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Introduction 
 
This is a companion document to MOSAIC: A Workflow Architecture for Analytic 

Enrichment that describes the current need for integration of document analytics and a general 
approach to solving this problem. This document directly addresses the implementation issues of 
the candidate architecture, with specific frameworks for the different architectural 
subcomponents analyzed and compared. Ultimately, recommendations are offered. 

Architectural Goal of MOSAIC 
 

 
Figure 1. The MOSAIC Architecture’s role in a larger system that delivers it input from a 
Content Provider and consumes its output in a Knowledge Base Architecture. 

 
The goal of this effort is to develop a Natural Language Processing architecture to be 

used by subject matter experts who are researchers and engineers, termed domain expert 
engineers here. This architecture, titled MOSAIC, is intended to be shared across multiple 
projects and hosted in the sponsor’s environments and is intended to be compatible with and 
facilitate a streaming document flow as opposed to execution on a static batch of documents, 
which would require an entire corpus be present before processing could commence. 
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In order that the overall goal is addressed, several high level requirements need to be met 
in order for the system to be considered successful. These requirements are specified here: 

1. The system shall maintain a consistent overall structure with evolving components, 
where the consistent structure is the relationship of the framework built around the 
analytics, which in turn are the chief evolving components, though the individual 
products that make up the framework shall be replaceable without deteriorating the 
interoperability. 

2. The system shall at the least be able to accommodate a pipeline of analytics such that 
they can be run in sequence, potentially using the output of one as input to the other,  

3. Ideally the system should be able to handle more complex workflows that make use 
of splits, joins, and decision points. 

4. The analytics involved in the system shall be stateless, specifically in that they make 
no assumptions about what happens in any workflow prior to their execution or 
subsequent to their execution. 

5. The system shall have the ability to handle streaming documents that arrive 
asynchronously and in large quantities (generating and executing appropriate 
workflow instances for each). 

6. The system shall have the capability for a “debug” mode allowing a user to specify 
execution of a workflow instance on a particular document. 

7. The system shall leave audit trails for the purposes of provenance, in order that results 
are verifiable and repeatable.  

Figure 1 depicts the larger system in which the MOSAIC architecture can fit. This system 
can be essentially broken into three key components, from the perspective of the MOSAIC 
architecture, which takes its input from one and provides its output to the other. MOSAIC’s input 
arrives from a Content Provider and this input is expected to be a document stream. This is a 
separate input avenue from a user-specified “debug” mode which accommodates ad hoc input. 
MOSAIC’s output, which is some subset of relevant document artifacts produced by workflow 
instances operating on the input, is ingested by a Knowledge Base Architecture.  

Architectural Options for MOSAIC 
 
There are multiple approaches available for the design of an architecture that achieves the 

goal requirements specified above. Here this document puts forth some of these possibilities and 
makes recommendations on which architecture most appropriately suits different end users’ 
needs, the end users identified as being the domain expert engineers.  

There appear to be two separate environmental needs that can be addressed from a system 
of integrated analytics such as this, and these are identified as a production environment and a 
research environment. The production environment is characterized by a specified activity that 
needs to be accomplished in a highly efficient manner where artifacts collected throughout 
processing are insignificant compared to the actual output. The research environment is 
characterized by an emphasis on flexibility of activity to account for newly developed and 
evolving workflows, provenance and repeatability for experimental purposes, debugging in order 
to correct errors in newly developed and evolving analytics, and parameter tuning for the 
analytics to refine the results of the executing workflows. These two environments are not 
incompatible. Indeed, it is likely that what is developed, explored, and tuned in a research 
environment would eventually be migrated into a production environment where it can be used 
on high volumes of data and require less modification and greater efficiency.  
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Given these two different environments, it stands to reason that two different approaches 
to the architecture are likely to suit one or the other of them. It was determined that a production 
environment would fit best with a tightly integrated architecture using an off-the-shelf 
technology, such as UIMA (Unstructured Information Management Architecture), which is 
specifically considered here, as an overarching framework since efficiency concerns are 
paramount in this environment. It is further recommended that the research environment would 
be best addressed by a different architecture, one consisting of discrete processes that are less 
directly integrated but are more flexible when it comes to their addition by researchers as new 
workflows and analytics are frequently crafted. These two different approaches to the different 
environments are detailed below, and Table 1 lays out the differences between the approaches, 
also showing which features best align with the requirements of a research environment or those 
of a production environment. These alignments with research and production environments for 
the two examined approaches are equivalent to the advantages contingent on the final use case 
environment. A lack of alignment between a use case environment and a framework option does 
not necessarily constitute a disadvantage, but in the instances where this is true, it is indicated in 
the discussion below. 

 
 Tightly 

integrated 
Architecture 

Discrete Process 
Architecture 

Required by 

Memory managed  Yes No Production 
Tied to a specific architecture Yes No Production 
Tuned/optimized for targeted tasks Yes No Production 
Low barrier to entry for domain 
expert engineer 

No Yes Research 

Flexibility across analytics written in 
multiple languages 

No Yes Research 

Ease of integration of new analytics No Yes Research 
Adaptability to evolving technology No Yes Research 
Table 1. Examination of features required by either production or research environments and 
supported by certain architectures. 

 
The first option considered for architectural design makes use of a tightly integrated 

architecture of analytics. The architectural software tools found in UIMA are ideal for this 
manner of architecture as they allow for complex Natural Language Processing applications to 
be decomposed into their incremental individual tasks and provide a framework to manage these 
components and the flow of data from one to another. Users specify XML descriptor files for the 
transfer of data between the components, and the tight integration of the components in the 
framework means that UIMA can execute a workflow across multiple components without 
having to write to file, instead performing the task entirely within memory. 

When looking at the requirements that a production environment imposes, the virtues of 
this tightly integrated architecture are readily apparent. The emphasis in such an environment is 
on the efficiency of the overall system, and therefore the ability to perform the task in memory is 
a benefit as it can forgo the expense of writing to files and the overhead of having to perform the 
file management of documents and document artifact collections over the life of a workflow 
instance. The tasks in this environment should be quite specific and therefore a consistent 
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architecture with individual implementations that are each highly tuned and optimized for 
particular tasks fits well. The memory usage and analytic input/output can be optimized for the 
specific task in advance. 

When considering a research environment though, the lack of alignment with certain 
requirements reveals certain limitations to a UIMA-based tightly integrated framework. One of 
these limitations arises naturally from the tight integration of components. UIMA components 
are written typically in Java. The integration of other languages such as C++, Perl, and Python 
are supported, but these are suboptimal when considering that the intended language is Java. In a 
research space though, it is highly likely that legacy components will exist that were composed 
in other languages while at the same time researchers might want to rapidly create components 
outside the Java language for convenience on a case by case basis. 

In a research environment, a wide variety of analytic components should be available for 
the purposes of workflows designed to conduct experiments, and this requirement reveals 
another limitation of using a tightly integrated UIMA architecture, specifically in terms of the 
efficiency. Because there will be many different workflows that use the components, it can occur 
that artifacts will be generated for files by different analytics that will not be used further in an 
executed workflow. The size of document artifact collections can be quite large when compared 
to the size of the original file, which means that the memory can become strained with excessive 
information for a document on a particular workflow. If this pipeline of information should be 
stateless, it is not possible to identify for any analytic what artifacts will be necessary for later 
points in any given workflow, which means that all the artifacts must be maintained, potentially 
bloating memory further and further with successive analytics. For analytics that have to be 
accessed outside UIMA, this efficiency concern extends to the time required for marshalling all 
analytic output into UIMA’s common data format, CAS (Common Analysis System), when there 
might only be some smaller subset of the artifacts that are necessary for a given workflow. If 
most of the artifacts were stored in a document management system and the framework were less 
tightly integrated, then only the information needed for any given workflow would need to be 
handled by the executive and passed to the analytics. Additionally, it is possible that multiple 
workflow instances will execute simultaneously and asynchronously in the same system, which 
creates a further burden for the memory. 

There is also a potential risk in the research environment, where flexibility and 
extensibility are highly valued, in committing to a specific tightly integrated architecture such as 
UIMA. Because there are many competing and newly emerging alternatives to UIMA (for 
example, GATE, OpenPipeline), it is possible that UIMA could be abandoned, leaving a final 
architecture stagnant at that point, although the tight integration of the components means that 
the commitment level to this specific technology would need to be high.  

A more appropriate alternative in a research environment would be to create an 
architecture that is more loosely coupled where components such as an executive and a data bus 
are effectively separated from the analytics, which are treated as discrete components, such that 
they are more easily replaceable as technology evolves.  

A discrete process architecture would fulfill the same role as an architecture developed 
entirely within UIMA, namely executing workflow instances of analytics on incoming 
documents for the purpose of annotation and information extraction in a systematic and 
repeatable manner of operation. This architecture is characterized by the more modular nature of 
its components, the major components being the inbound gateway where documents arrive for 
processing by workflows, the executive that orchestrates the activity of the executing workflows, 
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the independent analytics, the adapters that allow for communication between analytics, and the 
data bus where document artifacts are stored between their use in different analytics. Key to this 
architecture is the separation of the workflow executive from the analytic data, which is not part 
and parcel of the executive. Instead the executive simply needs to know where to find the data 
and where to send it. Figure 2 shows a representation of this architecture’s layout. 

 

 
Figure 2. A high-level depiction of the thread of interactions between the services in a discrete 
process architecture. The user accesses analytics to run workflows on a source document via an 
interface attached to an executive. Adapters convert analytic output data to a common 
interchange format (as well as converting from this format back into specific analytic-usable 
formats) and this data persists over the life of the task in the data bus, which can route the data to 
other analytics or to the executive. 

 
The advantages of a system like this directly address the issues raised when considering a 

more tightly integrated system using a product like UIMA as the overarching framework for a 
research environment. Compatibility issues that arise with non-Java-based analytics are 
mitigated here as the executive need not impose a particular language on the analytics, each of 
which can be handled as a discrete process acting independently of other analytics, consuming 
input and producing output as the analytic was originally specified to do. This makes the 
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integration of current analytics much less onerous and more flexible as they need not be 
rewritten to accommodate the CAS format and operate on input and output in memory. 

This last point indicates another advantage of this system when considered in a research 
environment. Because the input and output of the system (that is, document and document 
artifact collections) are stored on the data bus, it is unnecessary to transfer all data from the data 
bus to any individual analytic that requires it. This means that what data is actively processed can 
be specified online on an analytic by analytic basis, while the bulk of any document artifact 
collection can remain in storage until required at some point in the workflow. This allows for a 
greater efficiency of what enters memory, whereas if an entire document artifact collection was 
held in memory at all times, a significant amount of unnecessary information would have to be 
maintained over the life of the workflow. It is also the case that there will be many ongoing 
workflow instances operating concurrently, so there may be many requests for memory for each 
individual process that could operate on the same virtual machine. 

Finally in a discrete process architecture with more loosely coupled components, 
adaptability is much easier over the long term, something established as important to a research 
environment. As parts of the architecture are potentially out-of-date or no longer supported by 
the community, they can be more easily replaced with components that become popular or new 
standards, making the architecture capable of a natural evolution as technologies change and new 
options become available.  

There are potential downsides to the discrete process architecture though. The most 
significant of these is that this manner of architecture is optimized to handle the diversity of 
analytics that appear in a research environment, and therefore is not as suitable for tools used in a 
production environment. In a production environment, a full-featured system such as this 
supports is less applicable than something more targeted to a specific task and therefore 
optimized in terms of resource costs to that particular task.  

Which solution is appropriate really depends on the intended use case. From an initial 
analysis it appears that a tightly integrated environment (such as would use UIMA) is a good 
choice for a production environment, bearing in mind certain caveats. These include 
recomposing current analytics that are incompatible with the architecture and composing the new 
analytics such that they plug-in to UIMA, consuming and producing CAS, as well as optimizing 
the CAS’s content to make it lightweight enough to maintain the desired efficiency of a memory-
based solution. This last point indicates that analytics and workflows written in this framework 
need to be more targeted to specific tasks. Although we have focused our discussion on UIMA, 
alternatives in this role are considered below. 

On the other hand it appears that a discrete process architecture that makes use of more 
highly modular components is more suited to a research environment, where the issues of 
flexibility and generality are more important. This approach requires more investigation and 
description, and the bulk of this document is devoted to providing the recommendations for the 
products to be used for the different identified sub-architectures and how they would interact, in 
particular emphasizing what must be a common interchange model and format that will allow 
different analytics to adapt their input and output to a lingua franca which requires definition in a 
separate document. 

While there has been an emphasis on the differences between research and production 
environments, it is worthwhile to note that targeted tools for production environments can 
naturally evolve out of the more general and flexible tools generated in research environments. 
While a research environment’s overall structure is not ideally something that is tightly 
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integrated, the individual analytics of that architecture are excellent candidates for being highly 
optimized and targeted tools, such as can eventually become parts of the production 
environment. This is reflected in Figure 3, which demonstrates the potential relationship between 
frameworks for these two environments and how analytics developed as components in a 
research environment can be merged and emerge as tightly integrated production tools. A more 
flexible architecture in a research environment means that the analytics can be matured 
individually and potentially merged as necessary, creating individual tools that can then be 
deployed in a production environment where there is less interest in further modification, as this 
refinement can be carried on in the research environment beforehand and in parallel with a tool 
in current production use.  

 

 
Figure 3. Potential relationship between research and production frameworks, where tightly 
integrated analytic components developed in the research environment can eventually transition 
to a production environment, just as existing production analytics can be leveraged by the 
research framework. UIMA stands as an example of a basis for a given production architecture. 
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Case Study: METEOR 
 
In the discussion of different architectures for these complex analytic tasks for research, it 

is helpful to examine an actual workflow used in practice that could become part of either 
framework proposed in this document. The chosen example is METEOR, a system for capturing 
and reasoning over meeting and other events appearing in raw text documents. Figure 4 depicts 
the overall workflow and gives some indication of the complexity involved in carrying out this 
task with the various required analytic tools.  

Breaking down this task, the ultimate goal is to provide reasoning about storyboards of 
larger events from a set of smaller events directly extracted from raw text as its source. This 
involves a pre-processing followed by four different phases of analytic work in the workflow. 
The pre-processing of the source file, such as an email, generates the text file that will be the 
input to the extractor. This pre-processing parser is a discrete process which the domain expert 
engineers in this case do not control, other than its execution being a necessary first step in their 
workflow to ready the documents for consumption by the analytics in their system. 

 

 
Figure 4. Overview of the workflow in the METEOR system. 

 
The first phase after the pre-processing uses the Serif program for automated information 

extraction to produce a set of interim output. This output includes the customary Serif dump data 
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that includes the parse tree, annotations, etc. as well as Serif’s ACE (Automatic Content 
Extraction) output represented in APF (ACE Pilot Format), which provides additional 
information not found in the dump data such as numerical expressions and Timex annotations.  

These artifacts, along with a WordNet to SUMO mapping that captures types absent from 
ACE, are then processed further in the second phase by a program called SerifSum, which 
aggregates the artifact collection and enriches it in another set of SSP format output, where 
annotations that capture verb tense, attitude, entity recognition and resolution, and cardinality 
information are introduced. 

The third phase of this workflow involves METEOR’s VSD Reasoner, which takes the 
enriched SSP from SerifSum as input, along with appropriate wordlists and lexicons, and 
produces INF files that include the interpretations and nominalizations of verbs as well as their 
arguments and thematic roles. This in total amounts to capturing specific event types. The events 
of interest were originally meeting events, but have evolved into events covering travel and 
criminal behavior as well.  

The fourth and final phase of this workflow is the Scenario Reasoner, which takes as 
input the INF files in order to produce a final output that recognizes whether a particular 
document contains events of different types (e.g., meeting, criminal activity) as well as 
recognizing larger event scenarios using a set of established “storyboard templates” that specify 
larger events that while perhaps not directly stated in the raw text of the document are typically 
characterized by a set of smaller events more likely to appear explicitly in the text. These 
templates are further input to this phase of the workflow. 

One can further add to this information the fact that the applications to perform these 
different actions are all discrete processes, most of which are written in C++ making use of F-
logic interpreters written in Prolog. Excluding time between the execution of these processes, the 
time for the system per document is on the order of approximately 1 to 2 minutes for Serif (the 
system bottleneck), 1 to 2 seconds for SerifSum and the VSD Reasoner each, and 10 seconds for 
the Scenario Reasoner. 

From this detailed description, some of the difficulties in the crafting of a workflow 
architecture around this process become apparent. This is a continually evolving piece of 
research work, and the flexibility to retune and improve the process is an important element that 
must be preserved in the architecture and made as flexible as possible. Further, a straightforward 
transition into UIMA would prove difficult for METEOR, which is not composed in Java but in 
C++, which while capable of being handled by UIMA is not its primary compatible language. 
More important than either of these issues though is the fact that the different parts of the 
workflow are discrete processes and not directly integrated, which would require recoding these 
components for more tightly integrated systems should one be used as opposed to an architecture 
that has the discrete processes executed as is by an executive and has their output handled by 
separate adapters that prepare information for storage in a data bus. Using a tightly integrated 
UIMA architecture would also require further rework on the analytics such that their output and 
input is compatible with CAS. Additionally, a data bus allows for some permanence of artifact 
collections which allows for provenance, traceability, and repeatability of the work, crucial for 
verification in a research setting, where METEOR is intended to be used.  

In contrast, were the intent of METEOR to be used in a production environment then a 
specific tightly integrated architecture would make sense, where the tradeoff of provenance and 
flexibility with the efficient processing of incoming data disappears in favor of efficiency. This 
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would ideally be an architecture though that supports and is optimized for only this task, perhaps 
matured in a research environment.  

This distinction between a research and a production environment is crucial for 
determining which architecture is more appropriate. In situations akin to the complexity of 
METEOR and its need for flexibility and to accommodate domain expert engineers who are 
interested in collecting repeatable and traceable results, a discrete process architecture as 
described below appears to be the most suitable option as its use case best fits a research 
environment. 

Tightly Integrated Architecture Technology Analysis 
 
It is worthwhile to detail some of the options as the different architectures are considered. 

Although the consideration of a tightly integrated architecture up until this point has been limited 
to UIMA, which is intended for just such a purpose, here the discussion is opened up to include 
discussion of an alternative, GATE (General Architecture for Text Engineering), for comparison.  

Both the GATE and UIMA frameworks take a similar approach in their fundamental 
design. Both frameworks define a common data format for a document based around the concept 
of an annotation. In UIMA, this takes the form of the CAS, which allows for the creation and 
storage of data types and provides a base data type for annotations that contain start and end 
offsets. A CAS object has one or more views of its document, and each view is associated with a 
unique SOFA (Subject of Analysis) for that view. A view of a CAS represents the abstract notion 
of an interpretation, and the SOFA for a view represents the actual data associated with that 
interpretation. In GATE, the data format takes the form of GATE Documents, which store 
annotations that contain start and end offsets and a table of features. Although these data formats 
are based on annotations, they are both general enough to represent nearly any type of analysis 
data. 

Both frameworks also take a similar approach to incorporating analyses. In UIMA, 
analysis engines are Java classes with an associated XML file describing configuration 
parameters. Analysis engines expose methods to get and set configuration parameters, and a 
process method which takes a CAS as input and modifies its annotations as output. In GATE, 
language analyzers are also Java classes with an associated XML file describing configuration 
parameters. Language analyzers expose methods to get and set configuration parameters, and an 
execute method which takes a GATE Document as input and modifies its annotations as output. 
Additionally, both frameworks reuse this approach to handle output. For example, either 
framework could support an analysis which only writes its input to disk without modifying it; 
placing such an analysis at the end of a workflow would effectively save the results of previous 
analyses. 

UIMA additionally provides a more general notion of analyses which GATE does not, 
called CAS multipliers. A CAS multiplier is an analysis which may produce any number of 
output documents (including zero) for each input document. CAS multipliers can be used to filter 
input documents by conditionally returning no output, to segment an input document into many 
smaller output documents, or to aggregate many input documents into one larger output 
document. All output documents produced by a CAS multiplier continue through the remainder 
of the workflow. 

Both frameworks expose an interface for skilled developers to programmatically define 
robust workflows, and they also provide their own implementations of a simple, serial workflow 
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which users who lack significant programming experience can use. With regards to workflow 
input, the frameworks take slightly different approaches. A UIMA workflow must include a 
collection reader as its first element, which exposes a next method that returns CAS objects. The 
UIMA framework repeatedly calls the next method until the collection reader indicates that input 
is exhausted, and the collection reader is responsible for reading input into the CAS format and 
returning it. A GATE workflow must be given a list of documents to process as input, and the 
GATE framework provides built-in support for reading common formats into GATE Documents 
with metadata (such as tags in HTML) represented as annotations. 

Beyond what has been mentioned, the major advantages of both GATE and UIMA take 
the form of tools which are not essential to the underlying framework. GATE comes with an 
extensible GUI for loading documents and creating corpora, viewing and editing annotations, 
and loading and running analyses. This user interface can be considered superior to UIMA’s user 
interface, which consists of a plug-in for Eclipse and a collection of shell scripts. GATE also 
defines the JAPE (Java Annotation Patterns Engine) language, which is similar to regular 
expressions for annotations. Developers can express a series of transformation rules based on 
annotations in the JAPE language, and then automatically generate a GATE analyzer which 
performs those transformations on its input. Finally, GATE is distributed with ANNIE (A 
Nearly-New Information Extraction system), a set of information extraction analyses for GATE 
developed by the University of Sheffield. 

Excluding support for CAS multipliers, the major advantage of UIMA over GATE is 
scalability. UIMA provides support for deploying analyses to remote nodes as part of a 
distributed workflow, and support for duplicating a workflow on a single node using threads. 
Further, there is an addition to the base UIMA framework called UIMA AS (Asynchronous 
Scaleout) which is integrated with middleware to allow remotely deployed analyses to be 
duplicated across several nodes and work in parallel as part of a single workflow. Finally, there 
is also an addition to the base UIMA framework called UIMA C++ which allows analyses to be 
written in C++. By using SWIG, an open source interface compiler for C++, this framework can 
also be used to write analyses in languages with which SWIG can interface, particularly Perl, 
Python, Ruby, and Tcl. 

Recommendation 
 
Out of the two chief competing architectures that are intended for a tightly integrated 

architecture, there appear to be greater advantages to using UIMA, so specifically in a production 
environment the recommendation is to use UIMA as this architecture given its more general 
notion of analyses and greater scalability. 

Discrete Process Architecture Technology Analysis 
 
When considering a research environment as the intended venue for a Natural Language 

Processing analytic architecture, a discrete process architecture as suggested is the best fit for 
domain expert engineers who are crafting workflows of analytics. The following sections discuss 
in detail the specific subcomponents of the architecture which must be developed along with an 
examination of the available technologies for implementing each subcomponent. 
Recommendations for specific technologies are made for each as well following this analysis. 
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Discrete Process Architecture Technology Analysis: Interface 
 
The interface provides the user with access to the architecture, allowing for definition of 

workflows and execution of specific instances of these. This access can be provided in different 
ways, including the user composing a configuration file that establishes the workflow and its 
input requirements. Another possibility is a graphical user interface (GUI) that can specify both 
the restrictions on the documents to be analyzed and worked on as well as the particulars of the 
workflow that will operate on the data taken from these documents, including which analytics 
are called and what data from different sources (in consideration that an analytic might need to 
execute on the output of a previous analytic) will serve as input. 

While it is anticipated that most workflow instances will be generated as relevant 
documents arrive in the inbound gateway, this interface provides the opportunity for a user to run 
a single ad hoc workflow instance on a particular document. The user can also specify where the 
data is located or how to collect it rather than actually working from an initial document or 
corpus of documents on hand. This layer of abstraction means the user can avoid both the need to 
organize and maintain where the mid-workflow data is kept and avoid executing each analytic in 
the workflow manually, simplifying the input to the raw source document and the output to 
whatever the user specifies in the interface. 

Discrete Process Architecture Technology Analysis: Inbound Gateway 
 
The inbound gateway is responsible for handling the input stream of documents that 

arrive for processing. Based on the interactions with active workflow instances specified in and 
deployed by the executive, the inbound gateway will submit documents to the data bus for 
processing by those workflow instances.  

By way of document triage, this transfer of documents can be filtered before it ever 
reaches the data bus, such that only particular documents (such as documents that match the 
active workflow instances’ specification or those that are not corrupt) reach the data bus for 
processing. Alternatively, there might be workflows that intend to work on all incoming 
documents, in which case everything that passes through the inbound gateway will enter the data 
bus. 

In addition to this document triage, there is a set of document interrogation procedures 
that all documents must undergo, including such analysis as language recognition and genre 
detection. This analytic work must happen before any of the active workflows execute on the 
incoming document, so it is necessarily a part of the inbound gateway, which prepares the 
documents for use by any of the workflows. As suggested above, workflows may be targeted to 
documents of a particular language or genre and this information must be made available to all of 
them up front. Any further or deeper analysis should not be part of the inbound gateway as the 
key role here is not meant to be content extraction or annotation, even though it is necessary in 
the identified cases. 

An issue that the inbound gateway must accommodate is the limitations on the systems of 
the amount of parallelism possible. There are going to be low and high water marks in the 
capacity of threads being executed, which require different input rates on a given instance of the 
system. When a high water mark of capacity is reached, the inbound gateway should inform the 
Content Provider to throttle back on documents being sent to it and when a low water mark is 
reached, this is also indicated to the Content Provider so that the stream of input can be resumed. 
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This prevents the thrashing of the executive between high and low activity, keeping a steady 
wave of activity. 

It should be noted that the inbound gateway is not a core competency of this system, but 
this description has been included for completeness sake.1 

Discrete Process Architecture Technology Analysis: Executive 
 
This section considers and examines several technology options for an executive to a 

discrete process architecture. The role of this executive is to orchestrate all the user-specified 
behavior in the execution of a workflow. Ideally, an executive would also automatically handle 
some of the data or memory management issues for the user, but it at the least needs to provide 
the opportunity for the user to specify the coordination and flow of documents and document 
artifacts throughout the life of a workflow instance. In this architecture, the executive will either 
receive input from an inbound gateway that supports the input stream or as a specified file when 
operating in a “debug” or ad hoc execution mode. This input is moved into the data bus and will 
be used as input to the analytics, between which the executive is tasked with handling the data 
flow.  

Workflows must be capable of persistent deployment by the executive, and 
communication with the inbound gateway determines the documents relevant to the workflow 
that will be processed in a workflow instance. This allows for multiple instances of the same 
workflow to operate on different documents that arrive for processing. Alternatively, workflows 
can be deployed temporarily to execute on user-specified documents in an ad hoc manner.  

Workflow information, namely the succession of and parameter settings for analytics, 
should be retained among the data in a document artifact collection in the data bus and past the 
life of the workflow in the resulting output. This allows for keeping track of the provenance of 
what is produced by a collection of analytics making results traceable and repeatable.  

Among the possible architectural technologies considered that can fill this role examined 
here are UIMA, OpenPipeline, Mule, and Ptolemy, the applicability and pitfalls of each 
discussed in turn. Each discussed technology is open source, unless otherwise specified. The 
initial analysis was conducted for each of these in a simple use case workflow of analytics. This 
task involves two simple analytics. The first is a tokenizer that separates text based on 
whitespace and puts each token in a document on a separate line in an output file. The usage is 
“java –jar Tokenizer.jar <input file name> <output file name>”. The second is a decoder that 
outputs two files, the first a concatenation of the first letter of each line of its input and the 
second a concatenation of the last letter of each line of its input. Its usage is “java –jar 
Decoder.jar <token file name> <output1 file name> <output2 file name>”.  

The following directory structure is on the disk of a single, isolated machine. There is a 
top level directory called “Task”, which has four subfolders: “Input”, “Tokens”, “First”, and 
“Last”. The input directory has some number of named text files processed with two toy 
analyses. For each input file, the tokenizer output is sent to the “Tokens” directory but with the 
added extension “.tokens”, and the decoder output is sent into the respective “First” and “Last” 
directories with the added extensions “.first” and “.last”. 

In each case the task is to execute the tokenizer first and then the decoder on its output to 
end up with two output files. This allows a reasonable comparison for the difficulty in crafting a 
simple workflow using each considered technology as the executive. 

                                                 
1 A description of the current implementation of the inbound gateway is provided in Appendix F. (Feb. 2011) 
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UIMA as Executive 
 
As discussed in the earlier examination, UIMA is a software architecture that supports 

developing and deploying analytics that execute on potentially large volumes of unstructured 
information. The ultimate intent of these analyses is knowledge discovery. The most relevant use 
case at hand which UIMA addresses is the consumption of raw text in order to enrich the source 
material and extract elements such as entities, relations, and events. While intended to 
orchestrate components that plugged in to be part of the same application, it is also capable of 
executing a workflow that makes use of outside components. The example case was 
implemented in UIMA with this in mind. 

UIMA was examined in the role of an executive for discrete processes, the details of 
which are discussed here with the code implementation provided in Appendix A. As described 
above, two “black box” toy analyses ran on input documents and produced output for, the 
tokenizer and the decoder.  

In building this system in UIMA, the code necessary to create input CAS objects is first 
described. The collection reader at the start of a UIMA workflow is responsible for reading the 
input files and formatting them into CAS objects. In this example, the initial CAS object creation 
is trivial as the UIMA framework is packaged with a collection reader that can transform input 
text files into CAS objects where the body of the text is the sole SOFA. It is worth noting that 
this procedure is not as simple for more complex documents such as PDF files, or HTML files 
that could require de-tagging. Additional UIMA collection readers for some common file 
formats exist as open source code, but it may occasionally be necessary to develop a new 
collection reader. In consideration of this, a collection reader for this task was written for the 
purpose of demonstration. 

The first step in building a collection reader is to write an XML type descriptor. This file 
and its details are described in Appendix A.1. Once the type descriptor file is created using the 
UIMA Eclipse plug-in, the plug-in will automatically generate Java classes for each type one 
defines. This makes these Java classes useable in the collection reader Java class written next. 
This class and its XML descriptor are further detailed in Appendix A.1. Next, similar XML 
descriptors and Java classes are written to encapsulate each analytic. The necessary XML type 
descriptors and wrapper Java code for the discrete process, or black box, components in the task, 
the tokenizer and the decoder, are detailed in Appendices A.2 and A.3, respectively. Finally, an 
output component is written to save the analysis data to disk. This XML file and Java code is 
similar to that for the analytics, and is not detailed for brevity. 

With all the analysis engines defined, the next step is to define a flow. Since only a 
simple linear flow is required, the built-in flow control in UIMA can be used. However, UIMA 
does provide an interface for more complicated workflows to be defined if necessary. Both the 
full flexibility of UIMA workflows and the flow controller used for this task are detailed in 
Appendix A.4. After writing another XML file to specify this workflow, it can be executed by 
starting a script in the UIMA distribution, which launches a Java GUI allowing a user to select 
the designed workflow and run it once as a UIMA application. 

While the task was successfully accomplished, it makes clear some of the severe 
inefficiencies of using discrete processes in a tightly integrated framework. The collection reader 
reads the input from a file into the in-memory CAS object. The tokenizer wrapper then writes the 
CAS to disk so that the tokenizer black box can take it as input. The tokenizer black box then has 
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to read the input file into memory, do its work, and write the output back out to disk. The 
tokenizer wrapper reads the output back into memory in the CAS; however, the returned format 
cannot be immediately and unambiguously converted to annotations, so extra processing must be 
done. 

After the tokenizer wrapper performs a linear search through the document in order to 
format the token list as annotations, the decoder wrapper ignores that work by reconstructing the 
token list, and writing it out to disk so the decoder black box can take it as input. The black box 
has to read that file, and then write out two output files. Then, the decoder wrapper has to read 
both output files back into the CAS. Finally, the output engine reads the CAS and writes 
everything in it back out into files. 

This constant exchange between the in-memory CAS object and on-disk black box 
formats is representative of a trade-off between efficiency and modularity. Having sacrificed 
efficiency by repeatedly moving data in and out of memory, the tokenizer analytic can now be 
feasibly replaced with some other UIMA analytic which also produces token annotations, and 
this would not alter the function of the decoder. However, this does not eliminate the need to 
conform to a specific data model to facilitate communication between components, something 
discussed below when examining adapters. 

Alternatively, it is unnecessary to use the CAS to store all data. Consider that in the 
collection reader, one could have only put the path to the input file in the CAS, and not bothered 
to read the file data in to memory. Then, the tokenizer wrapper could simply pass the input file 
path to the black box tokenizer, and then add the file path of the tokenizer output to the CAS. The 
decoder wrapper could use this file path to send input to the decoder black box. If the outputs 
from each black box are then stored in their intended final destinations, an output engine would 
not be necessary, and extra memory-to-disk or disk-to-memory penalties would not be incurred. 
However, this system lacks modularity because it does not transform the inputs and outputs into 
a common format which might be recognized or produced by other analytics. 

Various middle grounds could also be considered, such as keeping the original artifact 
data on disk and only storing a file path to it but storing actual analysis data in the CAS. If 
UIMA were to be used for the executive, this balance between efficiency and modularity would 
be determined by the developer.  

OpenPipeline as Executive 
 
An alternative technology to UIMA, though it covers much of the same capabilities in 

terms of acting as an executive, OpenPipeline is a software architecture intended for analyzing 
documents. It has pre-built components, but it can integrate external modules.  

In order to make a fair comparison with UIMA, it was attempted to recreate the same 
workflow with the same black box components using OpenPipeline. One of the unfortunate 
limitations of OpenPipeline is the lack of a Developer’s Guide at present and a spotty Javadoc. 
Most of the analyses are gleaned from examining the source code. 

OpenPipeline is tightly integrated with a web based GUI for creating and executing 
pipelines. As a result of this, OpenPipeline is not easily embeddable within another application 
or in a separate UI. Further, because the format of required XML parameters for workflow 
definitions is not clearly specified and the generation of these files is tied to the GUI, users are 
forced to use the provided interface. 

An OpenPipeline workflow is a Java class which exposes an execute method that is 
responsible for the entire execution of the workflow. In this method, a document crawler 
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examines a data source specified in the workflow XML file for raw input and creates an Item 
object from each document. The Item class is OpenPipeline’s common data format, and stores 
data in a tree structure of Nodes. It is rich enough to support any analysis data, but unclearly 
separates data into artifact data, artifact metadata, and analysis data. This could potentially cause 
issues if analyses intended for data are performed on metadata or vice-versa. 

OpenPipeline next routes Item objects through a series of Java classes based on a list of 
analytics also provided in the XML file. Each analytic provides an execute method which 
examines the Item object as input and modifies it as output. 

The lack of documentation makes building a document crawler ourselves quite onerous, 
so an implementation provided by OpenPipeline is used. Concerning the analytics, the details of 
the creation of the wrapper for the tokenizer are listed in Appendix B.1 and the details for the 
creation of the wrapper for the decoder are listed in Appendix B.2. This work is followed by the 
output engine, the code for which is detailed in Appendix B.3. In order for these analytics to 
appear in OpenPipeline’s web interface, a JavaServer Page must be written as described in 
Appendix B.4.  

The class files created for this task are then put into a JAR file with a service 
specification and added to the install directory for OpenPipeline. The JSP page is placed into 
OpenPipeline’s web directory together with the pages for other stages. After doing this, one can 
start OpenPipeline and create and execute the workflow. It was found that it executed and 
produced the correct output. 

The lack of any Developer’s Guide at present makes OpenPipeline an unattractive option 
as a solution for developers to create new workflows with relative ease, something that is key to 
a research environment’s requirements, and having a focused Developer’s Guide would be 
necessary to fit the customer needs. 

OpenPipeline has the same spectrum of modularity found in UIMA, and the trade-off in 
efficiency and modularity that is present in UIMA is present here as well. The efficiency drops 
when users are forced to map analyses in and out of the common format. 

Mule as Executive 
 
Mule is looked at next as an option for an executive to the discrete process architecture. 

Mule is an enterprise service bus, a less tightly integrated alternative to the options discussed 
thus far but one that scales well. Again for a fair comparison with the earlier examples, the same 
workflow involving the tokenizer and decoder discrete processes is recreated using the Mule 
ESB in the role of executive. Appendix C.1 shows the XML file with embedded scripts, the full 
extent of the code necessary to make this run. While Mule normally uses Java classes as its 
components, this demonstrates how some scripting languages can be embedded in the XML. 

This implementation of Mule indicates that there is potentially a greater simplicity in 
developing workflows using multiple discrete processes. Whereas the complexity of crafting the 
XML and Java code was somewhat heavy when using UIMA and OpenPipeline, this is reducible 
to a single XML specification file in this simple case, making Mule much more manageable. 

Unfortunately, this does not address the problem that a user would still have to learn the 
specification for the XML in order to craft the workflows and it is not as trivial as simply 
providing a list of analytics to the front end that need to be run in sequence. 

Mule is also not quite comparable to the other examined candidate executives in how it 
performs its workflow. Mule is built around a data-driven workflow, which leads to a slightly 
more intuitive model for accommodating simple decision making and decision points (e.g. if-
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then statements). However, complex decisions still require some programming experience, 
meaning that as workflows begin to require these conditions, more work will be entailed to 
implement them. This issue is not unique to Mule and will be discussed at length in a subsequent 
section examining achieving decision points in executives. 

Another advantage of Mule is that it is more flexible in terms of how data is represented 
between analytics, which means that different formats likely to emerge from different analytics 
do not pose a compatibility problem from this executive’s perspective, although they would still 
need to be resolved to communicate to one another. However, this removes some of the added 
burden imposed by other executives. 

It is also noteworthy that while Mule has a version that is available as open source, there 
is an enterprise version of the software that must be paid for. This analysis has examined the 
open source version, but there might be features available to this version not available in the 
open source. Though Mule of course states that this version is intended for production use, it is 
likely that the open source Mule is sufficient for the needs of this architecture. 

LONI or Ptolemy/Kepler (Scientific Workflow Projects) as Executive 
 
There exist scientific workflow products that are applicable in this use case too. Here, the 

LONI Pipeline is examined as an option for an executive to the discrete process architecture. 
This is a file-driven scientific workflow application. This section also provides an examination of 
Kepler, another project for creating scientific workflows built to be wrapped around the Ptolemy 
II open source workflow project. Ptolemy II provides the foundation for Kepler.  

Both LONI and Kepler are intended for end-users who are not expected to write code, 
and each provides a GUI that is intended for use in creating workflows in each. Appendix D 
shows sample graphical workflows constructed using either LONI or Kepler. This provides some 
added convenience over the required coding that is necessary for other workflow alternatives. 
From the analysis of both of these, LONI has the simpler and more user-friendly interface than 
Kepler, but neither of these make the assumption that their users need to be developers.  

In terms of the data format and data transfer, LONI stores data in files passed through 
input and output while Kepler can pass data in memory between its analytics but also have the 
capability to write to and read from the file system or network.  

LONI and Kepler are capable of parallel execution of workflow instances, though Kepler 
does not support the simultaneous duplication of an actor (that is a specific analytic). Both 
workflow projects allow for using grid computing. 

While LONI and Kepler are each documented for users, a key limitation on LONI is that, 
while free, it is closed source, unlike the other technologies seriously considered here. This 
means that it cannot be executed programmatically. This does present a long-term limitation to 
using LONI as the executive as it eliminates any ability to extend it to be more robust if 
necessary, while Kepler is extensible and its user interface could be extended to be more user 
friendly to a research environment where components.  

Another potential limitation of LONI is that it places a restriction on its analytics in that 
they must take input as files and produce output as files. This, along with the closed source of 
LONI, makes Kepler the more attractive alternative of the two. A further examination was made 
of the open source workflow project around which Kepler was built, namely Ptolemy, and it was 
found this had a greater generality while capable of the same features of interest described above. 
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Decision Points in Workflows across Possible Executive Options 
 
Naturally, the examined workflow instance is a trivial example, and one might wish to 

consider workflows of greater complexity as well. What has been considered up until this point 
has been really more in the manner of single sequence pipelines, as opposed to the more complex 
structures that can make up workflows. This will be considered next across candidate executives. 

Workflows are distinguished from simple sequences of activities by a capability for more 
complex behaviors past simple chaining of analytics. While far from all inclusive, the most 
crucial of these capabilities is to provide for decision points, that is to say places in the workflow 
where the thread of execution can follow one of multiple branching paths based on some 
condition being met or not met. Although many workflows that are likely to be executed will not 
make use of this and are sufficiently captured by a completely sequential list of activities, there 
could be others that do require decision points or they could be created in the future if the 
executive is capable of handling these.  

The difficulty in making use of the robustness of UIMA has been previously discussed, 
but it bears mentioning again. Developers are required to have a certain degree of skill and 
experience in Java in order that they can make use of the workflow options such as conditionals, 
splits, and joins that advance the process past being a sequential pipeline. In the simplest case 
this would involve implementing at the minimum two non-trivial Java classes.  

With regard to OpenPipeline, this limitation is even more severe, in that anything other 
than a linear workflow is not achievable at the executive level and would have to be embedded 
into the analyses themselves, which undoes the crucial benefit of modularity.  

This is not quite the case with Mule though. Filters can be placed on the input and output 
to the components that effectively act as decision points, selectively dropping messages and 
determining what destination they reach. This allows for at the very least simple conditionals by 
filtering messages and message properties that return from the analytics (via regular expressions, 
for instance). This issue of decision points in the different alternatives for the executive are 
detailed further in Appendix E. 

While this might not handle highly complex decisions, those can be composed in a script 
or Java class to make the decision. It is also worth noting that while messages might not be 
passed from analytics directly to Mule as the executive, they could be wrapped in a manner 
similar to what has been demonstrated for other technologies to provide this interaction if 
necessary, avoiding recoding the analytics. These instances would entail more work than just a 
single XML file, but this work would be not more difficult than what is required by UIMA and 
OpenPipeline to execute a single linear pipeline of analytics, a functionality that Mule would be 
overtaking and one that would require even further work in UIMA or OpenPipeline to match. 
Therefore when comparing equal levels of capability (a linear pipeline, a workflow with decision 
points, etc.), Mule requires less work than UIMA or OpenPipeline.  

In comparison to UIMA, OpenPipeline, and Mule, the scientific workflows such as LONI 
and Ptolemy/Kepler are more robust with less effort in creating decision points. In LONI, 
workflows are created by matching input and output files of different executables and splits can 
be created by duplicating files while basic conditionals could be achieved based on the existence 
or length of a file. In Ptolemy and Kepler, workflows are created by chaining together the input 
and output ports of actors, and it is rich enough to support splits, joins, and conditionals. 
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A BPEL Engine Executive? 
 
One of the considerations that arose in examining the different alternatives for an 

executive in a discrete process architecture intended for a research environment was using a 
BPEL (Business Process Execution Language) engine. BPEL workflows are composed in XML 
and invoke services, operating on both their input and what the services return. Unlike most of 
the other workflows, which lean more to being pipelines in their implementation, BPEL provides 
a sufficiently rich workflow to manage the situations that would arise in this field. It has an 
added advantage that it is becoming a de facto standard in web service workflow. However, this 
very fact raises the immediate concern with BPEL as an alternative for capturing workflow. It is 
intended to invoke web services, something that one cannot presume about the legacy analytics. 
This could require a heavy amount of conversion of this existing software and further 
stipulations on writing new software in the future, the minimization of which is intended for the 
sake of the analytic composers in the research space. Indeed, BPEL is likely far too heavyweight 
a technology for what is required in the executive of this system. Because of this need to scale it 
down significantly, it was not considered further here. 

Other Options for Executive 
 
The Blackbook project back in 2005-6 examined the existing technologies available for 

performing workflow with the intent to use the most appropriate single technology, but this 
resulted in no suitable solution being discovered. From their list of technologies that might show 
some future promise, a more up-to-date investigation was made for this document. These 
technologies included BigBross Bossa, Ruote, con:cern, YAWL, Zebra, Syrup, Dalma, and 
GridAnt. As of now these technologies are outdated, still too immature, or not applicable to this 
project, and they were not considered further. 

Recommendation 
 
The difficulty in examining technologies for this role is that there does not appear to be a 

perfectly ideal choice, but the trade-offs between these different options appear clear and 
distinguish them from one another. Out of the examined possibilities, the strongest alternatives 
for this context of a research environment appear to be Ptolemy, Kepler, or Mule, particularly in 
the simplicity of integrating analytics, creating workflows, and more easily allowing for more 
complex behaviors within the workflow, such as handling decision points. They provide the 
flexibility that a system for a research environment needs, and they should be replaceable should 
an alternative prove more suitable in the future. Of these options, Ptolemy is most attractive 
given its built-in graphical user interface while configuration files still are required to be written 
by hand in Mule and given Ptolemy’s greater generality than Kepler, which makes use of it. This 
replacement, if necessary, could be affected with minimal to no change in the analytics 
themselves.  

Discrete Process Architecture Technology Analysis: Data Bus 
 
In the modular discrete process architecture, an inherent limitation on efficiency is that 

because an attempt is being made to reuse analytics with the minimum amount of redesign and 
recoding, most of the analytics as they are written and as they are likely to be written in the 
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future are or originate as standalone applications that are not intended to integrate with one 
another. This limitation means that the desire to have these analytics communicate directly via 
information stored exclusively in memory during the life of a workflow instance is not feasible 
in this system design. It bears mentioning that this memory-based data bus model is feasible in a 
more tightly integrated architecture, but this entails the loss of the flexibility afforded by what is 
being described here.  

Therefore from the perspective of a discrete process architecture, this section proceeds 
facing the limitation that there needs to be some file-based content management system acting as 
a data bus for the overall architecture. At this point we examine some of the alternatives 
available for storage of documents and document artifact collections over the life of a workflow 
instance as well as potentially over a longer term. The discussed options include simple file 
systems (specifically, a flat file system), Alfresco, and ObjectStore. Other alternatives are 
Documentum and FileNet, but these are heavy cost options and not investigated here. 

Flat File System as Data Bus 
 
The simplest solution for handling the documents and document artifacts when passed 

between analytics is a flat file system. This system eschews the need for hierarchies of folders as 
this involves essentially a directory. This leads naturally to the requirement that all the different 
files produced by the analytics must have different names, names which should distinguish the 
files based on uniquely identifying information. This information should include versioning as 
well so that provenance can be established.  

Despite its simplicity for storage, it creates some requirements that must be met by either 
the analytics or wrappers created for the analytics. These must be coded to both uniquely identify 
the document artifact collections and correlate them with the correct currently executing 
workflow instance (or past workflow instances if data is preserved for provenance and 
repeatability). The analytics must also have their output redirected to this data bus’s location. In 
the cases where analytics are hardcoded to send their output to a specific location or give the 
output a specific name, then transferring analytic output (and potentially input to further 
analytics that have hardcoded input paths) must be accomplished either via a wrapper or by 
recoding the analytics to support parameters that specify where to send their output and what to 
name it. Because it lacks any kind of structure except for what is imposed in the naming scheme 
though, it seems evident that this would grow and become unmanageable very quickly, 
especially as many workflow instances begin to operate simultaneously and leave behind 
artifacts. A solution here though is to only keep the version document artifact collections in this 
data bus over the life of each instance, transferring them elsewhere to maintain the long term 
provenance after an instance is finished executing.  

Alfresco as Data Bus 
 
Alfresco is an open source enterprise content management system. The following is a 

rundown of key elements of Alfresco that are of interest to developers and end users. While the 
system is established and running in the Amazon cloud, Alfresco is also downloadable and is 
capable of running locally on a user’s machine. Alfresco has the capability to be deployed across 
multiple platforms and is highly scalable. Therefore, at the first examination it seems to aptly fit 
what is envisioned as being an appropriate content management system to support the data bus in 
the discrete process architecture. 
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Alfresco operates by managing spaces, essentially smart folders or containers that have a 
hierarchical structure. A straightforward implementation would have a single space in Alfresco 
associated with the discrete process architecture. Different workflow instances would create sub-
spaces in this space that are identified by uniquely identifying names. These sub-spaces can have 
any hierarchy that fits the definition provided when discussing the adapters and the common 
interchange format, so the key point at this stage is that there is a great deal of flexibility 
afforded by such an architecture that reshapes itself to the different instances that are created and 
disappear. Users can be associated with the space and with individual sub-spaces such that 
workflow instances and users can be easily correlated. This allows any number of uniquely 
identified runs to be created and maintained during and even after the lives of specific workflow 
instances (necessary, for example, in the cases where this data needs to be maintained for 
repeatability comparisons and provenance).  

Three additional benefits to using Alfresco are its capability for versioning, its capability 
for indexing, and facilitation of a central repository. Versioning of document artifact collections 
and analytic support data is an inherent requirement of this system. Indexing facilitates granular 
searching of the content, another capability that could be leveraged in the research environment. 
A central repository allows for an easy distribution of artifacts in a consistent location that is 
easily accessible from many locations. 

ObjectStore as Data Bus 
 
ObjectStore stands as an example of technology for object data management, specifically 

providing an embedded database that is targeted to provide data storage for object-based 
languages, in particular C++ and Java. One of the key advantages offered by this data bus is that 
it offers object data to be delivered in-memory, achieving a greater level of efficiency between 
different applications. It is also capable of concurrent access by multiple applications. 

Among the potential pitfalls of following ObjectStore as the basis for the data bus is that 
because it is dedicated to storing objects for C++ and Java, this makes integration more awkward 
for any legacy analytics written in other languages, Perl and Python for instance. Even 
integration with C++ or Java-based analytics would require those to be recoded to communicate 
with ObjectStore. Following the option that allows these analytics to act independently and then 
coordinates a mapping of their output into the ObjectStore representation seems wasteful as it in 
many cases will involve writing to disk only to then write again to memory, losing any of the 
benefits of efficiency ObjectStore would offer. 

Recommendation 
 
Out of the examined technologies, Alfresco appears to be the best suited to the discrete 

process architecture data bus for a research environment. Alfresco is a fairly mature content 
management system and is widely used and well understood. It appears to provide the level of 
detail and malleability required by this architecture while being straightforward to use.  
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Figure 5. The data bus of the research environment MOSAIC architecture broken into expected 
sub-components, including a content management system and an output store for the final 
results. Also depicted is a long-term storage for all the analytics used by the system. 

 
It should be noted that this recommendation is specifically for the data as stored between 

the analytics during the life of a workflow instance. Data must be maintained somewhat 
persistently, even if the analytics themselves are stateless and unaware of what processes have 
preceded and will follow them. It is also necessary for maintaining the various results that are not 
the intended output but required for the purposes of provenance and traceability or repeatability.  
Once a workflow instance has terminated though, one remains faced with the issue of storage of 
the results that will be picked up by any subsequent phase of processing outside the purview of 
the discrete process architecture. This could be stored in Alfresco, but it seems that for this use 
case, a faster access of the objects might be useful, so an alternative to Alfresco could be used 
here.  

Figure 5 shows a more detailed view of the data bus that reflects this potential division of 
function. In this depiction the data bus contains a CMS (Content Management System) that 
handles the documents and document artifact collections over the life of the different workflow 
instances as well as an output store where the output to be collected by the Knowledge Base 
Architecture that ingests the output of MOSAIC could be kept in a quickly-accessible cache.  
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In addition to these elements of the data bus, it is also recognized that given the 
potentially large number of analytics that can be a part of the discrete process architecture that a 
long-term storage for those not in use should be included. Frequently or recently used analytics 
would be in a cache outside this storage, but those that are called upon which are not presently 
deployed can be brought out from this long-term storage. 

 

 
Figure 6. Suggested hierarchy for the content management system. 

 
Figure 6 examines the anticipated hierarchy within the data bus’s content management 

system. The root folder is associated with the entire discrete process system, including a folder 
that maintains all the required global information to the system. In subfolders below the root, 
each user has a folder containing the user’s local information along with subfolders for each 
executed or executing workflow instance associated with that user. These subfolders also include 
the necessary local information along with subfolders for the source document, its document 
artifacts, and document metadata. 

Discrete Process Architecture Technology Analysis: Analytics 
 
In a modular discrete process architecture, it is preferable that there not be any 

requirements at the outset in terms of what languages are allowed or disallowed. This is due to 
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the need to support legacy analytics that were written to be independent of other analytics, but 
could potentially integrate into a larger system. By virtue of the flexibility of this discrete process 
architecture, analytics written across many different languages, even those written without the 
intent to have been integrated, can be added as subcomponent analytics. In many cases, the 
appropriate action for including these pieces of software is to run them with adapters that can 
handle conversion into a common interchange format as well as accessing the data bus for both 
retrieval and inter-analytic storage.  

 
Analytic Data Models Description 

Chunking  Identifying sentence constituents (noun phrases, verb phrases, etc.) 

Concept analysis Characterizing documents by concepts explicitly/implicitly expressed in them 

Co-referencing Matching multiple textual mentions of the same entity/relation/event  

Document classification Categorizing a document based on its content 

Document metadata Data about the document as opposed to its textual content 

Extract entities Objects or sets of objects in the world, often people, organizations, locations 

Extract entity mentions Textual instances of entities 

Extract event mentions Textual instances of events 

Extract events  Specific occurrences involving participants 

Extract relation mentions Textual instances of relations 

Extract relations An ordered pair of entities that indicates a relationship between them 

Language recognition Identifying the language in which the text is written 

Morphological analysis Analysis of the structure of words 

Part-of-speech tags Categorization of words in a text to their grammatical tag 

Semantic role labels Recognizing roles nouns have in relation to the actions stated in a sentence 

Sentences Parsing documents into sentences 

Sentiment Recognizing the attitudes of a document’s author 

Sequences Parsing documents into a specified recognizable sequence of words usually 

String transliteration Transfer of text in one writing system to another 

Syntactic parse Determining grammatical structure of the text 

Time Points or durations of time that appear in the text; possible subset of entities  

Tokens Breaking documents down into tokens, usually words 

Value Further information about or characterization of an entity 

Table 2. Growing list of required analytic output the common interchange format must support. 
 
This flexibility does not exclude the utility of a best-practices guideline for future 

analytics that can be written with the intention of integrating with the overall architecture. Indeed 
it is expected that analytics here can eventually become operational in a production environment 
after being implemented, debugged, and refined in a research environment.  

An examination of the more tightly integrated frameworks that can support what are 
considered modular analytics as well as accounts of their features and their inherent advantages 
and disadvantages in this use case was examined earlier in the section entitled “Tightly 
Integrated Architecture Technology Analysis.” Specific analytics required for the system, many 
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with existing implementations, are listed in Table 2, and some key analytics are discussed further 
in the following section. 

The overall recommendation arrived in this previous discussion was composition of 
individual analytics in UIMA, but this does not mean that all analytics need to be written in this 
language for research purposes. Because of the heavier weight that UIMA has as a framework, it 
is very likely that initial analytics can be more easily composed and tested outside that 
framework so as to be verified as useful before more time is committed to them and integrating 
them into what is more akin to a production environment. This system should not impede rapid 
prototyping. 

Specific Analytics and Analytic Workflow 
 

Although MOSAIC is capable of supporting a wide variety of analytic subcomponents to 
be used in large-scale workflows, it is useful to provide particular illustrative examples of the 
types of analytics and analytic workflows we expect to handle and that make sense in a setting 
involving workflows going from Natural Language Processing to knowledge representation. In 
addition, a sample workflow that makes use of some of these subcomponents for a larger task is 
also described to further demonstrate the architectural capability. 

The basic definition of an analytic is that of processing software that extracts or generates 
new data from the source files or the data in analytic artifact collections produced by other 
analytics. In this field, there are a wide variety of individual analytical tasks that can be 
performed on raw text, processed text, and previous natural language analytic results. A few of 
these are described here to give a representative picture of what are considered analytics.  

Entity extraction from text is a prime example of such an analytic. Typically, given either 
a raw or zoned piece of text, these analytics recognize and identify the pieces of text that 
represent entities and classify them based on the set of entity types they are programmed to 
discover. Usually these analytics preserve the original text snippet where the entity appears, 
either identifying it inline or providing offsets to its location in a separate file. Often this includes 
the co-referencing of these specific mentions to indicate they specify a common entity. 

Some analytics instead try to extract information about the document itself. Concept 
extractors examine the document in order to discover terms and keywords that describe or appear 
in the content. This can be a very broad class of terms, so typically concepts are identified by 
short keywords, and rather than being attached to specific spans of text, they are associated with 
the document as a whole. 

Still other analytics are targeted to produce results based on the word and grammatical 
structure of the source text, and these include tasks such as chunking, sequence or sentence 
tagging, part-of-speech tagging, and syntactic parse. This is sometimes supporting information to 
future analytics that make use of this structural information. 

Standing as examples of analytics that build on previous artifacts, relation extractors 
often require the extraction of entities first so there is a population among which to discover 
relations. Similarly for event extraction, participants in these events (again entities) are 
frequently prerequisites for recognizing and defining events found in the text. Some analytics 
include entity extraction as a part of the process leading to capturing relations and events, but 
there are others which expect it as input to be provided by a previously executed analytic. 

Perhaps the most critical example of an analytic that relies on the input of previous 
analytics is one that resolves the results of two or more analytic components that endeavor to 
extract the same class of information. This is a need most commonly felt with the disambiguation 
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of entities, as the same entity found by different extractors should be recognized as such instead 
of being considered two separate entities as would be the case without software to handle their 
resolution. The results of this resolution provides a list of entities believed to be distinct, while 
preserving the provenance in terms of which extractor produced the original inputs.  

There are also various supporting analytics that provide a necessary document level 
analysis for the purposes of triage in advance of selection of specific workflow activities or 
perform essential pre-processing on the document, such as zoning the document into regions that 
distinguish content from metadata. These analytics are typically run in advance of the rest of the 
system, and while they do not produce information that will necessarily carry on past the life of a 
workflow instance, they do enable the content extracting analytics to function. 

It is crucial that the distinction between an analytic and what is called an “adapter” is 
made clear. The analytic is concerned with the extraction or generation of artifacts from a given 
input, the emphasis here being production. The adapter is concerned with the transfer of one 
analytic format to another, the emphasis here being conversion. This is often a subtle distinction, 
as some analytic tasks have elements of conversion as a part of their production. Key to making a 
determination of whether something serves an analytic purpose as opposed to the role of an 
adapter is whether the content of the input undergoes more than a cursory examination to 
determine the output. In the case of an adapter, this examination should only be cursory, simply 
enough to follow preset and rigorous rules for making consistent format exchanges. Fundamental 
changes in the content, such as entity resolution or mapping between extracted text strings and 
hard data types (i.e. bridging the semantic gap) should be considered analytic tasks and not the 
province of adapters. 

Analytic Pipeline 
 
As for an example of a combination of analytics that MOSAIC can handle, a pipeline is 

presented consisting of analytics targeted to the task of converting raw text data into knowledge 
objects and relationships between them. This pipeline orchestrated and supported by MOSAIC is 
depicted conceptually in Figure 7.  

The fundamental task here is to extract knowledge objects from textual sources (in this 
instance, email). Various analytics developed independently provide the different required 
functionality for achieving this. The executive of MOSAIC orchestrates the activation of these 
analytics as necessary, providing them with data that is adapted from a common interchange 
format (CIF) into the analytics’ standard input. The output of these analytics is then adapted back 
into the CIF, and this material is stored in MOSAIC’s data bus for the life of a given workflow 
instance until a final output is produced.  

In this particular workflow of analytics, entities and events are extracted from the text as 
well as broad concepts that define the source document. Analytic functions depicted in this 
figure, such as entity extraction, can consist of multiple analytics that perform the same task but 
provide different results. Because entity objects can be produced by more than a single analytic, 
potentially redundant results are resolved into single objects before being converted into 
knowledge, the ultimate output. While the conceptual pipeline is arranged in a serial fashion in 
Figure 7, many of the depicted components can run simultaneously, data dependence permitting. 
For instance, there are event extraction analytics that require previously extracted entities to 
supplement their input. 

 



MOSAIC – Implementation Recommendations 
The MITRE Corporation, 2010-2011 

29 
 

 
Figure 7. A current implementation use-case of the MOSAIC architecture featuring serialized 
analytics for extracting entities, concepts, and events as text and then resolving them into 
knowledge objects. 

Discrete Process Architecture Technology Analysis: Adapters 
 
In order to achieve success with a discrete process architecture that involves multiple 

legacy and newly developed analytics, it is crucial to provide some common model for the 
communication between them. It is unreasonable in the research environment to expect that all 
domain expert engineers will have composed and will continue to compose new prototypes that 
all output to and accept input from a specific model of representing the results. This diversity of 
input requirements and output formats among the analytics will require that there be some 
method to resolve these communications from the discrete processes into a lingua franca that can 
be stored in the data bus between the document artifact collections’ use by the analytics. This 
lingua franca is termed a common interchange model here. Developing this model and the 
corresponding CIF (Common Interchange Format) is a major part of the anticipated upcoming 
research and development necessary for the orchestration of the discrete process architecture. 
This section examines what is anticipated to be required and an initial speculation as to how best 
to achieve this common interchange format. 
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Figure 8. Examination of the interior of the adapters, A2D on the left and D2A on the right, 
which handle communication between an analytic and its RAF (Raw Analytic Format) and the 
data bus and its CIF. The three chief parts of each adapter are a parser, a mapper, and a 
marshaller/unmarshaller. 

 
As observed, analytics typically produce not a common language, but a format that 

amounts to their own intermediate data objects. For each analytic that produces its own particular 
output, an adapter must be written that will convert this output to the interchange format. These 
are referred to as A2D Adapters. For each analytic that consumes its own particular input, 
another adapter must be written that will create data in this format from data in the common 
interchange format. These are referred to as D2A Adapters. This means that there are likely 
going to be a pair of adapters required for existing analytics that are not directly compatible with 
the common interchange format. This is also true of any new analytics that are written to be 
plug-ins to the system if they are not designed to take in and produce the interchange format.  

Figure 8 shows the exchange of information between the analytics and the data bus that 
takes place in the adapter. An A2D Adapter consists of an analytic parser to read in and interpret 
the raw analytic output, a mapper that maps the data between the two formats’ definitions, and a 
common interchange marshaller that takes the resulting mapping and marshals it into the final 
common interchange format. A D2A Adapter essentially operates in the opposite direction, 
reading in the common interchange format with the common interchange parser, running a 
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mapper that maps the data between the two formats’ definitions, and running an analytic 
unmarshaller that unmarshals the mapping into input acceptable to the analytic. Some analytics 
might also take the common interchange format as input, and the adapter can provide this 
without any changes to formatting as well. 

Apart from using adapters that convert to a common interchange format, the users can 
also specify as a part of their workflow how they wish to map and integrate the output of 
different analytics if their tasks require specific conversions from one data format to another that 
are not supported by the common interchange format. This amounts to allowing the user to 
specify a customizable interchange format for use within individual workflows.  

 

 
Figure 9. A depiction of the analytics and how they interact with the executive that orchestrates 
their behavior and the data bus that routes their input and output.  

 
Figure 9 depicts in more detail how the adapters and analytics are interrelated with one 

another and the data bus and executive. Each analytic potentially has adapters going in and out, 
allowing for data transfer between analytics in a common interchange format. Once the 
architecture is developed, the executive and data bus should be fixed from the users’ perspective, 
though requests for changes to the architecture are allowed and implemented when appropriate 
as part of the natural refinement of the architecture. Users themselves can directly define the 
analytics and their adapters, making them immediately extensible and able to evolve. 
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In the subsequent sections, different potential models for the common interchange are 
proposed and discussed. This includes both ontological descriptions of the content as well as 
options for structures into which a given ontology can be incorporated. Because this effort 
requires a great deal more research and examination of what can optimally cover all desired 
analytics than can be provided in this context, this document refrains from making a 
recommendation in this case as of yet.  

Before looking at potential structures on which a common interchange format will be 
built, some of the anticipated features of the most basic elements required should be specified. In 
a system of Natural Language Processing of text, fundamental objects found (the pieces 
considered the most basic document artifacts) are likely to be delineated into broad categories 
based on type (e.g., entity mentions, sentences) and require features that detail textual extent, 
along with starting and ending offsets in the source document, as well as fields that specify both 
the unique identifier for the object as well as sub-classifications of the type. Other objects could 
then build upon these basic structures (e.g., entities, syntactic parse) in different hierarchies. 
There are also likely desired representations that do not fit directly into this model, but the intent 
of the subsequent stage of research is to identify and accommodate these as well as specify in 
great detail the ontology that describes in total what this system and all its potential analytics 
requires while keeping it extensible to future analytics as necessary. 

CAS as Common Interchange Format 
 
The UIMA framework models documents as CAS objects.  A CAS object has one or 

more views of the document, and each view is associated with a unique SOFA for that view. 
This model is intended to facilitate the simultaneous analysis of multiple interpretations of a 
single document. For example, a document which was authored in Chinese and translated to 
English may be represented as a single CAS with two views, one for each language. Similarly, a 
document representing a video may have one view for only the visual data, and another view for 
only the audio data. A view of a CAS represents the abstract notion of an interpretation; the 
SOFA for a view represents the actual data associated with that interpretation, such as the 
translated text or binary video frame data. SOFA data can be a text string, an array of primitive 
data (boolean, byte, short, integer, long, float, double, or string), or a URI for remote data. 

Each CAS view stores its own analysis data as feature structures, which are collections of 
features in the same manner that Java classes are collections of instance variables (ignoring 
methods). Feature structures make up a typed, single inheritance system with a built-in feature 
structure type called “TOP” at the root of the inheritance tree. The TOP feature structure type 
contains no associated features; developers define their own feature structures by subtyping TOP 
or some other feature structure type, and adding features to the new type. Features are also typed, 
and may be one of the built-in primitive types (boolean, byte, short, integer, long, float, double, 
or string), or an existing feature structure type, or an array of one of those previous types. UIMA 
additionally provides built-in types for linked lists (derived from TOP) and three other built-in 
feature structure types for convenience: 

• AnnotationBase derives from TOP and adds a single feature which contains the ID 
number of the SOFA the annotation references 

• Annotation derives from AnnotationBase and adds two features which gives the start and 
end offsets of the annotation within the document 

• DocumentAnnotation derives from Annotation and adds one feature which gives the 
language of the SOFA the annotation references.  
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This appears to be an inherently useful architecture to use as a basis for describing a 
common interchange between analytics. The analytics’ input and output could be mapped to a 
language that uses this established structure. It has the added advantage of being usable again in 
a production environment if necessary as it is anticipated that research components are likely to 
be gradually merged into more tightly integrated systems. Further examination of what needs to 
be built to accommodate all analytics desired before making a recommendation is necessary. 

GrAF as Common Interchange Format 
 
Another alternative data representation for linguistic annotation is GrAF (Graph 

Annotation Framework), which has been demonstrated to be interoperable with two key 
annotation systems that could populate the discrete processes, GATE and UIMA.2 This 
representation uses a graph model represented in an XML serialization with elements of <node> 
and <edge> creating the fundamental structures necessary. The graph structure of the linguistic 
annotations that GrAF makes use of is described by LAF (the Linguistic Annotation 
Framework), which formally consists of a data model for annotations using directed graphs (sets 
of nodes and edges labeled with one or more features), a segmentation at the character level of 
the source document that provides the base for multiple layers of annotation, and methods for 
manipulating the data model. The key elements left to be defined are the specifications for the 
labeling of the content contained in the structure.  

GrAF provides a different perspective on representing document artifact data and is 
something that will be considered. 

Possible Basis Ontologies 
 
There are several annotation or content representations that might provide a good basis 

for a general and encompassing description suitable for a common interchange model. Examples 
of these include the ACE pilot language, WordNet, SUMO (Suggested Upper Merged 
Ontology), or OntoNotes. It is unlikely that any of these options would escape the need for some 
significant alteration or extension if chosen as a basis. As stated, due to the further research and 
examination required in order to discover or create an ontology that can optimally cover all 
desired analytics, this document currently refrains from making a recommendation in this case. 

Summary of Recommendations 
 
In this section recommendations are summarized, bearing in mind that we envision two 

separate environments where these recommendations hold, a production environment and a 
research environment. 

In a production environment where domain expert engineers are primarily interested 
developing a single fixed interaction of analytics for a specific workflow type and considerations 
of efficiency far exceed the need for flexibility and provenance, the recommendation made here 
is to use UIMA as the overarching architecture given its benefits in scalability and generality 
over similar rivals (e.g. GATE). A possible alternative to consider in this case is Ptolemy, which 

                                                 
2 Ide, N. and Suderman, K. Bridging the Gaps: Interoperability for GrAF, GATE, and UIMA. ACL-IJCNLP 2009, 
pp. 27-34. 
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can achieve much of the same tight integration that UIMA or GATE would, can operate in 
memory, and is also a stable, mature product. Its limitations are mostly as a result of Natural 
Language Processing not being its specifically intended use case, but it has an added advantage 
over UIMA in that the creation of more fully-fledged workflows capable of decision points is 
assisted with a graphical user interface, where achieving this in UIMA is more difficult. This is 
only a consideration if workflows more complex than sequential pipelines are necessary. 

In a research environment where domain expert engineers are primarily interested in the 
frequent creation of new analytics and workflows with frequent debugging and retuning and 
where preservation of the provenance of workflow instance executions is also required, a discrete 
process architecture as depicted in Figure 2 is the recommendation. For the key pieces of this 
architecture Ptolemy is recommended be used to build the executive and Alfresco is 
recommended to be used to build the data bus. This should more easily accommodate the 
diversity of analytics likely to be found in a research environment. 

Takeaways 
 
There are certain key points of this document apart from the specific recommendations 

made. These observations are restated and summarized here. 
Most important is the distinction made between what were identified as two working 

environments, research and production. A research environment is a use case where domain 
expert engineers are primarily interested in the frequent creation of new analytics and workflows 
with frequent debugging and retuning, also requiring preservation of the provenance of workflow 
instance executions. A production environment is a use case where domain expert engineers are 
primarily interested developing a single fixed interaction of analytics for a specific workflow 
type, where considerations of efficiency far exceed the need for flexibility and provenance. 

A research environment requires flexibility across analytics written in multiple languages 
and perhaps without the prior intent to integrate, the ability to easily integrate new analytics, a 
high adaptability to evolving technology, and a low barrier to entry for domain expert engineers, 
whose focus should be on prototyping and refining the specific analytics.  

A discrete process architecture is more appropriate for this research environment as 
opposed to a tightly integrated technology for these reasons as well as the potential risk of 
committing to a single non-modular architecture that could be abandoned at some point leaving a 
final architecture stagnant. A discrete process architecture makes these technologies easily 
replaceable as new and more appropriate options become available. This also effectively 
separates the workflow executive from the analytic data, making the executive data agnostic and 
devoted simply to the orchestration of the workflow of analytics and the adapters that allow them 
to communicate. 

Many production environments require a tightly integrated architecture that is defined by 
a specific overarching framework that handles the data between analytics organized and 
optimized for a targeted task, operating in memory exclusively on its analytic pipeline. These 
requirements allow for the high efficiency, something that is key to a production environment, 
sacrificing modularity, which is less important here. 

These environments are not mutually exclusive. Analytics developed in a research 
environment can be subsequently moved into production after sufficient refinement, and these 
analytic pieces can evolve during development into optimized collections of smaller analytic 
components, such as is achievable in a framework such as UIMA. Nevertheless, this does not 
eliminate the need for some architecture to accommodate a research space where this 
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development can occur with some organization and potential for interchange between analytics. 
Figure 3 depicts the vision for this potential migration from research to production. 

Regardless of whether a research or production environment is examined, a common 
interchange model for the communication between the analytics must be developed so that the 
outputs of analytics can be used universally as inputs to future analytics. Additionally a common 
interchange format will also be needed for the research environment once this common 
interchange model is specified.  
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Glossary 
 
A2D Adapter: data converter that changes from a format readable by specific analytic tools into 
the common interchange format. 
 
Ad Hoc Workflow Instance: a workflow instance that is executed on a particular document, 
specified by a user via the interface as opposed to a deployed workflow that has instances 
executed based on documents that appear in the inbound gateway. 
 
Advanced Analytic: a higher-order document analytic typically building on fundamental analytics 
and examining topics that can include but are not limited to sentiment analysis and concept 
extraction. 
 
Analytic: software used for text to information processing, which extracts or generates data from 
the source documents or the data in document artifact collections produced by other analytics. 
 
Analytic Repository: a program store of all analytics, including multiple versions, that are not 
necessarily in current and common use, but are still accessible to be used by workflows. 
 
Architecture: the overall system as described here, including the inbound gateway, executive, 
analytics, adapters, and data bus. 
 
Black Box: equivalent to a “discrete process”; see below. 
 
CAS:  Common Analysis System, which is UIMA’s common data format. 
 
Common Interchange Format: a general, default, all-encompassing format that can be consumed 
by or transformed into input for further analytics, effectively making it a lingua franca that can 
be converted to or from with adapters. 
 
Content Management System: the part of the data bus that stores and indexes document artifact 
collections over the life of the workflow instance. 
 
Customizable Interchange Format: a specific interchange format that integrates or converts 
between analytics and is specified by a user in the workflow definition for a specific task and is 
used when invoked in place of the default common interchange format. 
 
D2A Adapter: data converter that changes from the common interchange format into a format 
readable by specific analytic tools. 
 
Data Bus: organizes, routes, and stores the data produced by the analytics over the life of a 
workflow as well as being the access point for the source documents that analytics use. 
 
Data: what is produced by analytics and resides in the data bus. 
 
Decision Point: a branching conditional statement in either code or the workflow specification. 
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Discrete Process: an independent program that can be accessed through defined inputs and 
outputs, as opposed to integrated analytics which allow for programmatic access. 
 
Document: a file that is the fundamental unit of source material on which any analysis workflow 
in this architecture will execute. 
 
Document Artifact Collection: a set of data that includes the source document as well as any 
results the analytics produced for or extracted from that document over the life of a particular 
workflow. 
 
Domain Expert Engineer: person who can craft the analytics that plug into the architecture and 
can execute the workflows of these analytics on the documents. 
 
Executive: orchestrates the activities of workflows specified by the user through the interface, 
including the sequence and flow of analytics and adapters executed and which data is retrieved 
for each of these analytics from the data and document artifact collections. 
 
Fundamental Analytic: a basic document analytic typically executed on the source document, 
examples of which include, but not are limited to, part-of-speech tagging, stemming, chunking, 
entity extraction, coreference resolution, relation extraction, and event extraction. 
 
Inbound Gateway: the service supporting the input stream of documents for the architecture, 
which can arrive asynchronously with user activity or specification, although it can be filtered 
such that only user-specified documents are operated upon for any given workflow instance. 
 
Integrated Analytic: an independent program that allows users programmatic access, as opposed 
to discrete processes, which can be accessed through defined inputs and outputs and disallow 
users interposing programmatically. 
 
Interface: the part of the executive the user interacts with to specify workflows and what 
documents and data those workflows will analyze. 
 
Output Store: a repository of objects in a persistent store that represent the final output of 
workflow instances. 
 
Plug-in: a modular analytic that is integrated with the framework and can be accessed as part of 
the workflow in the overall architecture. 
 
Production Environment: a use case where domain expert engineers are primarily interested in 
developing a single fixed interaction of analytics for a specific workflow type, where 
considerations of efficiency far exceed the need for flexibility and provenance. 
 
Provenance: the workflow trail of analytics that led to a particular result produced at the end 
which is included with the final output of a workflow to allow for results to be traceable and 
repeatable. 
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Research Environment: a use case where domain expert engineers are primarily interested in the 
frequent creation of new analytics and workflows with frequent debugging and retuning, also 
requiring preservation of the provenance of workflow instance executions. 
 
Stateless: a type of architecture where individual discrete components are unaware of the overall 
workflow and which analytics will execute before or after them. 
 
Streaming Document Flow: the influx of documents that arrive at non-user specified rates that 
vary over time as opposed to documents that are a part of a user-specified corpus or batch. 
 
Triage: the preprocessing of inbound documents to remove corrupt or irrelevant documents, a 
preprocessing that can be targeted to specific workflows as well. 
 
Workflow: the sequence and flow of analytics specified by the user which can be deployed in the 
system and will execute on both source documents and data generated from those documents. 
 
Workflow Instance: a specific execution of a workflow of analytics on a specific document. 
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Appendix A: Code for UIMA as a Discrete Process Architecture Executive 

A.1: Collection Reader Code and XML 
Our first task was to write an XML type descriptor for our collection reader. The name of 

the input file needed to be saved for later when processing the output, so the collection reader 
will have to place that in the CAS. The type we created for this is named “InputName” and 
consists of a single string which will be the file name of the input document. We used the UIMA 
Eclipse plug-in to get a GUI for building this XML. It also could be written it by hand by 
referencing the user guide. The end result is shown below. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<typeSystemDescription xmlns="http://uima.apache.or g/resourceSpecifier"> 
  <name>ReaderTypeSystem</name> 
  <description>Types for the collection reader.</de scription> 
  <version>1.0</version> 
  <vendor>Nathan Giles</vendor> 
  <types> 
    <typeDescription> 
      <name>mitre.ngiles.mosaic.InputName</name> 
      <description/> 
      <supertypeName>uima.cas.TOP</supertypeName> 
      <features> 
        <featureDescription> 
          <name>FileName</name> 
          <description/> 
          <rangeTypeName>uima.cas.String</rangeType Name> 
        </featureDescription> 
      </features> 
    </typeDescription> 
  </types> 
</typeSystemDescription> 

 
The collection reader class must implement the CollectionReader interface. UIMA also 

provides the abstract class CollectionReader_ImplBase, which implements the interface and 
provides default implementations for some of the interface methods. Our collection reader will 
extend this abstract class. There are five key methods that need to be implemented: initialize 
performs its namesake, hasNext returns true until the input source is exhausted, getNext is passed 
an empty CAS object and fills it in by reading the next input document, close will be called after 
input is exhausted if we need to do any cleanup, and getProgress is used by the framework to run 
a progress indicator. The simplified implementation is shown below. 
 
public class InputReader extends CollectionReader_I mplBase { 
 File[] inputFiles; 
 int nextFile; 
  
 public void initialize() 

throws ResourceInitializationException { 
  File inputDirectory = new File( 

(String) this.getConfigParameterValue("InputDirecto ry")); 
  inputFiles = inputDirectory.listFiles(); 
  nextFile = 0; 
 } 
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 public boolean hasNext() 

throws IOException, CollectionException { 
  return (nextFile < inputFiles.length); 
 } 
  
 public void getNext(CAS newCAS) 

throws IOException, CollectionException { 
  BufferedReader reader = new BufferedReader( 

new FileReader(inputFiles[nextFile])); 
  String text = ""; 
  String line = reader.readLine(); 
  while(line != null) 
  { 
   text += line + "\n"; 
   line = reader.readLine(); 
  } 
  JCas jCAS = null; 
  try { 
   jCAS = newCAS.getJCas(); 
  } catch(CASException e) { 
   throw new CollectionException(e); 
  } 
  jCAS.setDocumentText(text); 
  InputName inName = new InputName(jCAS); 
  inName.setFileName(inputFiles[nextFile].getName() ); 
  inName.addToIndexes(); 
  reader.close(); 
  nextFile++; 
 } 
 
 public void close() 

throws IOException { 
  //Nothing special to do to close this collection reader 
 } 
 
 public Progress[] getProgress() { 
  return new Progress[] {new ProgressImpl( 

nextFile, inputFiles.length ,Progress.ENTITIES)}; 
 } 
} 

 
After writing the code for the collection reader, the next step was to generate an XML 

descriptor for this class. Particularly, we needed to specify the existence of the configuration 
parameter “InputDirectory” that we used in the initialize method and its default value. Users of 
this collection reader will be able to change the input directory by changing the XML. The XML 
descriptor also describes the output types we produce in the CAS, specifically the InputName 
type. As before, we used the UIMA Eclipse plug-in to get a GUI for building this XML, though 
it could be written by hand by referencing the user guide. The end result is shown below. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<collectionReaderDescription 
xmlns="http://uima.apache.org/resourceSpecifier"> 
  <frameworkImplementation>org.apache.uima.java</fr ameworkImplementation> 
  <implementationName>mitre.ngiles.mosaic.InputRead er</implementationName> 
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  <processingResourceMetaData> 
    <name>Input Reader</name> 
    <description>Reads text files from a directory into the document 
string.</description> 
    <version>1.0</version> 
    <vendor>Nathan Giles</vendor> 
    <configurationParameters searchStrategy="langua ge_fallback"> 
      <configurationParameter> 
        <name>InputDirectory</name> 
        <description>Path to the directory which is  searched (non-
recursively) for input.</description> 
        <type>String</type> 
        <multiValued>false</multiValued> 
        <mandatory>true</mandatory> 
      </configurationParameter> 
    </configurationParameters> 
    <configurationParameterSettings> 
      <nameValuePair> 
        <name>InputDirectory</name> 
        <value> 
          <string>C:\Documents and Settings\ngiles\ My 
Documents\Task\Input</string> 
        </value> 
      </nameValuePair> 
    </configurationParameterSettings> 
    <typeSystemDescription> 
      <imports> 
        <import location="file:/C:/Documents and Se ttings/ngiles/My 
Documents/UIMA/examples/workflow/ReaderTypeSystem.x ml"/> 
      </imports> 
    </typeSystemDescription> 
    <typePriorities/> 
    <fsIndexCollection/> 
    <capabilities> 
      <capability> 
        <inputs/> 
        <outputs> 
          <type 
allAnnotatorFeatures="true">mitre.ngiles.mosaic.Inp utName</type> 
        </outputs> 
        <languagesSupported/> 
      </capability> 
    </capabilities> 
    <operationalProperties> 
      <modifiesCas>true</modifiesCas> 
      <multipleDeploymentAllowed>false</multipleDep loymentAllowed> 
      <outputsNewCASes>true</outputsNewCASes> 
    </operationalProperties> 
  </processingResourceMetaData> 
  <resourceManagerConfiguration/> 
</collectionReaderDescription> 

A.2: Tokenizer Wrapper Code and XML 
The next step is to write the annotator that will wrap our black box tokenizer. In the 

interest of conforming to the UIMA framework as much as possible, we decided to represent the 
tokens generated by the tokenizer as a subclass of annotation. Our first step in writing the 
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tokenizer annotator was to define its type system XML file. The only type our annotator needed 
to know about is the Token annotation type that it places in the CAS as output, so we have to 
define no more than that. Again, we used the UIMA Eclipse plug-in to write this XML file. The 
end result is shown below. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<typeSystemDescription xmlns="http://uima.apache.or g/resourceSpecifier"> 
  <name>TokenizerTypeSystem</name> 
  <description>Type System for the Tokenizer.</desc ription> 
  <version>1.0</version> 
  <vendor>Nathan Giles</vendor> 
  <types> 
    <typeDescription> 
      <name>mitre.ngiles.mosaic.Token</name> 
      <description>A Token from the Tokenizer</desc ription> 
      <supertypeName>uima.tcas.Annotation</supertyp eName> 
    </typeDescription> 
  </types> 
</typeSystemDescription> 
 

Again the plug-in automatically generates Java classes for the Token type as it did before 
with the InputName type. The next step was to write the wrapper code itself, which implements 
the AnalysisComponent interface. UIMA provides an abstract class JCasAnnotator_ImplBase, 
which implements this interface and provides default implementations for most of the methods, 
and we inherited from that. The code for our wrapper of the tokenizer is shown below. 
 
public class TokenizerWrapper extends JCasAnnotator _ImplBase { 
 
public void process(JCas jCAS) 
throws AnalysisEngineProcessException { 
 try { 
 File input = File.createTempFile("tokenizer", ".in "); 
 File output = File.createTempFile("tokenizer", ".o ut"); 
 input.deleteOnExit(); 
 output.deleteOnExit(); 
  
 String text = jCAS.getDocumentText(); 
 BufferedWriter writer = new BufferedWriter(new Fil eWriter(input)); 
 writer.write(text); 
 writer.close(); 
  
 String[] commands = { "java" , "-jar" , 

"C:\\Documents and Settings\\ngiles\\My Documents\\ BIN\\Tokenizer.jar" , 
input.getCanonicalPath(), output.getCanonicalPath() }; 

 Process process = Runtime. getRuntime().exec(commands); 
 process.waitFor(); 
  
 BufferedReader reader = new BufferedReader(new Fil eReader(output)); 
 String token = reader.readLine(); 
 int textPos = 0; 
 while(token != null) { 
  int start = text.indexOf(token, textPos); 
  int end = start + token.length(); 
  Token tokenAnnotation = new Token(jCAS, start, en d); 
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  tokenAnnotation.addToIndexes(); 
  textPos = end; 
  token = reader.readLine(); 
 } 
 reader.close(); 
 } catch(Exception e) { 
 throw new AnalysisEngineProcessException(e); 
 } 
} 
} 
 

Having written our annotator, we next created an XML descriptor for it. This descriptor 
included the previous type system descriptor, specifying which types are input and which are 
output and describing configuration parameters. We had no configuration parameters, no input 
types, and one output. The descriptor XML for this annotator is shown below. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<analysisEngineDescription xmlns="http://uima.apach e.org/resourceSpecifier"> 
  <frameworkImplementation>org.apache.uima.java</fr ameworkImplementation> 
  <primitive>true</primitive> 
  <annotatorImplementationName>mitre.ngiles.mosaic. TokenizerWrapper 
  </annotatorImplementationName> 
  <analysisEngineMetaData> 
    <name>Tokenizer Wrapper</name> 
    <description>Wraps the Tokenizer black box.</de scription> 
    <version>1.0</version> 
    <vendor>Nathan Giles</vendor> 
    <configurationParameters/> 
    <configurationParameterSettings/> 
    <typeSystemDescription> 
      <imports> 
        <import location="file:/C:/Documents and Se ttings/ngiles/My 
Documents/UIMA/examples/workflow/TokenizerTypeSyste m.xml"/> 
      </imports> 
    </typeSystemDescription> 
    <typePriorities/> 
    <fsIndexCollection/> 
    <capabilities> 
      <capability> 
        <inputs/> 
        <outputs> 
          <type allAnnotatorFeatures="true">mitre.n giles.mosaic.Token</type> 
        </outputs> 
        <languagesSupported/> 
      </capability> 
    </capabilities> 
    <operationalProperties> 
      <modifiesCas>true</modifiesCas> 
      <multipleDeploymentAllowed>true</multipleDepl oymentAllowed> 
      <outputsNewCASes>false</outputsNewCASes> 
    </operationalProperties> 
  </analysisEngineMetaData> 
  <resourceManagerConfiguration/> 
</analysisEngineDescription> 
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A.3: Decoder Wrapper Code and XML 
Next we wrote the wrapper for the decoder black box, following the same set of steps. 

First, we defined the type system. The decoder takes the tokens from the previous analysis as 
input, so we imported the previous type system. For output, the decoder produces two long 
strings, one for the first characters in each token, and one for the last characters in each token. 
We chose to make these outputs into two new SOFAs in the CAS, not requiring any new types. 
The type system descriptor XML is shown below.  
 
<?xml version="1.0" encoding="UTF-8"?> 
<typeSystemDescription xmlns="http://uima.apache.or g/resourceSpecifier"> 
  <name>DecoderTypeSystem</name> 
  <description>Type system for the decoder black bo x.</description> 
  <version>1.0</version> 
  <vendor>Nathan Giles</vendor> 
  <imports> 
    <import location="file:/C:/Documents and Settin gs/ngiles/My 
Documents/UIMA/examples/workflow/TokenizerTypeSyste m.xml"/> 
  </imports> 
</typeSystemDescription> 
 

Because the wrapper for the decoder uses multiple SOFAs, it is slightly different from 
the tokenizer wrapper. Annotators that support multiple views are initially given a base CAS 
object from which they must choose named views to work on. Annotators that do not need to 
support multiple views are automatically given the default view, named “_InitialView”. 
Therefore, we selected that view from the base CAS before operating on it in order to get the 
input. The code for the decoder wrapper is shown below. 
 
public class DecoderWrapper extends JCasAnnotator_I mplBase { 
 
public void process(JCas base_jCAS) 
throws AnalysisEngineProcessException { 
 try { 
 File input = File.createTempFile("decoder", ".in") ; 
 File output1 = File.createTempFile("decoder1", ".o ut"); 
 File output2 = File.createTempFile("decoder2", ".o ut"); 
 input.deleteOnExit(); 
 output1.deleteOnExit(); 
 output2.deleteOnExit(); 
  
 JCas jCAS = base_jCAS.getView("_InitialView"); 
 FSIterator<Annotation> iterator = 

jCAS.getAnnotationIndex(Token.type).iterator(); 
 BufferedWriter writer = new BufferedWriter(new Fil eWriter(input)); 
 while(iterator.hasNext()) 
 { 
  Annotation token = iterator.next(); 
  writer.write(token.getCoveredText() + "\n"); 
 } 
 writer.close(); 
  

String[] commands = { "java" , "-jar" , 
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"C:\\Documents and Settings\\ngiles\\My Documents\\ BIN\\Decoder.jar" , 
input.getCanonicalPath(), output1.getCanonicalPath( ), 
output2.getCanonicalPath()}; 

 Process process = Runtime. getRuntime().exec(commands); 
 process.waitFor(); 
 
 BufferedReader reader1 = new BufferedReader(new Fi leReader(output1)); 
 String firstChars = reader1.readLine(); 
 JCas first_jCAS = base_jCAS.createView("FirstChara ctersView"); 
 first_jCAS.setDocumentText(firstChars); 
 reader1.close(); 
  
 BufferedReader reader2 = new BufferedReader(new Fi leReader(output2)); 
 String lastChars = reader2.readLine(); 
 JCas last_jCAS = base_jCAS.createView("LastCharact ersView"); 
 last_jCAS.setDocumentText(lastChars); 
 reader2.close(); 
 } catch(Exception e) { 
 throw new AnalysisEngineProcessException(e); 
 } 
} 
} 

 
The XML descriptor file for the decoder declares the names of SOFAs it requires as input 

and produces as output. Doing so declares it as an analysis engine which supports multiple 
SOFAs. The XML is shown below. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<analysisEngineDescription xmlns="http://uima.apach e.org/resourceSpecifier"> 
  <frameworkImplementation>org.apache.uima.java</fr ameworkImplementation> 
  <primitive>true</primitive> 
  <annotatorImplementationName>mitre.ngiles.mosaic. DecoderWrapper 
</annotatorImplementationName> 
  <analysisEngineMetaData> 
    <name>DecoderDescriptor</name> 
    <description>Wrapper for the decoder black box. </description> 
    <version>1.0</version> 
    <vendor>Nathan Giles</vendor> 
    <configurationParameters/> 
    <configurationParameterSettings/> 
    <typeSystemDescription> 
      <imports> 
        <import location="file:/C:/Documents and Se ttings/ngiles/My 
Documents/UIMA/examples/workflow/DecoderTypeSystem. xml"/> 
      </imports> 
    </typeSystemDescription> 
    <typePriorities/> 
    <fsIndexCollection/> 
    <capabilities> 
      <capability> 
        <inputs> 
          <type allAnnotatorFeatures="true">mitre.n giles.mosaic.Token</type> 
        </inputs> 
        <outputs/> 
        <inputSofas> 
          <sofaName>_InitialView</sofaName> 



MOSAIC – Implementation Recommendations 
The MITRE Corporation, 2010-2011 

46 
 

        </inputSofas> 
        <outputSofas> 
          <sofaName>FirstCharactersView</sofaName> 
          <sofaName>LastCharactersView</sofaName> 
        </outputSofas> 
        <languagesSupported/> 
      </capability> 
    </capabilities> 
    <operationalProperties> 
      <modifiesCas>true</modifiesCas> 
      <multipleDeploymentAllowed>true</multipleDepl oymentAllowed> 
      <outputsNewCASes>false</outputsNewCASes> 
    </operationalProperties> 
  </analysisEngineMetaData> 
  <resourceManagerConfiguration/> 
</analysisEngineDescription> 

A.4: Flow Code in UIMA 
A UIMA flow controller implements the FlowController interface; UIMA also provides 

the abstract class JCasFlowController_ImplBase which implements this interface and provides 
default implementations for some methods. FlowController objects have one key method, named 
computeFlow. This method is called on each CAS object as it enters the workflow; it returns a 
Flow object for that CAS which will guide it through the workflow. Flow controllers and Flows 
are provided with information about every loaded analysis to which they could potentially route. 

The Flow object implements the UIMA Flow interface; UIMA also provides the abstract 
class JCasFlow_ImplBase, which implements this interface and provides default 
implementations for some methods. The Flow object has a next method which is repeatedly 
called to determine which analysis engine should process the CAS next. The next method can 
return more than one analyses at a time, which indicates that the set of returned analyses can be 
executed in parallel (though the framework does not guarantee that they will). Because Flow 
objects are attached to the CAS they are responsible for, they can dynamically route that CAS 
based on the artifact or analysis results by examining the CAS data. The Flow object is also 
responsible for creating new Flows for any child CAS objects which are produced as a result of 
this CAS passing through a CAS multiplier. Finally, the Flow object can also define what actions 
to take if an error is encountered while processing the CAS. 

In order to create a flow using UIMA’s built in flow controller (called “fixedFlow”), we 
combine the three analysis engines we have created (the tokenizer, the decoder, and the output 
writer) into one aggregate analysis engine. This is done by writing an aggregate XML descriptor 
which references the XML for descriptors for each analysis engine we are combining. The 
aggregate descriptor is shown below. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<analysisEngineDescription xmlns="http://uima.apach e.org/resourceSpecifier"> 
  <frameworkImplementation>org.apache.uima.java</fr ameworkImplementation> 
  <primitive>false</primitive> 
  <delegateAnalysisEngineSpecifiers> 
    <delegateAnalysisEngine key="TokenizerDescripto r"> 
      <import location="file:/C:/Documents and Sett ings/ngiles/My 
Documents/UIMA/examples/workflow/TokenizerDescripto r.xml"/> 
    </delegateAnalysisEngine> 
    <delegateAnalysisEngine key="OutputDescriptor">  
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      <import location="file:/C:/Documents and Sett ings/ngiles/My 
Documents/UIMA/examples/workflow/OutputDescriptor.x ml"/> 
    </delegateAnalysisEngine> 
    <delegateAnalysisEngine key="DecoderDescriptor" > 
      <import location="file:/C:/Documents and Sett ings/ngiles/My 
Documents/UIMA/examples/workflow/DecoderDescriptor. xml"/> 
    </delegateAnalysisEngine> 
  </delegateAnalysisEngineSpecifiers> 
  <analysisEngineMetaData> 
    <name>AggregateDescriptor</name> 
    <description>Aggregate of tokenizer, decoder, a nd output.</description> 
    <version>1.0</version> 
    <vendor>Nathan Giles</vendor> 
    <configurationParameters/> 
    <configurationParameterSettings/> 
    <flowConstraints> 
      <fixedFlow> 
        <node>TokenizerDescriptor</node> 
        <node>DecoderDescriptor</node> 
        <node>OutputDescriptor</node> 
      </fixedFlow> 
    </flowConstraints> 
    <fsIndexCollection/> 
    <capabilities> 
      <capability> 
        <inputs> 
          <type allAnnotatorFeatures="true"> 
          mitre.ngiles.mosaic.InputName</type> 
        </inputs> 
        <outputs> 
          <type allAnnotatorFeatures="true">mitre.n giles.mosaic.Token</type> 
        </outputs> 
        <inputSofas> 
          <sofaName>_InitialView</sofaName> 
        </inputSofas> 
        <outputSofas> 
          <sofaName>FirstCharactersView</sofaName> 
          <sofaName>LastCharactersView</sofaName> 
        </outputSofas> 
        <languagesSupported/> 
      </capability> 
    </capabilities> 
    <operationalProperties> 
      <modifiesCas>true</modifiesCas> 
      <multipleDeploymentAllowed>true</multipleDepl oymentAllowed> 
      <outputsNewCASes>false</outputsNewCASes> 
    </operationalProperties> 
  </analysisEngineMetaData> 
  <resourceManagerConfiguration/> 
</analysisEngineDescription> 
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Appendix B: Code for OpenPipeline as a Discrete Process Architecture Executive 

B.1: Tokenizer Wrapper Code  
An OpenPipeline workflow implements the PipelineJob interface. Looking at this 

interface immediately revealed the first key difference between OpenPipeline and UIMA: 
OpenPipeline is tightly integrated with its web server based interface. The interface specifies 
methods such as getPageName and getLogLink which are used by the OpenPipeline GUI. 

With regards to the actual workflow, the only relevant methods in the PipelineJob were 
setParams and execute. The setParams method takes an XMLConfig object as a parameter; this 
object is basically a Java object representation of an XML file. All the parameters for the 
workflow need to be contained in this object in some format. The execute method takes no 
parameters, and returns no result. It is responsible for doing the entirety of the workflow, and 
there is no hindrance from performing all the work inside it.  

Since there was a StageList object, we presumed that analyses are stages, and find that 
there is indeed an abstract class named Stage. It only has one important method which is abstract, 
called processItem, and it takes an Item object as a parameter. According to the Javadoc, we saw 
that the Item object is indeed supposed to represent the document and associated analysis data, 
and that it has an XML like format. Unfortunately, the Javadoc did not reveal how to get the 
document text out of an item so we can send it to our first black box, so we turned to the source 
code to find out. There is a SimpleTokenizer stage distributed with OpenPipeline; looking at its 
source reveals that it uses a visitor pattern to explore the entirety of a tree structure of Node 
objects that exists within each Item object, and then tokenizes the text associated with each 
Node. This revealed part of the structure of an Item to us, but still leaves the location of the 
document text a mystery. 

We did some exploring by using the GUI to create a PipelineJob and seeing what the 
output looks like. We created a new PipelineJob consisting of a FileScanner, DocFilter, 
SimpleTokenizer, and DiskWriter, and fed it a single text file as input. Looking at the output 
(which is an XML file which appears to be a representation of the Item object), there are 5 tag 
groups which seem to correspond to what we guess are Node objects. These are: doctype (has the 
value “txt”), URL (has the file path of the input file), lastupdate (has a number which probably 
corresponds to the file’s modification date), filesize (has the size of the file in bytes), and text 
(has the text of the document). The SimpleTokenizer has tokenized each of these tag groups 
(only one of which was reasonable), producing standoff annotations which only contain the 
annotated text and no offsets into the original text. From this, we determined that the FileScanner 
class provided by OpenPipeline puts the document text in a Node named text inside the item, 
which is what we needed to write our first wrapper stage.  

Of note is that each stage is responsible for calling the processItem method of the next 
stage for the workflow to continue. The framework sets the nextStage attribute in each stage 
based on the list of stages the user gave in the UI. However, it is up to each Stage individually to 
honor this. In order to define a workflow, one has to build it into the Stages oneself. 

The code for our TokenizerWrapper is shown below. 
 
public class TokenizerStage extends Stage { 
 
public String getDescription() { 
 return "Wrapper for the black box tokenizer"; 
} 
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public String getDisplayName() { 
 return "Tokenizer"; 
} 
 
public void processItem(Item item) throws PipelineE xception { 

try { 
 File input = File.createTempFile("tokenizer", ".in "); 
 File output = File.createTempFile("tokenizer", ".o ut");  
 input.deleteOnExit(); 
 output.deleteOnExit(); 
  
 Node textNode = item.getRootNode().getChild("text" ); 
 String text = textNode.getValue().toString(); 
 BufferedWriter writer = new BufferedWriter(new Fil eWriter(input)); 
 writer.write(text); 
 writer.close(); 
  
 String[] commands = {"java", "-jar", 

"C:\\Documents and Settings\\ngiles\\My Documents\\ BIN\\Tokenizer.jar", 
input.getCanonicalPath(), output.getCanonicalPath() }; 

 Process process = Runtime.getRuntime().exec(comman ds); 
 process.waitFor(); 
  
 TokenList tokenList = (TokenList) textNode.getAnno tations("token"); 
 if(tokenList == null) { 
  tokenList = new TokenList(); 
  textNode.putAnnotations("token", tokenList); 
 } 
  
 BufferedReader reader = new BufferedReader(new Fil eReader(output)); 
 String token = reader.readLine(); 
 while(token != null) { 
  Token newToken = new Token(token); 
  tokenList.append(newToken); 
  token = reader.readLine(); 
 } 
 reader.close(); 

Stage nextStage = this.getNextStage(); 
 if(nextStage != null) { 
  nextStage.processItem(item); 
 } 
 } catch(Exception e) { 
 throw new RuntimeException(e); 
 } 
} 
} 

B.2: Decoder Wrapper Code 
We write our DecoderWrapper in a similar manner to that for the tokenizer. The code is 

shown below. 
 
public class DecoderStage extends Stage { 
 
public String getDescription() { 
 return "Wrapper for the black box decoder"; 
} 
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public String getDisplayName() { 
 return "Decoder"; 
} 
 
public void processItem(Item item) throws PipelineE xception { 
 try { 
 File input = File.createTempFile("decoder", ".in") ; 
 File output1 = File.createTempFile("decoder1", ".o ut"); 
 File output2 = File.createTempFile("decoder2", ".o ut"); 
 input.deleteOnExit(); 
 output1.deleteOnExit(); 
 output2.deleteOnExit(); 
  
 BufferedWriter writer = new BufferedWriter(new Fil eWriter(input)); 
 Node textNode = item.getRootNode().getChild("text" ); 
 Iterator<Token> tokenIter = ((TokenList) 

textNode.getAnnotations("token")).iterator(); 
 while(tokenIter.hasNext()) { 
  Token token = tokenIter.next(); 
  writer.write(token.toString() + "\n"); 
 } 
 writer.close(); 
  
 String[] commands = {"java", "-jar", 

“C:\\Documents and Settings\\ngiles\\My Documents\\ BIN\\Decoder.jar", 
input.getCanonicalPath(), output1.getCanonicalPath( ), 
output2.getCanonicalPath()}; 

 Process process = Runtime.getRuntime().exec(comman ds); 
 process.waitFor(); 
  
 BufferedReader reader1 = new BufferedReader(new Fi leReader(output1)); 
 String firstChars = reader1.readLine(); 
 item.getRootNode().addNode("FirstCharacters", firs tChars); 
 reader1.close(); 
  
 BufferedReader reader2 = new BufferedReader(new Fi leReader(output2)); 
 String lastChars = reader2.readLine(); 
 item.getRootNode().addNode("LastCharacters", lastC hars); 
 reader2.close(); 
 Stage nextStage = this.getNextStage(); 
 if(nextStage != null) { 
  nextStage.processItem(item); 
 } 
 } catch(Exception e) { 
 throw new RuntimeException(e); 
 } 
} 
} 

B.3: Output Code 
The code for our output stage is slightly more complicated, because it needs to take the 

location to place the output files as parameters. However, because there was no documentation, 
how to take parameters remains unclear. Looking at existing stages as examples, we realized we 
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needed to provide a JSP webpage that asks for the configuration parameters and then extract 
them from the XML object given to us by the UI. So we wrote the code shown below. 
 
public class OutputStage extends Stage { 
 
public String getDescription() { 
 return "Output stage for the tokenizer and decoder "; 
} 
 
public String getDisplayName() { 
 return "Output"; 
} 
 
public String getConfigPage() { 
 return "stage_output.jsp"; 
} 
 
public void processItem(Item item) throws PipelineE xception { 
 try { 
 File inputFile = new File(item.getRootNode().getCh ildValue("url")); 
 String tokenDir = super.params.getProperty("token_ directory"); 
 String firstDir = super.params.getProperty("first_ directory"); 
 String lastDir = super.params.getProperty("last_di rectory"); 
 File tokenFile = new File(tokenDir, inputFile.getN ame() + ".tokens"); 
 File firstFile = new File(firstDir, inputFile.getN ame() + ".first"); 
 File lastFile = new File(lastDir, inputFile.getNam e() + ".last"); 
  
 BufferedWriter writer = new BufferedWriter(new Fil eWriter(tokenFile)); 
 Node textNode = item.getRootNode().getChild("text" ); 

Iterator<Token> tokenIter = ((TokenList) 
textNode.getAnnotations("token")).iterator(); 

 while(tokenIter.hasNext()) { 
  Token token = tokenIter.next(); 
  writer.write(token.toString() + "\n"); 
 } 
 writer.close(); 
  
 BufferedWriter firstWriter = 

new BufferedWriter(new FileWriter(firstFile)); 
 firstWriter.write(item.getRootNode().getChildValue ("FirstCharacters")); 
 firstWriter.close(); 
  
 BufferedWriter lastWriter = 

new BufferedWriter(new FileWriter(lastFile)); 
 lastWriter.write(item.getRootNode().getChildValue( "LastCharacters")); 
 lastWriter.close(); 
 Stage nextStage = this.getNextStage(); 
 if(nextStage != null) { 
  nextStage.processItem(item); 
 } 
 } catch(Exception e) { 
 throw new RuntimeException(e); 
 } 
} 
} 
 



MOSAIC – Implementation Recommendations 
The MITRE Corporation, 2010-2011 

52 
 

B.4. JSP Page 
Then we had to write the JSP page that we returned from the getConfigPage method. We 

based it on examples from the source code. Our page is shown below. 
 
<%@ page import = "org.openpipeline.server.pages.*"  %> 
<% 
ConfigureStagesPage currPage = 
(ConfigureStagesPage)session.getAttribute("currpage "); 
%> 
<table> 
 <tr> 
  <th colspan="3">Output Stage</th> 
 </tr> 
 
 <tr valign="top"> 
  <td colspan="3">Writes the output from the Tokeni zer and Decoder 
Stages</td> 
 </tr> 
 
 <tr valign="top"> 
  <td><b>Token Directory:</b></td> 
  <td><%=currPage.textField("token_directory")%></t d> 
  <td> 
Example: C:\Documents and Settings\ngiles\My Docume nts\Task\Tokens</td> 
 </tr> 
  
 <tr valign="top"> 
  <td><b>First Directory:</b></td> 
  <td><%=currPage.textField("first_directory")%></t d> 
  <td> 
Example: C:\Documents and Settings\ngiles\My Docume nts\Task\First</td> 
 </tr> 
 
 <tr valign="top"> 
  <td><b>Last Directory:</b></td> 
  <td><%=currPage.textField("last_directory")%></td > 
  <td> 
Example: C:\Documents and Settings\ngiles\My Docume nts\Task\Last</td> 
 </tr> 
</table> 
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Appendix C: XML Code for Mule as a Discrete Process Architecture Executive 

C.1: XML Code 
This is a description of the XML code needed to run as an executive for the example 

process using the Mule ESB.  
The top level “mule” tag defines namespaces and schemas and such. Inside the “mule” 

tag, two connector types were defined. The first was a file connector type named “HotFolder”. It 
was specified as options that it is not streaming (meaning that Mule should not deliver it as a 
stream of bytes), that the file should not be deleted after opening, and that the folder should be 
polled every 10 seconds. The second was a Virtual Machine connector type (an in-memory 
queue of Java objects) that named “VmQueue”. 

Next a model (which is a bundle of related services) was defined. Inside the model, two 
services, called Tokenizer and Decoder, were defined. In Mule, a service is something which can 
take input and return output. The most common case is a Java class, but it can also support 
various web services. In this case, a script (in the Groovy language) was used as the service, 
because this scripting language can be used easily to make system calls, and the script can be 
embedded in the XML file itself. 

The Tokenizer service specifies that it wants to use the HotFolder type of connector for 
its input, and specifies a specific file path. It specifies it wants to use the VmQueue for its output, 
and gives a named path for that as well. An inline script was written in the connector which takes 
a file name as input. The script passes that file name to the black box executable, which creates 
an output file, and then the script returns the name of that output file. 

The Decoder service specifies that it uses the VmQueue as input. The script for that 
service takes a file name as input and passes it to the black box decoder executable. It does not 
return any output. 

When Mule is executed with this XML file, the HotFolder connector monitors its folder 
every 10 seconds. Each time, if it finds any files in that folder, it moves them to a secondary 
folder (to ensure they are not processed twice), and then invokes the tokenizer script with the 
moved file name as input. The tokenizer script invokes the tokenizer black box, which creates a 
token file on disk. The script returns the name of this file, and Mule puts the returned string in 
the output queue. The decoder service reads from the queue as its input, and calls its script 
passing that string. The script runs the decoder black box with that input, which creates output 
files in the correct places, and then the script ends. 
 

  <?xml version="1.0" encoding="UTF�8" ?>  

- <mule xmlns="http://www.mulesource.org/schema/mule/core/2.2" 

xmlns:spring="http://www.springframework.org/schema/beans" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema�instance" 

xmlns:file="http://www.mulesource.org/schema/mule/file/2.2" 

xmlns:scripting="http://www.mulesource.org/schema/mule/scripting/2.2" 

xmlns:vm="http://www.mulesource.org/schema/mule/vm/2.2" 

xsi:schemaLocation="http://www.springframework.org/schema/beans 

http://www.springframework.org/schema/beans/spring�beans�2.5.xsd 

http://www.mulesource.org/schema/mule/file/2.2 

http://www.mulesource.org/schema/mule/file/2.2/mule�file.xsd 

http://www.mulesource.org/schema/mule/scripting/2.2 

http://www.mulesource.org/schema/mule/scripting/2.2/mule�scripting.xsd 

http://www.mulesource.org/schema/mule/core/2.2 
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http://www.mulesource.org/schema/mule/core/2.2/mule.xsd 

http://www.mulesource.org/schema/mule/vm/2.2 

http://www.mulesource.org/schema/mule/vm/2.2/mule�vm.xsd"> 
- <file:connector name="HotFolder" streaming="false" autoDelete="false" 

pollingFrequency="10000"> 
  <service�overrides messageAdapter="org.mule.transport.file.FileMessageAdapter" 

inboundTransformer="org.mule.transformer.NoActionTransformer" />  
  </file:connector> 

  <vm:connector name="VmQueue" queueEvents="true" />  

- <model name="main"> 

- <service name="Tokenizer"> 

- <inbound> 

  <file:inbound�endpoint connector�ref="HotFolder" path="C:/Documents and 

Settings/ngiles/My Documents/Task/Input" moveToDirectory="C:/Documents and 

Settings/ngiles/My Documents/Task/InputArchive" />  
  </inbound> 

- <scripting:component> 

  <scripting:script engine="groovy">tokenDir = "C:\\Documents and 

Settings\\ngiles\\My Documents\\Task\\Tokens"; tokenFile = new 

File(tokenDir, payload.getName() + ".tokens"); commands = ["java", "�jar", 

"C:\\Documents and Settings\\ngiles\\My Documents\\BIN\\Tokenizer.jar", 

payload.getCanonicalPath(), tokenFile.getCanonicalPath()]; process = 

commands.execute(); process.waitFor(); return tokenFile;</scripting:script>  
  </scripting:component> 

- <outbound> 

- <pass�through�router> 

  <vm:outbound�endpoint path="DecodeIn" connector�ref="VmQueue" />  

  </pass�through�router> 

  </outbound> 

  </service> 

- <service name="Decoder"> 

- <inbound> 

  <vm:inbound�endpoint path="DecodeIn" connector�ref="VmQueue" />  

  </inbound> 

- <scripting:component> 

  <scripting:script engine="groovy">firstDir = "C:\\Documents and 

Settings\\ngiles\\My Documents\\Task\\First"; firstFile = new File(firstDir, 

payload.getName() + ".first"); lastDir = "C:\\Documents and 

Settings\\ngiles\\My Documents\\Task\\Last"; lastFile = new File(lastDir, 

payload.getName() + ".last"); commands = ["java", "�jar", "C:\\Documents and 

Settings\\ngiles\\My Documents\\BIN\\Decoder.jar", 

payload.getCanonicalPath(), firstFile.getCanonicalPath(), 

lastFile.getCanonicalPath()]; process = commands.execute(); 

process.waitFor();</scripting:script>  
  </scripting:component> 

  </service> 

  </model> 

  </mule> 

  



MOSAIC – Implementation Recommendations 
The MITRE Corporation, 2010-2011 

55 
 

Appendix D: Scientific Workflow GUI examples 

D.1: LONI GUI Example Workflow 
Figure 10 shows an example workflow created in LONI for the tokenizer and decoder 

described in earlier workflow examinations. This is a fairly simple to create, each triangle set to 
read files from a certain directory or write to a certain directory while the executables have their 
paths set and the names of the files they take as input and produce as output specified. 

 

 
Figure 10. An example workflow involving both tokenizer and decoder in LONI 

D.2: Kepler GUI Example Workflow 
 Figure 11 shows an example workflow created in Kepler for tokenization. This is more 
complex than what LONI presents in the earlier figure, but Kepler has other advantages over 
LONI in its extensibility and lacking any restriction of file input/output for its analytics, which 
gives Kepler a greater flexibility than LONI. 
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Figure 11. An example workflow for the tokenizer in Kepler. 

D.3: Ptolemy GUI Example Workflow 
 Figure 12 shows an example workflow created in Ptolemy for tokenization. This is 
similar to the workflow presented in Kepler and also more complex than what LONI presents, 
but Ptolemy has all the same advantages over LONI in its extensibility and lacking any 
restriction of file input/output for its analytics that Ptolemy does in addition to being a more 
general purpose product than Kepler. 

 
Figure 12. An example workflow for the tokenizer in Ptolemy. 
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Appendix E: Decision Points across Different Candidate Executives 

E.1: UIMA 
In UIMA, there are primitive and aggregate analysis engines. A primitive analysis engine 

is an XML file that describes a single Java annotator class. This class provides a method that 
takes a CAS object as input and modifies it as output. An aggregate analysis engine is an XML 
file that lists a collection of other analysis engines, either primitive or aggregate. These sub-
analysis engines are referred to as its delegates. A complete workflow in UIMA is created by 
first writing a primitive analysis engine XML descriptor for each individual Java annotator. Then 
a developer builds a tree hierarchy upward by collecting delegate analysis engines into aggregate 
analysis engines until there is a single aggregate at the top of the tree which contains all the 
necessary annotators. The simplest way to do this is to write a single aggregate which contains 
all the required primitives as delegates; however, it may make logical sense to first create 
aggregate subgroups and then combine those subgroups as delegates. 

Each aggregate analysis engine also specifies a Java class called a Flow Controller. The 
Flow Controller class must expose a method called computeFlow which takes a CAS object as 
input and returns a Flow object. For every CAS object that is given as input to this aggregate 
analysis engine, the UIMA framework will call computeFlow and will save the returned Flow 
object together with the CAS object. Each Flow object is responsible for managing the workflow 
of the CAS object it is associated with. Note that this architecture allows different Flow objects 
to be created based on the initial state of the CAS object. 

A Flow object exposes a method called next which takes no input and returns a set of 
delegate analysis engines. Although it does not take explicit input, each Flow object is always 
able to inspect the CAS object it is associated with and the list of delegate analysis engines from 
the aggregate XML file. Whenever the UIMA framework needs to determine which delegate 
analysis engine should process a CAS object next, it calls the next method of the Flow object 
associated with that CAS. If it returns a one element set, then that delegate analysis engine 
receives the CAS next. If it returns a multi-element set, then those delegate analysis engines 
should process the CAS in parallel next; however, the UIMA framework does not guarantee that 
it will actually use parallel processing and may simply schedule them in a random sequential 
order. If the next method returns the empty set, it indicates that this CAS object is finished with 
this workflow and should be returned from the analysis engine. 

The UIMA framework only provides an implementation of a Flow Controller, which 
returns Flow objects that schedule every CAS to pass through every delegate analysis 
sequentially and exactly once in the same order as they are listed in the XML descriptor. 
Anything more complicated would require a developer to implement the Flow Controller and 
Flow interfaces. This would be non-trivial Java code and would require experience with Java 
programming and either familiarity with or a strong willingness to learn how to write to UIMA’s 
API. In order to provide decision points in UIMA to people without a strong Java background, a 
tool with a simplified interface to decision points that automatically generates Flow Controller 
and Flow classes would need to be provided. 

E.2: OpenPipeline 
OpenPipeline uses a pipeline descriptor XML file to list the stages in a pipeline, in a 

manner similar to UIMA. Each processing stage in a pipeline is informed about the full list of 
stages. It is the responsibility of each processing stage to start the next stage; otherwise, the 
pipeline will end at the point. In practice, the OpenPipeline framework provides a convenience 
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method for a processing stage to search the list of stages and get the stage after it. All the 
processing stages provided by OpenPipeline call this method at the conclusion of their 
processing to determine which stage is next and start it, which results in a sequential flow. 
Theoretically, the developer of a stage does not have to honor this unwritten rule and could 
manipulate the workflow after his stage in any way desired. This setup, in which control of the 
workflow is embedded into the processing stages is fairly robust, but leads to confusion. 

E.3: Mule 
Recall that Mule is a data driven manager of services. A set of services are specified in an 

XML file; each services specifies an inbound endpoint, a component which performs processing, 
and an outbound endpoint. Mule supports a variety of transports to which endpoints can connect; 
the most relevant transports for us are the file transport in which Mule polls a directory on the 
file system for new files and the virtual machine transport in which Mule creates an in-memory 
queue of objects. When data appears at one of the service’s inputs, it is processed by that 
service’s component and sent to that service’s output. If this output is also the input of some 
other service, then a chained workflow is created. For reference, the XML file for the toy 
workflow in Mule is attached. 

Before discussing decisions in Mule, a brief discussion of service components is required, 
because there are several ways to consider an implementation in Mule. The basic notion of a 
service component in Mule is a Java class. Based on the format of the input, Mule dynamically 
searches the class for a method which has an argument that takes that format as input and calls it, 
and returns the result as output. Given this, Mule could be used to perform a task in nearly the 
exact same way as in UIMA; annotators could be Java classes that take CAS objects as input, 
and Mule could pass the CAS objects around in its in-memory queues. However, Mule can 
become more general than that because it is not tied to the CAS format. We could instead 
envision an implementation where annotators take the filename of a file containing their input as 
input, then produce a result file and return its filename as output. Mule could then only pass 
around the filenames as data in in-memory queues. 

Additionally, while Java classes are the default notion of a processing component in 
Mule, processing components can also be web services, or JSR-223 scripts. JSR-223 is 
essentially a framework for interpreting scripts inside a JVM, and there are currently engines for 
Groovy, Ruby, and Python among others. This was essential for this implementation because it 
allows one to embed a script inside the XML, and scripting languages commonly have 
straightforward ways to execute local processes. Specifically, the toy example uses Groovy 
scripts as components, as shown in the inline excerpt below. 
 
<scripting:component> 
  <scripting:script engine="groovy"> 
  tokenDir = 
    "C:\\Documents and Settings\\ngiles\\My Documen ts\\Task\\Tokens"; 
  tokenFile = new File(tokenDir, 
    payload.getName() + ".tokens"); 
  commands = ["java", "-jar", 
    "C:\\Documents and Settings\\ngiles\\My Documen ts\\BIN\\Tokenizer.jar", 
    payload.getCanonicalPath(), tokenFile.getCanoni calPath()]; 
  process = commands.execute(); 
  process.waitFor(); 
  return tokenFile; 
  </scripting:script> 
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</scripting:component> 

 
Understanding this, we can discuss the possible ways to implement decision points in 

Mule. The first and most general way is to write a custom outbound router. This would be a Java 
class that would implement the Outbound Router interface and could inspect the data being sent 
and determine where to send it as a result. This option is similar to the routing UIMA provides in 
that it is robust but requires Java experience and familiarity with or a willingness to learn the 
Mule API. 

Moving down the scale in difficulty, the second means for implementing decision points 
in Mule would be to use a filtering router. Based on the type of data being sent, Mule supports 
some basic filters which can be used to select an endpoint from a list of possible endpoints. The 
basic filters allow selection based on the type of output, regular expressions for string data, 
XPath for XML data, and OGNL for Java objects. Additionally, if one is able to write Java code, 
one can also implement one’s own filters by extending the Filter interface, but this is non-trivial 
in a similar manner to implementing an outbound router. 

Given all of this, we can consider the following strategy for simple decision points in 
Mule. The script shown previously, which executes a local process and then returns the filename 
of the output is modified to also return the exit code of the process. Based on the exit code, a 
filtering router is able to select among several endpoint as to where to send the data next. As an 
alternative to having an explicit code, the script could inspect the output after completion of the 
process and general something like an exit code from that, and then proceed in the same manner. 
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Appendix F: Initial Implementation of the Inbound Gateway 
 
The initial inbound gateway, which represents the first step into the MOSAIC 

architecture, is implemented with a JMS (Java Message Service) queue. A message is put on the 
queue containing a URL that refers to the raw document to be processed by MOSAIC. As stated 
in the recommendations, this is not a core competency to the overall architecture, and MOSAIC 
does not require the use of JMS to serve as its input technology. Any other application that can 
be used to queue documents or references to documents are also viable alternatives (e.g. hot 
folders). The need for a queue is directly due to the requirement of handling a stream of input 
data, and this would be alleviated were MOSAIC applied to tasks that had a batch mode of input.  

The inbound gateway has been simplified to some extent from the initial 
recommendations out of consideration of the fact that the analytic functionality it might be 
expected to have within the MOSAIC architecture is more appropriately rendered in the context 
of how analytics have been characterized, as they perform content analysis and production. This 
includes any triage, workflow selection, or zoning work, the latter of which in fact is treated as 
an analytic in the current implementation. 
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