-to-date investigation was made for this document. These
technologies included BigBross Bossa, Ruote, con:cern, YAWL, Zebra, Syrup, Dalma, and
GridAnt. As of now these technologies are outdated, still too immature, or not applicable to this
project, and they were not considered further.

Recommendation

The difficulty in examining technologies for this role is that there does not appear to be a

perfectly ideal choice, but the trade-offs between these different options appear clear and
distinguish them from one another. Out of the examined possibilities, the strongest alternatives
for this context of a research environment appear to be Ptolemy, Kepler, or Mule, particularly in
the simplicity of integrating analytics, creating workflows, and more easily allowing for more
complex behaviors within the workflow, such as handling decision points. They provide the
flexibility that a system for a research environment needs, and they should be replaceable should
an alternative prove more suitable in the future. Of these options, Ptolemy is most attractive
given its built-in graphical user interface while configuration files still are required to be written
by hand in Mule and given Ptolemy’s greater generality than Kepler, which makes use of it. This
replacement, if necessary, could be affected with minimal to no change in the analytics
themselves.

Discrete Process Architecture Technology Analysis: Data Bus

In the modular discrete process architecture, an inherent limitation on efficiency is that

because an attempt is being made to reuse analytics with the minimum amount of redesign and
recoding, most of the analytics as they are written and as they are likely to be written in the

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

22

future are or originate as standalone applications that are not intended to integrate with one
another. This limitation means that the desire to have these analytics communicate directly via
information stored exclusively in memory during the life of a workflow instance is not feasible
in this system design. It bears mentioning that this memory-based data bus model is feasible in a
more tightly integrated architecture, but this entails the loss of the flexibility afforded by what is
being described here.

Therefore from the perspective of a discrete process architecture, this section proceeds
facing the limitation that there needs to be some file-based content management system acting as
a data bus for the overall architecture. At this point we examine some of the alternatives
available for storage of documents and document artifact collections over the life of a workflow
instance as well as potentially over a longer term. The discussed options include simple file
systems (specifically, a flat file system), Alfresco, and ObjectStore. Other alternatives are
Documentum and FileNet, but these are heavy cost options and not investigated here.

Flat File System as Data Bus

The simplest solution for handling the documents and document artifacts when passed

between analytics is a flat file system. This system eschews the need for hierarchies of folders as
this involves essentially a directory. This leads naturally to the requirement that all the different
files produced by the analytics must have different names, names which should distinguish the
files based on uniquely identifying information. This information should include versioning as
well so that provenance can be established.

Despite its simplicity for storage, it creates some requirements that must be met by either
the analytics or wrappers created for the analytics. These must be coded to both uniquely identify
the document artifact collections and correlate them with the correct currently executing
workflow instance (or past workflow instances if data is preserved for provenance and
repeatability). The analytics must also have their output redirected to this data bus’s location. In
the cases where analytics are hardcoded to send their output to a specific location or give the
output a specific name, then transferring analytic output (and potentially input to further
analytics that have hardcoded input paths) must be accomplished either via a wrapper or by
recoding the analytics to support parameters that specify where to send their output and what to
name it. Because it lacks any kind of structure except for what is imposed in the naming scheme
though, it seems evident that this would grow and become unmanageable very quickly,
especially as many workflow instances begin to operate simultaneously and leave behind
artifacts. A solution here though is to only keep the version document artifact collections in this
data bus over the life of each instance, transferring them elsewhere to maintain the long term
provenance after an instance is finished executing.

Alfresco as Data Bus

Alfresco is an open source enterprise content management system. The following is a

rundown of key elements of Alfresco that are of interest to developers and end users. While the
system is established and running in the Amazon cloud, Alfresco is also downloadable and is
capable of running locally on a user’s machine. Alfresco has the capability to be deployed across
multiple platforms and is highly scalable. Therefore, at the first examination it seems to aptly fit
what is envisioned as being an appropriate content management system to support the data bus in
the discrete process architecture.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

23

Alfresco operates by managing spaces, essentially smart folders or containers that have a
hierarchical structure. A straightforward implementation would have a single space in Alfresco
associated with the discrete process architecture. Different workflow instances would create sub-
spaces in this space that are identified by uniquely identifying names. These sub-spaces can have
any hierarchy that fits the definition provided when discussing the adapters and the common
interchange format, so the key point at this stage is that there is a great deal of flexibility
afforded by such an architecture that reshapes itself to the different instances that are created and
disappear. Users can be associated with the space and with individual sub-spaces such that
workflow instances and users can be easily correlated. This allows any number of uniquely
identified runs to be created and maintained during and even after the lives of specific workflow
instances (necessary, for example, in the cases where this data needs to be maintained for
repeatability comparisons and provenance).

Three additional benefits to using Alfresco are its capability for versioning, its capability
for indexing, and facilitation of a central repository. Versioning of document artifact collections
and analytic support data is an inherent requirement of this system. Indexing facilitates granular
searching of the content, another capability that could be leveraged in the research environment.
A central repository allows for an easy distribution of artifacts in a consistent location that is
easily accessible from many locations.

ObjectStore as Data Bus

ObjectStore stands as an example of technology for object data management, specifically

providing an embedded database that is targeted to provide data storage for object-based
languages, in particular C++ and Java. One of the key advantages offered by this data bus is that
it offers object data to be delivered in-memory, achieving a greater level of efficiency between
different applications. It is also capable of concurrent access by multiple applications.

Among the potential pitfalls of following ObjectStore as the basis for the data bus is that
because it is dedicated to storing objects for C++ and Java, this makes integration more awkward
for any legacy analytics written in other languages, Perl and Python for instance. Even
integration with C++ or Java-based analytics would require those to be recoded to communicate
with ObjectStore. Following the option that allows these analytics to act independently and then
coordinates a mapping of their output into the ObjectStore representation seems wasteful as it in
many cases will involve writing to disk only to then write again to memory, losing any of the
benefits of efficiency ObjectStore would offer.

Recommendation

Out of the examined technologies, Alfresco appears to be the best suited to the discrete

process architecture data bus for a research environment. Alfresco is a fairly mature content
management system and is widely used and well understood. It appears to provide the level of
detail and malleability required by this architecture while being straightforward to use.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

24

Figure 5. The data bus of the research environment MOSAIC architecture broken into expected
sub-components, including a content management system and an output store for the final
results. Also depicted is a long-term storage for all the analytics used by the system.

It should be noted that this recommendation is specifically for the data as stored between

the analytics during the life of a workflow instance. Data must be maintained somewhat
persistently, even if the analytics themselves are stateless and unaware of what processes have
preceded and will follow them. It is also necessary for maintaining the various results that are not
the intended output but required for the purposes of provenance and traceability or repeatability.
Once a workflow instance has terminated though, one remains faced with the issue of storage of
the results that will be picked up by any subsequent phase of processing outside the purview of
the discrete process architecture. This could be stored in Alfresco, but it seems that for this use
case, a faster access of the objects might be useful, so an alternative to Alfresco could be used
here.

Figure 5 shows a more detailed view of the data bus that reflects this potential division of
function. In this depiction the data bus contains a CMS (Content Management System) that
handles the documents and document artifact collections over the life of the different workflow
instances as well as an output store where the output to be collected by the Knowledge Base
Architecture that ingests the output of MOSAIC could be kept in a quickly-accessible cache.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

25

In addition to these elements of the data bus, it is also recognized that given the
potentially large number of analytics that can be a part of the discrete process architecture that a
long-term storage for those not in use should be included. Frequently or recently used analytics
would be in a cache outside this storage, but those that are called upon which are not presently
deployed can be brought out from this long-term storage.

Figure 6. Suggested hierarchy for the content management system.

Figure 6 examines the anticipated hierarchy within the data bus’s content management

system. The root folder is associated with the entire discrete process system, including a folder
that maintains all the required global information to the system. In subfolders below the root,
each user has a folder containing the user’s local information along with subfolders for each
executed or executing workflow instance associated with that user. These subfolders also include
the necessary local information along with subfolders for the source document, its document
artifacts, and document metadata.

Discrete Process Architecture Technology Analysis: Analytics

In a modular discrete process architecture, it is preferable that there not be any

requirements at the outset in terms of what languages are allowed or disallowed. This is due to

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

26

the need to support legacy analytics that were written to be independent of other analytics, but
could potentially integrate into a larger system. By virtue of the flexibility of this discrete process
architecture, analytics written across many different languages, even those written without the
intent to have been integrated, can be added as subcomponent analytics. In many cases, the
appropriate action for including these pieces of software is to run them with adapters that can
handle conversion into a common interchange format as well as accessing the data bus for both
retrieval and inter-analytic storage.

Analytic Data Models Description

Chunking Identifying sentence constituents (noun phrases, verb phrases, etc.)

Concept analysis Characterizing documents by concepts explicitly/implicitly expressed in them

Co-referencing Matching multiple textual mentions of the same entity/relation/event

Document classification Categorizing a document based on its content

Document metadata Data about the document as opposed to its textual content

Extract entities Objects or sets of objects in the world, often people, organizations, locations

Extract entity mentions Textual instances of entities

Extract event mentions Textual instances of events

Extract events Specific occurrences involving participants

Extract relation mentions Textual instances of relations

Extract relations An ordered pair of entities that indicates a relationship between them

Language recognition Identifying the language in which the text is written

Morphological analysis Analysis of the structure of words

Part-of-speech tags Categorization of words in a text to their grammatical tag

Semantic role labels Recognizing roles nouns have in relation to the actions stated in a sentence

Sentences Parsing documents into sentences

Sentiment Recognizing the attitudes of a document’s author

Sequences Parsing documents into a specified recognizable sequence of words usually

String transliteration Transfer of text in one writing system to another

Syntactic parse Determining grammatical structure of the text

Time Points or durations of time that appear in the text; possible subset of entities

Tokens Breaking documents down into tokens, usually words

Value Further information about or characterization of an entity

Table 2. Growing list of required analytic output the common interchange format must support.

This flexibility does not exclude the utility of a best-practices guideline for future

analytics that can be written with the intention of integrating with the overall architecture. Indeed
it is expected that analytics here can eventually become operational in a production environment
after being implemented, debugged, and refined in a research environment.

An examination of the more tightly integrated frameworks that can support what are
considered modular analytics as well as accounts of their features and their inherent advantages
and disadvantages in this use case was examined earlier in the section entitled “Tightly
Integrated Architecture Technology Analysis.” Specific analytics required for the system, many

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

27

with existing implementations, are listed in Table 2, and some key analytics are discussed further
in the following section.

The overall recommendation arrived in this previous discussion was composition of
individual analytics in UIMA, but this does not mean that all analytics need to be written in this
language for research purposes. Because of the heavier weight that UIMA has as a framework, it
is very likely that initial analytics can be more easily composed and tested outside that
framework so as to be verified as useful before more time is committed to them and integrating
them into what is more akin to a production environment. This system should not impede rapid
prototyping.

Specific Analytics and Analytic Workflow

Although MOSAIC is capable of supporting a wide variety of analytic subcomponents to
be used in large-scale workflows, it is useful to provide particular illustrative examples of the
types of analytics and analytic workflows we expect to handle and that make sense in a setting
involving workflows going from Natural Language Processing to knowledge representation. In
addition, a sample workflow that makes use of some of these subcomponents for a larger task is
also described to further demonstrate the architectural capability.

The basic definition of an analytic is that of processing software that extracts or generates
new data from the source files or the data in analytic artifact collections produced by other
analytics. In this field, there are a wide variety of individual analytical tasks that can be
performed on raw text, processed text, and previous natural language analytic results. A few of
these are described here to give a representative picture of what are considered analytics.

Entity extraction from text is a prime example of such an analytic. Typically, given either
a raw or zoned piece of text, these analytics recognize and identify the pieces of text that
represent entities and classify them based on the set of entity types they are programmed to
discover. Usually these analytics preserve the original text snippet where the entity appears,
either identifying it inline or providing offsets to its location in a separate file. Often this includes
the co-referencing of these specific mentions to indicate they specify a common entity.

Some analytics instead try to extract information about the document itself. Concept
extractors examine the document in order to discover terms and keywords that describe or appear
in the content. This can be a very broad class of terms, so typically concepts are identified by
short keywords, and rather than being attached to specific spans of text, they are associated with
the document as a whole.

Still other analytics are targeted to produce results based on the word and grammatical
structure of the source text, and these include tasks such as chunking, sequence or sentence
tagging, part-of-speech tagging, and syntactic parse. This is sometimes supporting information to
future analytics that make use of this structural information.

Standing as examples of analytics that build on previous artifacts, relation extractors
often require the extraction of entities first so there is a population among which to discover
relations. Similarly for event extraction, participants in these events (again entities) are
frequently prerequisites for recognizing and defining events found in the text. Some analytics
include entity extraction as a part of the process leading to capturing relations and events, but
there are others which expect it as input to be provided by a previously executed analytic.

Perhaps the most critical example of an analytic that relies on the input of previous
analytics is one that resolves the results of two or more analytic components that endeavor to
extract the same class of information. This is a need most commonly felt with the disambiguation

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

28

of entities, as the same entity found by different extractors should be recognized as such instead
of being considered two separate entities as would be the case without software to handle their
resolution. The results of this resolution provides a list of entities believed to be distinct, while
preserving the provenance in terms of which extractor produced the original inputs.

There are also various supporting analytics that provide a necessary document level
analysis for the purposes of triage in advance of selection of specific workflow activities or
perform essential pre-processing on the document, such as zoning the document into regions that
distinguish content from metadata. These analytics are typically run in advance of the rest of the
system, and while they do not produce information that will necessarily carry on past the life of a
workflow instance, they do enable the content extracting analytics to function.

It is crucial that the distinction between an analytic and what is called an “adapter” is
made clear. The analytic is concerned with the extraction or generation of artifacts from a given
input, the emphasis here being production. The adapter is concerned with the transfer of one
analytic format to another, the emphasis here being conversion. This is often a subtle distinction,
as some analytic tasks have elements of conversion as a part of their production. Key to making a
determination of whether something serves an analytic purpose as opposed to the role of an
adapter is whether the content of the input undergoes more than a cursory examination to
determine the output. In the case of an adapter, this examination should only be cursory, simply
enough to follow preset and rigorous rules for making consistent format exchanges. Fundamental
changes in the content, such as entity resolution or mapping between extracted text strings and
hard data types (i.e. bridging the semantic gap) should be considered analytic tasks and not the
province of adapters.

Analytic Pipeline

As for an example of a combination of analytics that MOSAIC can handle, a pipeline is

presented consisting of analytics targeted to the task of converting raw text data into knowledge
objects and relationships between them. This pipeline orchestrated and supported by MOSAIC is
depicted conceptually in Figure 7.

The fundamental task here is to extract knowledge objects from textual sources (in this
instance, email). Various analytics developed independently provide the different required
functionality for achieving this. The executive of MOSAIC orchestrates the activation of these
analytics as necessary, providing them with data that is adapted from a common interchange
format (CIF) into the analytics’ standard input. The output of these analytics is then adapted back
into the CIF, and this material is stored in MOSAIC’s data bus for the life of a given workflow
instance until a final output is produced.

In this particular workflow of analytics, entities and events are extracted from the text as
well as broad concepts that define the source document. Analytic functions depicted in this
figure, such as entity extraction, can consist of multiple analytics that perform the same task but
provide different results. Because entity objects can be produced by more than a single analytic,
potentially redundant results are resolved into single objects before being converted into
knowledge, the ultimate output. While the conceptual pipeline is arranged in a serial fashion in
Figure 7, many of the depicted components can run simultaneously, data dependence permitting.
For instance, there are event extraction analytics that require previously extracted entities to
supplement their input.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

29

Figure 7. A current implementation use-case of the MOSAIC architecture featuring serialized
analytics for extracting entities, concepts, and events as text and then resolving them into
knowledge objects.

Discrete Process Architecture Technology Analysis: Adapters

In order to achieve success with a discrete process architecture that involves multiple

legacy and newly developed analytics, it is crucial to provide some common model for the
communication between them. It is unreasonable in the research environment to expect that all
domain expert engineers will have composed and will continue to compose new prototypes that
all output to and accept input from a specific model of representing the results. This diversity of
input requirements and output formats among the analytics will require that there be some
method to resolve these communications from the discrete processes into a lingua franca that can
be stored in the data bus between the document artifact collections’ use by the analytics. This
lingua franca is termed a common interchange model here. Developing this model and the
corresponding CIF (Common Interchange Format) is a major part of the anticipated upcoming
research and development necessary for the orchestration of the discrete process architecture.
This section examines what is anticipated to be required and an initial speculation as to how best
to achieve this common interchange format.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

30

Figure 8. Examination of the interior of the adapters, A2D on the left and D2A on the right,
which handle communication between an analytic and its RAF (Raw Analytic Format) and the
data bus and its CIF. The three chief parts of each adapter are a parser, a mapper, and a
marshaller/unmarshaller.

As observed, analytics typically produce not a common language, but a format that

amounts to their own intermediate data objects. For each analytic that produces its own particular
output, an adapter must be written that will convert this output to the interchange format. These
are referred to as A2D Adapters. For each analytic that consumes its own particular input,
another adapter must be written that will create data in this format from data in the common
interchange format. These are referred to as D2A Adapters. This means that there are likely
going to be a pair of adapters required for existing analytics that are not directly compatible with
the common interchange format. This is also true of any new analytics that are written to be
plug-ins to the system if they are not designed to take in and produce the interchange format.

Figure 8 shows the exchange of information between the analytics and the data bus that
takes place in the adapter. An A2D Adapter consists of an analytic parser to read in and interpret
the raw analytic output, a mapper that maps the data between the two formats’ definitions, and a
common interchange marshaller that takes the resulting mapping and marshals it into the final
common interchange format. A D2A Adapter essentially operates in the opposite direction,
reading in the common interchange format with the common interchange parser, running a

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

31

mapper that maps the data between the two formats’ definitions, and running an analytic
unmarshaller that unmarshals the mapping into input acceptable to the analytic. Some analytics
might also take the common interchange format as input, and the adapter can provide this
without any changes to formatting as well.

Apart from using adapters that convert to a common interchange format, the users can
also specify as a part of their workflow how they wish to map and integrate the output of
different analytics if their tasks require specific conversions from one data format to another that
are not supported by the common interchange format. This amounts to allowing the user to
specify a customizable interchange format for use within individual workflows.

Figure 9. A depiction of the analytics and how they interact with the executive that orchestrates
their behavior and the data bus that routes their input and output.

Figure 9 depicts in more detail how the adapters and analytics are interrelated with one

another and the data bus and executive. Each analytic potentially has adapters going in and out,
allowing for data transfer between analytics in a common interchange format. Once the
architecture is developed, the executive and data bus should be fixed from the users’ perspective,
though requests for changes to the architecture are allowed and implemented when appropriate
as part of the natural refinement of the architecture. Users themselves can directly define the
analytics and their adapters, making them immediately extensible and able to evolve.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

32

In the subsequent sections, different potential models for the common interchange are
proposed and discussed. This includes both ontological descriptions of the content as well as
options for structures into which a given ontology can be incorporated. Because this effort
requires a great deal more research and examination of what can optimally cover all desired
analytics than can be provided in this context, this document refrains from making a
recommendation in this case as of yet.

Before looking at potential structures on which a common interchange format will be
built, some of the anticipated features of the most basic elements required should be specified. In
a system of Natural Language Processing of text, fundamental objects found (the pieces
considered the most basic document artifacts) are likely to be delineated into broad categories
based on type (e.g., entity mentions, sentences) and require features that detail textual extent,
along with starting and ending offsets in the source document, as well as fields that specify both
the unique identifier for the object as well as sub-classifications of the type. Other objects could
then build upon these basic structures (e.g., entities, syntactic parse) in different hierarchies.
There are also likely desired representations that do not fit directly into this model, but the intent
of the subsequent stage of research is to identify and accommodate these as well as specify in
great detail the ontology that describes in total what this system and all its potential analytics
requires while keeping it extensible to future analytics as necessary.

CAS as Common Interchange Format

The UIMA framework models documents as CAS objects. A CAS object has one or

more views of the document, and each view is associated with a unique SOFA for that view.
This model is intended to facilitate the simultaneous analysis of multiple interpretations of a
single document. For example, a document which was authored in Chinese and translated to
English may be represented as a single CAS with two views, one for each language. Similarly, a
document representing a video may have one view for only the visual data, and another view for
only the audio data. A view of a CAS represents the abstract notion of an interpretation; the
SOFA for a view represents the actual data associated with that interpretation, such as the
translated text or binary video frame data. SOFA data can be a text string, an array of primitive
data (boolean, byte, short, integer, long, float, double, or string), or a URI for remote data.

Each CAS view stores its own analysis data as feature structures, which are collections of
features in the same manner that Java classes are collections of instance variables (ignoring
methods). Feature structures make up a typed, single inheritance system with a built-in feature
structure type called “TOP” at the root of the inheritance tree. The TOP feature structure type
contains no associated features; developers define their own feature structures by subtyping TOP
or some other feature structure type, and adding features to the new type. Features are also typed,
and may be one of the built-in primitive types (boolean, byte, short, integer, long, float, double,
or string), or an existing feature structure type, or an array of one of those previous types. UIMA
additionally provides built-in types for linked lists (derived from TOP) and three other built-in
feature structure types for convenience:

• AnnotationBase derives from TOP and adds a single feature which contains the ID
number of the SOFA the annotation references

• Annotation derives from AnnotationBase and adds two features which gives the start and
end offsets of the annotation within the document

• DocumentAnnotation derives from Annotation and adds one feature which gives the
language of the SOFA the annotation references.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

33

This appears to be an inherently useful architecture to use as a basis for describing a
common interchange between analytics. The analytics’ input and output could be mapped to a
language that uses this established structure. It has the added advantage of being usable again in
a production environment if necessary as it is anticipated that research components are likely to
be gradually merged into more tightly integrated systems. Further examination of what needs to
be built to accommodate all analytics desired before making a recommendation is necessary.

GrAF as Common Interchange Format

Another alternative data representation for linguistic annotation is GrAF (Graph

Annotation Framework), which has been demonstrated to be interoperable with two key
annotation systems that could populate the discrete processes, GATE and UIMA.2 This
representation uses a graph model represented in an XML serialization with elements of <node>
and <edge> creating the fundamental structures necessary. The graph structure of the linguistic
annotations that GrAF makes use of is described by LAF (the Linguistic Annotation
Framework), which formally consists of a data model for annotations using directed graphs (sets
of nodes and edges labeled with one or more features), a segmentation at the character level of
the source document that provides the base for multiple layers of annotation, and methods for
manipulating the data model. The key elements left to be defined are the specifications for the
labeling of the content contained in the structure.

GrAF provides a different perspective on representing document artifact data and is
something that will be considered.

Possible Basis Ontologies

There are several annotation or content representations that might provide a good basis

for a general and encompassing description suitable for a common interchange model. Examples
of these include the ACE pilot language, WordNet, SUMO (Suggested Upper Merged
Ontology), or OntoNotes. It is unlikely that any of these options would escape the need for some
significant alteration or extension if chosen as a basis. As stated, due to the further research and
examination required in order to discover or create an ontology that can optimally cover all
desired analytics, this document currently refrains from making a recommendation in this case.

Summary of Recommendations

In this section recommendations are summarized, bearing in mind that we envision two

separate environments where these recommendations hold, a production environment and a
research environment.

In a production environment where domain expert engineers are primarily interested
developing a single fixed interaction of analytics for a specific workflow type and considerations
of efficiency far exceed the need for flexibility and provenance, the recommendation made here
is to use UIMA as the overarching architecture given its benefits in scalability and generality
over similar rivals (e.g. GATE). A possible alternative to consider in this case is Ptolemy, which

2 Ide, N. and Suderman, K. Bridging the Gaps: Interoperability for GrAF, GATE, and UIMA. ACL-IJCNLP 2009,
pp. 27-34.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

34

can achieve much of the same tight integration that UIMA or GATE would, can operate in
memory, and is also a stable, mature product. Its limitations are mostly as a result of Natural
Language Processing not being its specifically intended use case, but it has an added advantage
over UIMA in that the creation of more fully-fledged workflows capable of decision points is
assisted with a graphical user interface, where achieving this in UIMA is more difficult. This is
only a consideration if workflows more complex than sequential pipelines are necessary.

In a research environment where domain expert engineers are primarily interested in the
frequent creation of new analytics and workflows with frequent debugging and retuning and
where preservation of the provenance of workflow instance executions is also required, a discrete
process architecture as depicted in Figure 2 is the recommendation. For the key pieces of this
architecture Ptolemy is recommended be used to build the executive and Alfresco is
recommended to be used to build the data bus. This should more easily accommodate the
diversity of analytics likely to be found in a research environment.

Takeaways

There are certain key points of this document apart from the specific recommendations

made. These observations are restated and summarized here.
Most important is the distinction made between what were identified as two working

environments, research and production. A research environment is a use case where domain
expert engineers are primarily interested in the frequent creation of new analytics and workflows
with frequent debugging and retuning, also requiring preservation of the provenance of workflow
instance executions. A production environment is a use case where domain expert engineers are
primarily interested developing a single fixed interaction of analytics for a specific workflow
type, where considerations of efficiency far exceed the need for flexibility and provenance.

A research environment requires flexibility across analytics written in multiple languages
and perhaps without the prior intent to integrate, the ability to easily integrate new analytics, a
high adaptability to evolving technology, and a low barrier to entry for domain expert engineers,
whose focus should be on prototyping and refining the specific analytics.

A discrete process architecture is more appropriate for this research environment as
opposed to a tightly integrated technology for these reasons as well as the potential risk of
committing to a single non-modular architecture that could be abandoned at some point leaving a
final architecture stagnant. A discrete process architecture makes these technologies easily
replaceable as new and more appropriate options become available. This also effectively
separates the workflow executive from the analytic data, making the executive data agnostic and
devoted simply to the orchestration of the workflow of analytics and the adapters that allow them
to communicate.

Many production environments require a tightly integrated architecture that is defined by
a specific overarching framework that handles the data between analytics organized and
optimized for a targeted task, operating in memory exclusively on its analytic pipeline. These
requirements allow for the high efficiency, something that is key to a production environment,
sacrificing modularity, which is less important here.

These environments are not mutually exclusive. Analytics developed in a research
environment can be subsequently moved into production after sufficient refinement, and these
analytic pieces can evolve during development into optimized collections of smaller analytic
components, such as is achievable in a framework such as UIMA. Nevertheless, this does not
eliminate the need for some architecture to accommodate a research space where this

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

35

development can occur with some organization and potential for interchange between analytics.
Figure 3 depicts the vision for this potential migration from research to production.

Regardless of whether a research or production environment is examined, a common
interchange model for the communication between the analytics must be developed so that the
outputs of analytics can be used universally as inputs to future analytics. Additionally a common
interchange format will also be needed for the research environment once this common
interchange model is specified.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

36

Glossary

A2D Adapter: data converter that changes from a format readable by specific analytic tools into
the common interchange format.

Ad Hoc Workflow Instance: a workflow instance that is executed on a particular document,
specified by a user via the interface as opposed to a deployed workflow that has instances
executed based on documents that appear in the inbound gateway.

Advanced Analytic: a higher-order document analytic typically building on fundamental analytics
and examining topics that can include but are not limited to sentiment analysis and concept
extraction.

Analytic: software used for text to information processing, which extracts or generates data from
the source documents or the data in document artifact collections produced by other analytics.

Analytic Repository: a program store of all analytics, including multiple versions, that are not
necessarily in current and common use, but are still accessible to be used by workflows.

Architecture: the overall system as described here, including the inbound gateway, executive,
analytics, adapters, and data bus.

Black Box: equivalent to a “discrete process”; see below.

CAS: Common Analysis System, which is UIMA’s common data format.

Common Interchange Format: a general, default, all-encompassing format that can be consumed
by or transformed into input for further analytics, effectively making it a lingua franca that can
be converted to or from with adapters.

Content Management System: the part of the data bus that stores and indexes document artifact
collections over the life of the workflow instance.

Customizable Interchange Format: a specific interchange format that integrates or converts
between analytics and is specified by a user in the workflow definition for a specific task and is
used when invoked in place of the default common interchange format.

D2A Adapter: data converter that changes from the common interchange format into a format
readable by specific analytic tools.

Data Bus: organizes, routes, and stores the data produced by the analytics over the life of a
workflow as well as being the access point for the source documents that analytics use.

Data: what is produced by analytics and resides in the data bus.

Decision Point: a branching conditional statement in either code or the workflow specification.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

37

Discrete Process: an independent program that can be accessed through defined inputs and
outputs, as opposed to integrated analytics which allow for programmatic access.

Document: a file that is the fundamental unit of source material on which any analysis workflow
in this architecture will execute.

Document Artifact Collection: a set of data that includes the source document as well as any
results the analytics produced for or extracted from that document over the life of a particular
workflow.

Domain Expert Engineer: person who can craft the analytics that plug into the architecture and
can execute the workflows of these analytics on the documents.

Executive: orchestrates the activities of workflows specified by the user through the interface,
including the sequence and flow of analytics and adapters executed and which data is retrieved
for each of these analytics from the data and document artifact collections.

Fundamental Analytic: a basic document analytic typically executed on the source document,
examples of which include, but not are limited to, part-of-speech tagging, stemming, chunking,
entity extraction, coreference resolution, relation extraction, and event extraction.

Inbound Gateway: the service supporting the input stream of documents for the architecture,
which can arrive asynchronously with user activity or specification, although it can be filtered
such that only user-specified documents are operated upon for any given workflow instance.

Integrated Analytic: an independent program that allows users programmatic access, as opposed
to discrete processes, which can be accessed through defined inputs and outputs and disallow
users interposing programmatically.

Interface: the part of the executive the user interacts with to specify workflows and what
documents and data those workflows will analyze.

Output Store: a repository of objects in a persistent store that represent the final output of
workflow instances.

Plug-in: a modular analytic that is integrated with the framework and can be accessed as part of
the workflow in the overall architecture.

Production Environment: a use case where domain expert engineers are primarily interested in
developing a single fixed interaction of analytics for a specific workflow type, where
considerations of efficiency far exceed the need for flexibility and provenance.

Provenance: the workflow trail of analytics that led to a particular result produced at the end
which is included with the final output of a workflow to allow for results to be traceable and
repeatable.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

38

Research Environment: a use case where domain expert engineers are primarily interested in the
frequent creation of new analytics and workflows with frequent debugging and retuning, also
requiring preservation of the provenance of workflow instance executions.

Stateless: a type of architecture where individual discrete components are unaware of the overall
workflow and which analytics will execute before or after them.

Streaming Document Flow: the influx of documents that arrive at non-user specified rates that
vary over time as opposed to documents that are a part of a user-specified corpus or batch.

Triage: the preprocessing of inbound documents to remove corrupt or irrelevant documents, a
preprocessing that can be targeted to specific workflows as well.

Workflow: the sequence and flow of analytics specified by the user which can be deployed in the
system and will execute on both source documents and data generated from those documents.

Workflow Instance: a specific execution of a workflow of analytics on a specific document.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

39

Appendix A: Code for UIMA as a Discrete Process Architecture Executive

A.1: Collection Reader Code and XML
Our first task was to write an XML type descriptor for our collection reader. The name of

the input file needed to be saved for later when processing the output, so the collection reader
will have to place that in the CAS. The type we created for this is named “InputName” and
consists of a single string which will be the file name of the input document. We used the UIMA
Eclipse plug-in to get a GUI for building this XML. It also could be written it by hand by
referencing the user guide. The end result is shown below.

<?xml version="1.0" encoding="UTF-8"?>
<typeSystemDescription xmlns="http://uima.apache.or g/resourceSpecifier">
 <name>ReaderTypeSystem</name>
 <description>Types for the collection reader.</de scription>
 <version>1.0</version>
 <vendor>Nathan Giles</vendor>
 <types>
 <typeDescription>
 <name>mitre.ngiles.mosaic.InputName</name>
 <description/>
 <supertypeName>uima.cas.TOP</supertypeName>
 <features>
 <featureDescription>
 <name>FileName</name>
 <description/>
 <rangeTypeName>uima.cas.String</rangeType Name>
 </featureDescription>
 </features>
 </typeDescription>
 </types>
</typeSystemDescription>

The collection reader class must implement the CollectionReader interface. UIMA also

provides the abstract class CollectionReader_ImplBase, which implements the interface and
provides default implementations for some of the interface methods. Our collection reader will
extend this abstract class. There are five key methods that need to be implemented: initialize
performs its namesake, hasNext returns true until the input source is exhausted, getNext is passed
an empty CAS object and fills it in by reading the next input document, close will be called after
input is exhausted if we need to do any cleanup, and getProgress is used by the framework to run
a progress indicator. The simplified implementation is shown below.

public class InputReader extends CollectionReader_I mplBase {
 File[] inputFiles;
 int nextFile;

 public void initialize()

throws ResourceInitializationException {
 File inputDirectory = new File(

(String) this.getConfigParameterValue("InputDirecto ry"));
 inputFiles = inputDirectory.listFiles();
 nextFile = 0;
 }

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

40

 public boolean hasNext()

throws IOException, CollectionException {
 return (nextFile < inputFiles.length);
 }

 public void getNext(CAS newCAS)

throws IOException, CollectionException {
 BufferedReader reader = new BufferedReader(

new FileReader(inputFiles[nextFile]));
 String text = "";
 String line = reader.readLine();
 while(line != null)
 {
 text += line + "\n";
 line = reader.readLine();
 }
 JCas jCAS = null;
 try {
 jCAS = newCAS.getJCas();
 } catch(CASException e) {
 throw new CollectionException(e);
 }
 jCAS.setDocumentText(text);
 InputName inName = new InputName(jCAS);
 inName.setFileName(inputFiles[nextFile].getName());
 inName.addToIndexes();
 reader.close();
 nextFile++;
 }

 public void close()

throws IOException {
 //Nothing special to do to close this collection reader
 }

 public Progress[] getProgress() {
 return new Progress[] {new ProgressImpl(

nextFile, inputFiles.length ,Progress.ENTITIES)};
 }
}

After writing the code for the collection reader, the next step was to generate an XML

descriptor for this class. Particularly, we needed to specify the existence of the configuration
parameter “InputDirectory” that we used in the initialize method and its default value. Users of
this collection reader will be able to change the input directory by changing the XML. The XML
descriptor also describes the output types we produce in the CAS, specifically the InputName
type. As before, we used the UIMA Eclipse plug-in to get a GUI for building this XML, though
it could be written by hand by referencing the user guide. The end result is shown below.

<?xml version="1.0" encoding="UTF-8"?>
<collectionReaderDescription
xmlns="http://uima.apache.org/resourceSpecifier">
 <frameworkImplementation>org.apache.uima.java</fr ameworkImplementation>
 <implementationName>mitre.ngiles.mosaic.InputRead er</implementationName>

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

41

 <processingResourceMetaData>
 <name>Input Reader</name>
 <description>Reads text files from a directory into the document
string.</description>
 <version>1.0</version>
 <vendor>Nathan Giles</vendor>
 <configurationParameters searchStrategy="langua ge_fallback">
 <configurationParameter>
 <name>InputDirectory</name>
 <description>Path to the directory which is searched (non-
recursively) for input.</description>
 <type>String</type>
 <multiValued>false</multiValued>
 <mandatory>true</mandatory>
 </configurationParameter>
 </configurationParameters>
 <configurationParameterSettings>
 <nameValuePair>
 <name>InputDirectory</name>
 <value>
 <string>C:\Documents and Settings\ngiles\ My
Documents\Task\Input</string>
 </value>
 </nameValuePair>
 </configurationParameterSettings>
 <typeSystemDescription>
 <imports>
 <import location="file:/C:/Documents and Se ttings/ngiles/My
Documents/UIMA/examples/workflow/ReaderTypeSystem.x ml"/>
 </imports>
 </typeSystemDescription>
 <typePriorities/>
 <fsIndexCollection/>
 <capabilities>
 <capability>
 <inputs/>
 <outputs>
 <type
allAnnotatorFeatures="true">mitre.ngiles.mosaic.Inp utName</type>
 </outputs>
 <languagesSupported/>
 </capability>
 </capabilities>
 <operationalProperties>
 <modifiesCas>true</modifiesCas>
 <multipleDeploymentAllowed>false</multipleDep loymentAllowed>
 <outputsNewCASes>true</outputsNewCASes>
 </operationalProperties>
 </processingResourceMetaData>
 <resourceManagerConfiguration/>
</collectionReaderDescription>

A.2: Tokenizer Wrapper Code and XML
The next step is to write the annotator that will wrap our black box tokenizer. In the

interest of conforming to the UIMA framework as much as possible, we decided to represent the
tokens generated by the tokenizer as a subclass of annotation. Our first step in writing the

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

42

tokenizer annotator was to define its type system XML file. The only type our annotator needed
to know about is the Token annotation type that it places in the CAS as output, so we have to
define no more than that. Again, we used the UIMA Eclipse plug-in to write this XML file. The
end result is shown below.

<?xml version="1.0" encoding="UTF-8"?>
<typeSystemDescription xmlns="http://uima.apache.or g/resourceSpecifier">
 <name>TokenizerTypeSystem</name>
 <description>Type System for the Tokenizer.</desc ription>
 <version>1.0</version>
 <vendor>Nathan Giles</vendor>
 <types>
 <typeDescription>
 <name>mitre.ngiles.mosaic.Token</name>
 <description>A Token from the Tokenizer</desc ription>
 <supertypeName>uima.tcas.Annotation</supertyp eName>
 </typeDescription>
 </types>
</typeSystemDescription>

Again the plug-in automatically generates Java classes for the Token type as it did before
with the InputName type. The next step was to write the wrapper code itself, which implements
the AnalysisComponent interface. UIMA provides an abstract class JCasAnnotator_ImplBase,
which implements this interface and provides default implementations for most of the methods,
and we inherited from that. The code for our wrapper of the tokenizer is shown below.

public class TokenizerWrapper extends JCasAnnotator _ImplBase {

public void process(JCas jCAS)
throws AnalysisEngineProcessException {
 try {
 File input = File.createTempFile("tokenizer", ".in ");
 File output = File.createTempFile("tokenizer", ".o ut");
 input.deleteOnExit();
 output.deleteOnExit();

 String text = jCAS.getDocumentText();
 BufferedWriter writer = new BufferedWriter(new Fil eWriter(input));
 writer.write(text);
 writer.close();

 String[] commands = { "java" , "-jar" ,

"C:\\Documents and Settings\\ngiles\\My Documents\\ BIN\\Tokenizer.jar" ,
input.getCanonicalPath(), output.getCanonicalPath() };

 Process process = Runtime. getRuntime().exec(commands);
 process.waitFor();

 BufferedReader reader = new BufferedReader(new Fil eReader(output));
 String token = reader.readLine();
 int textPos = 0;
 while(token != null) {
 int start = text.indexOf(token, textPos);
 int end = start + token.length();
 Token tokenAnnotation = new Token(jCAS, start, en d);

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

43

 tokenAnnotation.addToIndexes();
 textPos = end;
 token = reader.readLine();
 }
 reader.close();
 } catch(Exception e) {
 throw new AnalysisEngineProcessException(e);
 }
}
}

Having written our annotator, we next created an XML descriptor for it. This descriptor
included the previous type system descriptor, specifying which types are input and which are
output and describing configuration parameters. We had no configuration parameters, no input
types, and one output. The descriptor XML for this annotator is shown below.

<?xml version="1.0" encoding="UTF-8"?>
<analysisEngineDescription xmlns="http://uima.apach e.org/resourceSpecifier">
 <frameworkImplementation>org.apache.uima.java</fr ameworkImplementation>
 <primitive>true</primitive>
 <annotatorImplementationName>mitre.ngiles.mosaic. TokenizerWrapper
 </annotatorImplementationName>
 <analysisEngineMetaData>
 <name>Tokenizer Wrapper</name>
 <description>Wraps the Tokenizer black box.</de scription>
 <version>1.0</version>
 <vendor>Nathan Giles</vendor>
 <configurationParameters/>
 <configurationParameterSettings/>
 <typeSystemDescription>
 <imports>
 <import location="file:/C:/Documents and Se ttings/ngiles/My
Documents/UIMA/examples/workflow/TokenizerTypeSyste m.xml"/>
 </imports>
 </typeSystemDescription>
 <typePriorities/>
 <fsIndexCollection/>
 <capabilities>
 <capability>
 <inputs/>
 <outputs>
 <type allAnnotatorFeatures="true">mitre.n giles.mosaic.Token</type>
 </outputs>
 <languagesSupported/>
 </capability>
 </capabilities>
 <operationalProperties>
 <modifiesCas>true</modifiesCas>
 <multipleDeploymentAllowed>true</multipleDepl oymentAllowed>
 <outputsNewCASes>false</outputsNewCASes>
 </operationalProperties>
 </analysisEngineMetaData>
 <resourceManagerConfiguration/>
</analysisEngineDescription>

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

44

A.3: Decoder Wrapper Code and XML
Next we wrote the wrapper for the decoder black box, following the same set of steps.

First, we defined the type system. The decoder takes the tokens from the previous analysis as
input, so we imported the previous type system. For output, the decoder produces two long
strings, one for the first characters in each token, and one for the last characters in each token.
We chose to make these outputs into two new SOFAs in the CAS, not requiring any new types.
The type system descriptor XML is shown below.

<?xml version="1.0" encoding="UTF-8"?>
<typeSystemDescription xmlns="http://uima.apache.or g/resourceSpecifier">
 <name>DecoderTypeSystem</name>
 <description>Type system for the decoder black bo x.</description>
 <version>1.0</version>
 <vendor>Nathan Giles</vendor>
 <imports>
 <import location="file:/C:/Documents and Settin gs/ngiles/My
Documents/UIMA/examples/workflow/TokenizerTypeSyste m.xml"/>
 </imports>
</typeSystemDescription>

Because the wrapper for the decoder uses multiple SOFAs, it is slightly different from
the tokenizer wrapper. Annotators that support multiple views are initially given a base CAS
object from which they must choose named views to work on. Annotators that do not need to
support multiple views are automatically given the default view, named “_InitialView”.
Therefore, we selected that view from the base CAS before operating on it in order to get the
input. The code for the decoder wrapper is shown below.

public class DecoderWrapper extends JCasAnnotator_I mplBase {

public void process(JCas base_jCAS)
throws AnalysisEngineProcessException {
 try {
 File input = File.createTempFile("decoder", ".in") ;
 File output1 = File.createTempFile("decoder1", ".o ut");
 File output2 = File.createTempFile("decoder2", ".o ut");
 input.deleteOnExit();
 output1.deleteOnExit();
 output2.deleteOnExit();

 JCas jCAS = base_jCAS.getView("_InitialView");
 FSIterator<Annotation> iterator =

jCAS.getAnnotationIndex(Token.type).iterator();
 BufferedWriter writer = new BufferedWriter(new Fil eWriter(input));
 while(iterator.hasNext())
 {
 Annotation token = iterator.next();
 writer.write(token.getCoveredText() + "\n");
 }
 writer.close();

String[] commands = { "java" , "-jar" ,

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

45

"C:\\Documents and Settings\\ngiles\\My Documents\\ BIN\\Decoder.jar" ,
input.getCanonicalPath(), output1.getCanonicalPath(),
output2.getCanonicalPath()};

 Process process = Runtime. getRuntime().exec(commands);
 process.waitFor();

 BufferedReader reader1 = new BufferedReader(new Fi leReader(output1));
 String firstChars = reader1.readLine();
 JCas first_jCAS = base_jCAS.createView("FirstChara ctersView");
 first_jCAS.setDocumentText(firstChars);
 reader1.close();

 BufferedReader reader2 = new BufferedReader(new Fi leReader(output2));
 String lastChars = reader2.readLine();
 JCas last_jCAS = base_jCAS.createView("LastCharact ersView");
 last_jCAS.setDocumentText(lastChars);
 reader2.close();
 } catch(Exception e) {
 throw new AnalysisEngineProcessException(e);
 }
}
}

The XML descriptor file for the decoder declares the names of SOFAs it requires as input

and produces as output. Doing so declares it as an analysis engine which supports multiple
SOFAs. The XML is shown below.

<?xml version="1.0" encoding="UTF-8"?>
<analysisEngineDescription xmlns="http://uima.apach e.org/resourceSpecifier">
 <frameworkImplementation>org.apache.uima.java</fr ameworkImplementation>
 <primitive>true</primitive>
 <annotatorImplementationName>mitre.ngiles.mosaic. DecoderWrapper
</annotatorImplementationName>
 <analysisEngineMetaData>
 <name>DecoderDescriptor</name>
 <description>Wrapper for the decoder black box. </description>
 <version>1.0</version>
 <vendor>Nathan Giles</vendor>
 <configurationParameters/>
 <configurationParameterSettings/>
 <typeSystemDescription>
 <imports>
 <import location="file:/C:/Documents and Se ttings/ngiles/My
Documents/UIMA/examples/workflow/DecoderTypeSystem. xml"/>
 </imports>
 </typeSystemDescription>
 <typePriorities/>
 <fsIndexCollection/>
 <capabilities>
 <capability>
 <inputs>
 <type allAnnotatorFeatures="true">mitre.n giles.mosaic.Token</type>
 </inputs>
 <outputs/>
 <inputSofas>
 <sofaName>_InitialView</sofaName>

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

46

 </inputSofas>
 <outputSofas>
 <sofaName>FirstCharactersView</sofaName>
 <sofaName>LastCharactersView</sofaName>
 </outputSofas>
 <languagesSupported/>
 </capability>
 </capabilities>
 <operationalProperties>
 <modifiesCas>true</modifiesCas>
 <multipleDeploymentAllowed>true</multipleDepl oymentAllowed>
 <outputsNewCASes>false</outputsNewCASes>
 </operationalProperties>
 </analysisEngineMetaData>
 <resourceManagerConfiguration/>
</analysisEngineDescription>

A.4: Flow Code in UIMA
A UIMA flow controller implements the FlowController interface; UIMA also provides

the abstract class JCasFlowController_ImplBase which implements this interface and provides
default implementations for some methods. FlowController objects have one key method, named
computeFlow. This method is called on each CAS object as it enters the workflow; it returns a
Flow object for that CAS which will guide it through the workflow. Flow controllers and Flows
are provided with information about every loaded analysis to which they could potentially route.

The Flow object implements the UIMA Flow interface; UIMA also provides the abstract
class JCasFlow_ImplBase, which implements this interface and provides default
implementations for some methods. The Flow object has a next method which is repeatedly
called to determine which analysis engine should process the CAS next. The next method can
return more than one analyses at a time, which indicates that the set of returned analyses can be
executed in parallel (though the framework does not guarantee that they will). Because Flow
objects are attached to the CAS they are responsible for, they can dynamically route that CAS
based on the artifact or analysis results by examining the CAS data. The Flow object is also
responsible for creating new Flows for any child CAS objects which are produced as a result of
this CAS passing through a CAS multiplier. Finally, the Flow object can also define what actions
to take if an error is encountered while processing the CAS.

In order to create a flow using UIMA’s built in flow controller (called “fixedFlow”), we
combine the three analysis engines we have created (the tokenizer, the decoder, and the output
writer) into one aggregate analysis engine. This is done by writing an aggregate XML descriptor
which references the XML for descriptors for each analysis engine we are combining. The
aggregate descriptor is shown below.

<?xml version="1.0" encoding="UTF-8"?>
<analysisEngineDescription xmlns="http://uima.apach e.org/resourceSpecifier">
 <frameworkImplementation>org.apache.uima.java</fr ameworkImplementation>
 <primitive>false</primitive>
 <delegateAnalysisEngineSpecifiers>
 <delegateAnalysisEngine key="TokenizerDescripto r">
 <import location="file:/C:/Documents and Sett ings/ngiles/My
Documents/UIMA/examples/workflow/TokenizerDescripto r.xml"/>
 </delegateAnalysisEngine>
 <delegateAnalysisEngine key="OutputDescriptor">

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

47

 <import location="file:/C:/Documents and Sett ings/ngiles/My
Documents/UIMA/examples/workflow/OutputDescriptor.x ml"/>
 </delegateAnalysisEngine>
 <delegateAnalysisEngine key="DecoderDescriptor" >
 <import location="file:/C:/Documents and Sett ings/ngiles/My
Documents/UIMA/examples/workflow/DecoderDescriptor. xml"/>
 </delegateAnalysisEngine>
 </delegateAnalysisEngineSpecifiers>
 <analysisEngineMetaData>
 <name>AggregateDescriptor</name>
 <description>Aggregate of tokenizer, decoder, a nd output.</description>
 <version>1.0</version>
 <vendor>Nathan Giles</vendor>
 <configurationParameters/>
 <configurationParameterSettings/>
 <flowConstraints>
 <fixedFlow>
 <node>TokenizerDescriptor</node>
 <node>DecoderDescriptor</node>
 <node>OutputDescriptor</node>
 </fixedFlow>
 </flowConstraints>
 <fsIndexCollection/>
 <capabilities>
 <capability>
 <inputs>
 <type allAnnotatorFeatures="true">
 mitre.ngiles.mosaic.InputName</type>
 </inputs>
 <outputs>
 <type allAnnotatorFeatures="true">mitre.n giles.mosaic.Token</type>
 </outputs>
 <inputSofas>
 <sofaName>_InitialView</sofaName>
 </inputSofas>
 <outputSofas>
 <sofaName>FirstCharactersView</sofaName>
 <sofaName>LastCharactersView</sofaName>
 </outputSofas>
 <languagesSupported/>
 </capability>
 </capabilities>
 <operationalProperties>
 <modifiesCas>true</modifiesCas>
 <multipleDeploymentAllowed>true</multipleDepl oymentAllowed>
 <outputsNewCASes>false</outputsNewCASes>
 </operationalProperties>
 </analysisEngineMetaData>
 <resourceManagerConfiguration/>
</analysisEngineDescription>

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

48

Appendix B: Code for OpenPipeline as a Discrete Process Architecture Executive

B.1: Tokenizer Wrapper Code
An OpenPipeline workflow implements the PipelineJob interface. Looking at this

interface immediately revealed the first key difference between OpenPipeline and UIMA:
OpenPipeline is tightly integrated with its web server based interface. The interface specifies
methods such as getPageName and getLogLink which are used by the OpenPipeline GUI.

With regards to the actual workflow, the only relevant methods in the PipelineJob were
setParams and execute. The setParams method takes an XMLConfig object as a parameter; this
object is basically a Java object representation of an XML file. All the parameters for the
workflow need to be contained in this object in some format. The execute method takes no
parameters, and returns no result. It is responsible for doing the entirety of the workflow, and
there is no hindrance from performing all the work inside it.

Since there was a StageList object, we presumed that analyses are stages, and find that
there is indeed an abstract class named Stage. It only has one important method which is abstract,
called processItem, and it takes an Item object as a parameter. According to the Javadoc, we saw
that the Item object is indeed supposed to represent the document and associated analysis data,
and that it has an XML like format. Unfortunately, the Javadoc did not reveal how to get the
document text out of an item so we can send it to our first black box, so we turned to the source
code to find out. There is a SimpleTokenizer stage distributed with OpenPipeline; looking at its
source reveals that it uses a visitor pattern to explore the entirety of a tree structure of Node
objects that exists within each Item object, and then tokenizes the text associated with each
Node. This revealed part of the structure of an Item to us, but still leaves the location of the
document text a mystery.

We did some exploring by using the GUI to create a PipelineJob and seeing what the
output looks like. We created a new PipelineJob consisting of a FileScanner, DocFilter,
SimpleTokenizer, and DiskWriter, and fed it a single text file as input. Looking at the output
(which is an XML file which appears to be a representation of the Item object), there are 5 tag
groups which seem to correspond to what we guess are Node objects. These are: doctype (has the
value “txt”), URL (has the file path of the input file), lastupdate (has a number which probably
corresponds to the file’s modification date), filesize (has the size of the file in bytes), and text
(has the text of the document). The SimpleTokenizer has tokenized each of these tag groups
(only one of which was reasonable), producing standoff annotations which only contain the
annotated text and no offsets into the original text. From this, we determined that the FileScanner
class provided by OpenPipeline puts the document text in a Node named text inside the item,
which is what we needed to write our first wrapper stage.

Of note is that each stage is responsible for calling the processItem method of the next
stage for the workflow to continue. The framework sets the nextStage attribute in each stage
based on the list of stages the user gave in the UI. However, it is up to each Stage individually to
honor this. In order to define a workflow, one has to build it into the Stages oneself.

The code for our TokenizerWrapper is shown below.

public class TokenizerStage extends Stage {

public String getDescription() {
 return "Wrapper for the black box tokenizer";
}

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

49

public String getDisplayName() {
 return "Tokenizer";
}

public void processItem(Item item) throws PipelineE xception {

try {
 File input = File.createTempFile("tokenizer", ".in ");
 File output = File.createTempFile("tokenizer", ".o ut");
 input.deleteOnExit();
 output.deleteOnExit();

 Node textNode = item.getRootNode().getChild("text");
 String text = textNode.getValue().toString();
 BufferedWriter writer = new BufferedWriter(new Fil eWriter(input));
 writer.write(text);
 writer.close();

 String[] commands = {"java", "-jar",

"C:\\Documents and Settings\\ngiles\\My Documents\\ BIN\\Tokenizer.jar",
input.getCanonicalPath(), output.getCanonicalPath() };

 Process process = Runtime.getRuntime().exec(comman ds);
 process.waitFor();

 TokenList tokenList = (TokenList) textNode.getAnno tations("token");
 if(tokenList == null) {
 tokenList = new TokenList();
 textNode.putAnnotations("token", tokenList);
 }

 BufferedReader reader = new BufferedReader(new Fil eReader(output));
 String token = reader.readLine();
 while(token != null) {
 Token newToken = new Token(token);
 tokenList.append(newToken);
 token = reader.readLine();
 }
 reader.close();

Stage nextStage = this.getNextStage();
 if(nextStage != null) {
 nextStage.processItem(item);
 }
 } catch(Exception e) {
 throw new RuntimeException(e);
 }
}
}

B.2: Decoder Wrapper Code
We write our DecoderWrapper in a similar manner to that for the tokenizer. The code is

shown below.

public class DecoderStage extends Stage {

public String getDescription() {
 return "Wrapper for the black box decoder";
}

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

50

public String getDisplayName() {
 return "Decoder";
}

public void processItem(Item item) throws PipelineE xception {
 try {
 File input = File.createTempFile("decoder", ".in") ;
 File output1 = File.createTempFile("decoder1", ".o ut");
 File output2 = File.createTempFile("decoder2", ".o ut");
 input.deleteOnExit();
 output1.deleteOnExit();
 output2.deleteOnExit();

 BufferedWriter writer = new BufferedWriter(new Fil eWriter(input));
 Node textNode = item.getRootNode().getChild("text");
 Iterator<Token> tokenIter = ((TokenList)

textNode.getAnnotations("token")).iterator();
 while(tokenIter.hasNext()) {
 Token token = tokenIter.next();
 writer.write(token.toString() + "\n");
 }
 writer.close();

 String[] commands = {"java", "-jar",

“C:\\Documents and Settings\\ngiles\\My Documents\\ BIN\\Decoder.jar",
input.getCanonicalPath(), output1.getCanonicalPath(),
output2.getCanonicalPath()};

 Process process = Runtime.getRuntime().exec(comman ds);
 process.waitFor();

 BufferedReader reader1 = new BufferedReader(new Fi leReader(output1));
 String firstChars = reader1.readLine();
 item.getRootNode().addNode("FirstCharacters", firs tChars);
 reader1.close();

 BufferedReader reader2 = new BufferedReader(new Fi leReader(output2));
 String lastChars = reader2.readLine();
 item.getRootNode().addNode("LastCharacters", lastC hars);
 reader2.close();
 Stage nextStage = this.getNextStage();
 if(nextStage != null) {
 nextStage.processItem(item);
 }
 } catch(Exception e) {
 throw new RuntimeException(e);
 }
}
}

B.3: Output Code
The code for our output stage is slightly more complicated, because it needs to take the

location to place the output files as parameters. However, because there was no documentation,
how to take parameters remains unclear. Looking at existing stages as examples, we realized we

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

51

needed to provide a JSP webpage that asks for the configuration parameters and then extract
them from the XML object given to us by the UI. So we wrote the code shown below.

public class OutputStage extends Stage {

public String getDescription() {
 return "Output stage for the tokenizer and decoder ";
}

public String getDisplayName() {
 return "Output";
}

public String getConfigPage() {
 return "stage_output.jsp";
}

public void processItem(Item item) throws PipelineE xception {
 try {
 File inputFile = new File(item.getRootNode().getCh ildValue("url"));
 String tokenDir = super.params.getProperty("token_ directory");
 String firstDir = super.params.getProperty("first_ directory");
 String lastDir = super.params.getProperty("last_di rectory");
 File tokenFile = new File(tokenDir, inputFile.getN ame() + ".tokens");
 File firstFile = new File(firstDir, inputFile.getN ame() + ".first");
 File lastFile = new File(lastDir, inputFile.getNam e() + ".last");

 BufferedWriter writer = new BufferedWriter(new Fil eWriter(tokenFile));
 Node textNode = item.getRootNode().getChild("text");

Iterator<Token> tokenIter = ((TokenList)
textNode.getAnnotations("token")).iterator();

 while(tokenIter.hasNext()) {
 Token token = tokenIter.next();
 writer.write(token.toString() + "\n");
 }
 writer.close();

 BufferedWriter firstWriter =

new BufferedWriter(new FileWriter(firstFile));
 firstWriter.write(item.getRootNode().getChildValue ("FirstCharacters"));
 firstWriter.close();

 BufferedWriter lastWriter =

new BufferedWriter(new FileWriter(lastFile));
 lastWriter.write(item.getRootNode().getChildValue("LastCharacters"));
 lastWriter.close();
 Stage nextStage = this.getNextStage();
 if(nextStage != null) {
 nextStage.processItem(item);
 }
 } catch(Exception e) {
 throw new RuntimeException(e);
 }
}
}

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

52

B.4. JSP Page
Then we had to write the JSP page that we returned from the getConfigPage method. We

based it on examples from the source code. Our page is shown below.

<%@ page import = "org.openpipeline.server.pages.*" %>
<%
ConfigureStagesPage currPage =
(ConfigureStagesPage)session.getAttribute("currpage ");
%>
<table>
 <tr>
 <th colspan="3">Output Stage</th>
 </tr>

 <tr valign="top">
 <td colspan="3">Writes the output from the Tokeni zer and Decoder
Stages</td>
 </tr>

 <tr valign="top">
 <td>Token Directory:</td>
 <td><%=currPage.textField("token_directory")%></t d>
 <td>
Example: C:\Documents and Settings\ngiles\My Docume nts\Task\Tokens</td>
 </tr>

 <tr valign="top">
 <td>First Directory:</td>
 <td><%=currPage.textField("first_directory")%></t d>
 <td>
Example: C:\Documents and Settings\ngiles\My Docume nts\Task\First</td>
 </tr>

 <tr valign="top">
 <td>Last Directory:</td>
 <td><%=currPage.textField("last_directory")%></td >
 <td>
Example: C:\Documents and Settings\ngiles\My Docume nts\Task\Last</td>
 </tr>
</table>

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

53

Appendix C: XML Code for Mule as a Discrete Process Architecture Executive

C.1: XML Code
This is a description of the XML code needed to run as an executive for the example

process using the Mule ESB.
The top level “mule” tag defines namespaces and schemas and such. Inside the “mule”

tag, two connector types were defined. The first was a file connector type named “HotFolder”. It
was specified as options that it is not streaming (meaning that Mule should not deliver it as a
stream of bytes), that the file should not be deleted after opening, and that the folder should be
polled every 10 seconds. The second was a Virtual Machine connector type (an in-memory
queue of Java objects) that named “VmQueue”.

Next a model (which is a bundle of related services) was defined. Inside the model, two
services, called Tokenizer and Decoder, were defined. In Mule, a service is something which can
take input and return output. The most common case is a Java class, but it can also support
various web services. In this case, a script (in the Groovy language) was used as the service,
because this scripting language can be used easily to make system calls, and the script can be
embedded in the XML file itself.

The Tokenizer service specifies that it wants to use the HotFolder type of connector for
its input, and specifies a specific file path. It specifies it wants to use the VmQueue for its output,
and gives a named path for that as well. An inline script was written in the connector which takes
a file name as input. The script passes that file name to the black box executable, which creates
an output file, and then the script returns the name of that output file.

The Decoder service specifies that it uses the VmQueue as input. The script for that
service takes a file name as input and passes it to the black box decoder executable. It does not
return any output.

When Mule is executed with this XML file, the HotFolder connector monitors its folder
every 10 seconds. Each time, if it finds any files in that folder, it moves them to a secondary
folder (to ensure they are not processed twice), and then invokes the tokenizer script with the
moved file name as input. The tokenizer script invokes the tokenizer black box, which creates a
token file on disk. The script returns the name of this file, and Mule puts the returned string in
the output queue. The decoder service reads from the queue as its input, and calls its script
passing that string. The script runs the decoder black box with that input, which creates output
files in the correct places, and then the script ends.

 <?xml version="1.0" encoding="UTF�8" ?>

- <mule xmlns="http://www.mulesource.org/schema/mule/core/2.2"

xmlns:spring="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema�instance"

xmlns:file="http://www.mulesource.org/schema/mule/file/2.2"

xmlns:scripting="http://www.mulesource.org/schema/mule/scripting/2.2"

xmlns:vm="http://www.mulesource.org/schema/mule/vm/2.2"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring�beans�2.5.xsd

http://www.mulesource.org/schema/mule/file/2.2

http://www.mulesource.org/schema/mule/file/2.2/mule�file.xsd

http://www.mulesource.org/schema/mule/scripting/2.2

http://www.mulesource.org/schema/mule/scripting/2.2/mule�scripting.xsd

http://www.mulesource.org/schema/mule/core/2.2

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

54

http://www.mulesource.org/schema/mule/core/2.2/mule.xsd

http://www.mulesource.org/schema/mule/vm/2.2

http://www.mulesource.org/schema/mule/vm/2.2/mule�vm.xsd">
- <file:connector name="HotFolder" streaming="false" autoDelete="false"

pollingFrequency="10000">
 <service�overrides messageAdapter="org.mule.transport.file.FileMessageAdapter"

inboundTransformer="org.mule.transformer.NoActionTransformer" />
 </file:connector>

 <vm:connector name="VmQueue" queueEvents="true" />

- <model name="main">

- <service name="Tokenizer">

- <inbound>

 <file:inbound�endpoint connector�ref="HotFolder" path="C:/Documents and

Settings/ngiles/My Documents/Task/Input" moveToDirectory="C:/Documents and

Settings/ngiles/My Documents/Task/InputArchive" />
 </inbound>

- <scripting:component>

 <scripting:script engine="groovy">tokenDir = "C:\\Documents and

Settings\\ngiles\\My Documents\\Task\\Tokens"; tokenFile = new

File(tokenDir, payload.getName() + ".tokens"); commands = ["java", "�jar",

"C:\\Documents and Settings\\ngiles\\My Documents\\BIN\\Tokenizer.jar",

payload.getCanonicalPath(), tokenFile.getCanonicalPath()]; process =

commands.execute(); process.waitFor(); return tokenFile;</scripting:script>
 </scripting:component>

- <outbound>

- <pass�through�router>

 <vm:outbound�endpoint path="DecodeIn" connector�ref="VmQueue" />

 </pass�through�router>

 </outbound>

 </service>

- <service name="Decoder">

- <inbound>

 <vm:inbound�endpoint path="DecodeIn" connector�ref="VmQueue" />

 </inbound>

- <scripting:component>

 <scripting:script engine="groovy">firstDir = "C:\\Documents and

Settings\\ngiles\\My Documents\\Task\\First"; firstFile = new File(firstDir,

payload.getName() + ".first"); lastDir = "C:\\Documents and

Settings\\ngiles\\My Documents\\Task\\Last"; lastFile = new File(lastDir,

payload.getName() + ".last"); commands = ["java", "�jar", "C:\\Documents and

Settings\\ngiles\\My Documents\\BIN\\Decoder.jar",

payload.getCanonicalPath(), firstFile.getCanonicalPath(),

lastFile.getCanonicalPath()]; process = commands.execute();

process.waitFor();</scripting:script>
 </scripting:component>

 </service>

 </model>

 </mule>

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

55

Appendix D: Scientific Workflow GUI examples

D.1: LONI GUI Example Workflow
Figure 10 shows an example workflow created in LONI for the tokenizer and decoder

described in earlier workflow examinations. This is a fairly simple to create, each triangle set to
read files from a certain directory or write to a certain directory while the executables have their
paths set and the names of the files they take as input and produce as output specified.

Figure 10. An example workflow involving both tokenizer and decoder in LONI

D.2: Kepler GUI Example Workflow
 Figure 11 shows an example workflow created in Kepler for tokenization. This is more
complex than what LONI presents in the earlier figure, but Kepler has other advantages over
LONI in its extensibility and lacking any restriction of file input/output for its analytics, which
gives Kepler a greater flexibility than LONI.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

56

Figure 11. An example workflow for the tokenizer in Kepler.

D.3: Ptolemy GUI Example Workflow
 Figure 12 shows an example workflow created in Ptolemy for tokenization. This is
similar to the workflow presented in Kepler and also more complex than what LONI presents,
but Ptolemy has all the same advantages over LONI in its extensibility and lacking any
restriction of file input/output for its analytics that Ptolemy does in addition to being a more
general purpose product than Kepler.

Figure 12. An example workflow for the tokenizer in Ptolemy.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

57

Appendix E: Decision Points across Different Candidate Executives

E.1: UIMA
In UIMA, there are primitive and aggregate analysis engines. A primitive analysis engine

is an XML file that describes a single Java annotator class. This class provides a method that
takes a CAS object as input and modifies it as output. An aggregate analysis engine is an XML
file that lists a collection of other analysis engines, either primitive or aggregate. These sub-
analysis engines are referred to as its delegates. A complete workflow in UIMA is created by
first writing a primitive analysis engine XML descriptor for each individual Java annotator. Then
a developer builds a tree hierarchy upward by collecting delegate analysis engines into aggregate
analysis engines until there is a single aggregate at the top of the tree which contains all the
necessary annotators. The simplest way to do this is to write a single aggregate which contains
all the required primitives as delegates; however, it may make logical sense to first create
aggregate subgroups and then combine those subgroups as delegates.

Each aggregate analysis engine also specifies a Java class called a Flow Controller. The
Flow Controller class must expose a method called computeFlow which takes a CAS object as
input and returns a Flow object. For every CAS object that is given as input to this aggregate
analysis engine, the UIMA framework will call computeFlow and will save the returned Flow
object together with the CAS object. Each Flow object is responsible for managing the workflow
of the CAS object it is associated with. Note that this architecture allows different Flow objects
to be created based on the initial state of the CAS object.

A Flow object exposes a method called next which takes no input and returns a set of
delegate analysis engines. Although it does not take explicit input, each Flow object is always
able to inspect the CAS object it is associated with and the list of delegate analysis engines from
the aggregate XML file. Whenever the UIMA framework needs to determine which delegate
analysis engine should process a CAS object next, it calls the next method of the Flow object
associated with that CAS. If it returns a one element set, then that delegate analysis engine
receives the CAS next. If it returns a multi-element set, then those delegate analysis engines
should process the CAS in parallel next; however, the UIMA framework does not guarantee that
it will actually use parallel processing and may simply schedule them in a random sequential
order. If the next method returns the empty set, it indicates that this CAS object is finished with
this workflow and should be returned from the analysis engine.

The UIMA framework only provides an implementation of a Flow Controller, which
returns Flow objects that schedule every CAS to pass through every delegate analysis
sequentially and exactly once in the same order as they are listed in the XML descriptor.
Anything more complicated would require a developer to implement the Flow Controller and
Flow interfaces. This would be non-trivial Java code and would require experience with Java
programming and either familiarity with or a strong willingness to learn how to write to UIMA’s
API. In order to provide decision points in UIMA to people without a strong Java background, a
tool with a simplified interface to decision points that automatically generates Flow Controller
and Flow classes would need to be provided.

E.2: OpenPipeline
OpenPipeline uses a pipeline descriptor XML file to list the stages in a pipeline, in a

manner similar to UIMA. Each processing stage in a pipeline is informed about the full list of
stages. It is the responsibility of each processing stage to start the next stage; otherwise, the
pipeline will end at the point. In practice, the OpenPipeline framework provides a convenience

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

58

method for a processing stage to search the list of stages and get the stage after it. All the
processing stages provided by OpenPipeline call this method at the conclusion of their
processing to determine which stage is next and start it, which results in a sequential flow.
Theoretically, the developer of a stage does not have to honor this unwritten rule and could
manipulate the workflow after his stage in any way desired. This setup, in which control of the
workflow is embedded into the processing stages is fairly robust, but leads to confusion.

E.3: Mule
Recall that Mule is a data driven manager of services. A set of services are specified in an

XML file; each services specifies an inbound endpoint, a component which performs processing,
and an outbound endpoint. Mule supports a variety of transports to which endpoints can connect;
the most relevant transports for us are the file transport in which Mule polls a directory on the
file system for new files and the virtual machine transport in which Mule creates an in-memory
queue of objects. When data appears at one of the service’s inputs, it is processed by that
service’s component and sent to that service’s output. If this output is also the input of some
other service, then a chained workflow is created. For reference, the XML file for the toy
workflow in Mule is attached.

Before discussing decisions in Mule, a brief discussion of service components is required,
because there are several ways to consider an implementation in Mule. The basic notion of a
service component in Mule is a Java class. Based on the format of the input, Mule dynamically
searches the class for a method which has an argument that takes that format as input and calls it,
and returns the result as output. Given this, Mule could be used to perform a task in nearly the
exact same way as in UIMA; annotators could be Java classes that take CAS objects as input,
and Mule could pass the CAS objects around in its in-memory queues. However, Mule can
become more general than that because it is not tied to the CAS format. We could instead
envision an implementation where annotators take the filename of a file containing their input as
input, then produce a result file and return its filename as output. Mule could then only pass
around the filenames as data in in-memory queues.

Additionally, while Java classes are the default notion of a processing component in
Mule, processing components can also be web services, or JSR-223 scripts. JSR-223 is
essentially a framework for interpreting scripts inside a JVM, and there are currently engines for
Groovy, Ruby, and Python among others. This was essential for this implementation because it
allows one to embed a script inside the XML, and scripting languages commonly have
straightforward ways to execute local processes. Specifically, the toy example uses Groovy
scripts as components, as shown in the inline excerpt below.

<scripting:component>
 <scripting:script engine="groovy">
 tokenDir =
 "C:\\Documents and Settings\\ngiles\\My Documen ts\\Task\\Tokens";
 tokenFile = new File(tokenDir,
 payload.getName() + ".tokens");
 commands = ["java", "-jar",
 "C:\\Documents and Settings\\ngiles\\My Documen ts\\BIN\\Tokenizer.jar",
 payload.getCanonicalPath(), tokenFile.getCanoni calPath()];
 process = commands.execute();
 process.waitFor();
 return tokenFile;
 </scripting:script>

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

59

</scripting:component>

Understanding this, we can discuss the possible ways to implement decision points in

Mule. The first and most general way is to write a custom outbound router. This would be a Java
class that would implement the Outbound Router interface and could inspect the data being sent
and determine where to send it as a result. This option is similar to the routing UIMA provides in
that it is robust but requires Java experience and familiarity with or a willingness to learn the
Mule API.

Moving down the scale in difficulty, the second means for implementing decision points
in Mule would be to use a filtering router. Based on the type of data being sent, Mule supports
some basic filters which can be used to select an endpoint from a list of possible endpoints. The
basic filters allow selection based on the type of output, regular expressions for string data,
XPath for XML data, and OGNL for Java objects. Additionally, if one is able to write Java code,
one can also implement one’s own filters by extending the Filter interface, but this is non-trivial
in a similar manner to implementing an outbound router.

Given all of this, we can consider the following strategy for simple decision points in
Mule. The script shown previously, which executes a local process and then returns the filename
of the output is modified to also return the exit code of the process. Based on the exit code, a
filtering router is able to select among several endpoint as to where to send the data next. As an
alternative to having an explicit code, the script could inspect the output after completion of the
process and general something like an exit code from that, and then proceed in the same manner.

MOSAIC – Implementation Recommendations
The MITRE Corporation, 2010-2011

60

Appendix F: Initial Implementation of the Inbound Gateway

The initial inbound gateway, which represents the first step into the MOSAIC

architecture, is implemented with a JMS (Java Message Service) queue. A message is put on the
queue containing a URL that refers to the raw document to be processed by MOSAIC. As stated
in the recommendations, this is not a core competency to the overall architecture, and MOSAIC
does not require the use of JMS to serve as its input technology. Any other application that can
be used to queue documents or references to documents are also viable alternatives (e.g. hot
folders). The need for a queue is directly due to the requirement of handling a stream of input
data, and this would be alleviated were MOSAIC applied to tasks that had a batch mode of input.

The inbound gateway has been simplified to some extent from the initial
recommendations out of consideration of the fact that the analytic functionality it might be
expected to have within the MOSAIC architecture is more appropriately rendered in the context
of how analytics have been characterized, as they perform content analysis and production. This
includes any triage, workflow selection, or zoning work, the latter of which in fact is treated as
an analytic in the current implementation.

	Introduction
	Architectural Goal of MOSAIC
	Architectural Options for MOSAIC

	Case Study: METEOR
	Tightly Integrated Architecture Technology Analysis
	Recommendation

	Discrete Process Architecture Technology Analysis
	Discrete Process Architecture Technology Analysis: Interface
	Discrete Process Architecture Technology Analysis: Inbound Gateway
	Discrete Process Architecture Technology Analysis: Executive
	UIMA as Executive
	OpenPipeline as Executive
	Mule as Executive
	LONI or Ptolemy/Kepler (Scientific Workflow Projects) as Executive
	Decision Points in Workflows across Possible Executive Options
	A BPEL Engine Executive?
	Other Options for Executive
	Recommendation

	Discrete Process Architecture Technology Analysis: Data Bus
	Flat File System as Data Bus
	Alfresco as Data Bus
	ObjectStore as Data Bus
	Recommendation

	Discrete Process Architecture Technology Analysis: Analytics
	Specific Analytics and Analytic Workflow
	Analytic Pipeline

	Discrete Process Architecture Technology Analysis: Adapters
	CAS as Common Interchange Format
	GrAF as Common Interchange Format
	Possible Basis Ontologies

	Summary of Recommendations
	Takeaways

	Glossary
	A.1: Collection Reader Code and XML
	A.2: Tokenizer Wrapper Code and XML
	A.3: Decoder Wrapper Code and XML
	A.4: Flow Code in UIMA
	B.1: Tokenizer Wrapper Code
	B.2: Decoder Wrapper Code
	B.3: Output Code
	B.4.
	C.1: XML Code
	D.1: LONI GUI Example Workflow
	D.2: Kepler GUI Example Workflow
	D.3: Ptolemy GUI Example Workflow
	E.1: UIMA
	E.2: OpenPipeline
	E.3: Mule

