Approved for Public Release; Distribution Unlimited
Case # 12-2943

Off Grid communications with Android

Meshing the mobile world

Josh Thomas

The MITRE Corporation
Bedford, MA USA
jbthomas@mitre.org

The SPAN project is an open source implementatiori a
generalized Mobile Ad-Hoc Network framework. Theopect's
goals are to bring dynamic mesh networking to smphones and to
explore the concepts of Off-Grid communications.

Keywords: MANET; OLSRd; Mesh Network; Android;
Decentralized; Peer to Peer; Smartphone

l. INTRODUCTION TOSPAN

Recent worldwide events have showcased that owerdur
communications infrastructure is not as reliablen@swould
like to believe. Cellular towers can be destroysdniatural
phenomena or simply overloaded beyond capacity VER#i
hotspots are reliant on power and network connggtitwo
things in short availability during a disaster atastrophic
event. We've seen these issues surface time arel dmain
over the past years, from Katrina to Haiti to Fukos. It's
always the same problem: no connectivity and
communication.

The SPAN project (Smart Phone Ad-Hoc Networks)

attempts to ameliorate these issues by providingl@mnate
means for information dispersal. The project w#iaVIANET

(Mobile Ad-Hoc Network) technology to provide a itest

backup framework for communication between indigigu
when all other infrastructure is unavailable ordliable. The
MANET based solution is a headless, infrastructess-
network that allows common smart phones to linletbgr in a
dynamic way. The SPAN project is harnessing theuityi of

smart phones to provide durable communications.

Jeff Robble

The MITRE Corporation
Bedford, MA USA
jrobble@mitre.org

security, fear of monitoring or other reasons tadipipants do
not wish to utilize either the Internet or the akdl networks.

Il. TECHNICAL DETAILS

A. Leveraging Open Source Projects

SPAN is based on the Wireless Tether for Root Users
application written by Harald Mueller. The app anajly
started out as an open source project licensed @idkev3
but eventually became closed source to prevenitpeo$ from
rebranding and selling it on the Android Marketyn@oogle
Play) for personal gain. We leverage much of Hasald
interface design and follow his method for configgra
wireless chip to operate in ad-hoc mode usingwhemfig
Linux command line utility.

The SPAN project is also somewhat reminiscent ef th

naexisting B.A.T.D.R.O.1.D. project which providesanple

management wrapper to start/stop the B.A.T.M.A&krdon
on your rooted Android handset. The main differatirig
factor is the SPAN project allows for arbitrary tiog
protocols to be used during MANET runtime. This is
accomplished by harnessing a generalized architectu
implemented as a framework instead of a simple netay
implementation of a specific protocol.

B. Architecture

The SPAN architecture is intentionally designedltow
for arbitrary routing protocol use during runtiméhis
generalized solution will allow for custom routipgptocols to

The MITRE based SPAN team has created an openesourge developed and investigated without incurringatherhead

framework for implementing MANET networks that wille
released to the public in late summer. The framkwoovides
not only a full “proof of concept” implementationf @&
functional MANET but also allows for “plug and plapf
custom routing protocols. The routing protocols Hre true
cornerstone of the MANET architecture as they adhpt
network for scalability, mobility and power consits of
mobile devices. The SPAN team is currently workom an
adaptive routing protocol that will dynamically adf itself
based on the current runtime metrics of the medgwark
itself.

Aside from resilient information sharing, the SPAMject
also allows for “Off Grid” communications. Thereeatimes
when data should be transferred around a netwark,fdr

of building a complete implementation. The intisntio
provide a MANET test bed for protocol developers to
experiment with real world behaviors and adapt the
implementation as required. Such a framework alleavs for
the SPAN adaptive framework discussed later inghjser.

The framework is injected into the existing Android
network stack between OSI layers 2 & 3. Given tigisvork
stack is based on the standard BSD implementadian,
framework is inherently portable across most platfg
mobile or otherwise. The initial implementationtbé
framework is designed as such:

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 12-2943

P2P Chat App. ‘ ‘ ‘Other App.

TCP Socket UDP Socket

| Java Networking Interface [

Global Handset Proxy

Reliable Transmission Layer

Security Manager

Session Manager

| MANET Service !

| Network Configuration ‘ Manual Routing Protocol Selection | Automated Routing Protacol Selection |

| Modular MANET Routing Protocol Framework]

| Proactive Routing Protocol Manager Reactive Routing Protocol Manager !

| OLSR

|

The injection point of the Global Handset proxywais the
SPAN framework to control all network traffic se@sdly.
From the OS and application layer viewpoint the MANis
simply another avenue for network access and iséemce is
completely hidden. Once the framework is runninghe
device, no software application or Android OS migdifions
are necessary. This transparent nature allowsofmmon
applications like Twitter or Facebook to simply wpor
assuming a single node on the overall MANET hadgend the
mesh to the outside Internet.

| Protocol 2 ‘ Protocol 3 | | DSR | Pratocol 2 Protocol 3 |

x Kernel Routing ‘

“Hello!”

P2P Chat App. [> P2P Chat App.

Java Networking Interface

T
L
T
1
1
'

Java Networking Interface

Transparent Backend !

[Reliable Transmission Layer |
T T

Global HandsetProxy |

[BRI F----f
7 w |

Global Handset Proxy
T w

‘ Reliable Transmission Layer | l
1

Reliable Transmission Layer |
1 ! 1

L 2 L L
| MANET Routing Protocol I ‘ MANET Routing Protocol | ‘ MANET Routing Protocol |

[determine route] [update network topology / determine route] {update network topology]

Source Node Relay Node Destination Node

C. Ad-Hoc Mode on Android Hardware

The Android framework is primarily designed to dgofe
the built-in wireless chip to operate in managedien(a.k.a.
infrastructure mode) and monitor the state of tlheaged
network. In other words, the default behavior & tireless
chip in an Android device is to authenticate withexternal
access point and act as a client to connect te-gxisting
wireless network. The user can control variousarstifor
connecting to a managed network through the wisedesl
network preferences available through the Settapgs Many
Android implementations store network informatiorai
wpa_supplicant.conf file and perform authenticatising the
wpa_supplicant command line utility, which is therglard
Linux approach for connecting to a managed network.

An ad-hoc network does not consist of static acpeg#s
and does away with the need for dedicated devares f
managing the network. Instead, each device in amoad
network is capable of intelligently routing packtisother
peers in the network. In order to be successfah eavice
must know about the network topology prior to plagn
routes (i.e. proactive routing) or capable of l&zgrthe

network topology on demand to plan a route atithe bf
packet transmission (i.e. reactive routing). Bqipraaches
have pros and cons, as we will discuss in a |&eticn.

The pre-ICS (Ice Cream Sandwich / 4.0) Android
framework does not support configuring the builtsimeless
chip to operate in any other mode but managed mG&.
offers support for Wi-Fi Direct, but the ICS implentation of
the Wi-Fi Direct specification does not providearplete ad-
hoc network solution, as we will discuss in a latection. In
order to configure the wireless chip in ad-hoc magedive
deeper than the Android framework and work with the
wireless chip drivers directly by using the iwcanfiinux
command line utility to set the parameters of tlelss
interface. In order to use iwconfig the Linux kdrmaust have
support for the Wireless Extensions API. The follogvtable
shows which of the devices we used for developrnang
support for the Wireless Extensions API out ofltle and
which do not:

No Wireless Extensions
Support

Wireless Extensions
Support

Samsung Nexus S 4G Samsung Galaxy Nexus

ASUS Eee Pad Transform
Prime

Samsung Galaxy Tab 10.1

Samsung Galaxy S Il Epic | Motorola Razr Maxx

Touch 4G

Note that all of the devices which support the \ése
Extensions API use the Broadcom wireless chiphasva in
the following table:

Device Wireless Chip

Samsung Nexus S 4G Broadcom BCM4329

Samsung Galaxy Tab 10.1 Broadcom BCM4330

Samsung Galaxy S Il Epic | Broadcom BCM4330

Touch 4G

Samsung Galaxy Nexus Broadcom BCM4329

ASUS Eee Pad Transformer
Prime

AzureWave AW-NH615
(rebranded Broadcom
BCM4329)

Motorola Razr Maxx Texas Instruments WL1285

iPhone 4S Broadcom BCM4330

Nokia Lumia 900 Broadcom BCM4329

In addition to the devices which support the Wissle
Extensions API, we were able to compile suppod the
Linux kernel for the Samsung Galaxy Nexus and ARé¢8
Pad Transformer Prime. We are very thankful thah bo
Samsung and ASUS have provided their kernel saode to
the open source community.

Thus, we have had great success with the Broadcom
BCM4329 and BCM4330 wireless chipsets in Android
devices and strongly believe that it is possiblade the
Wireless Extensions API to configure the same wagl
chipsets in the iPhone 4S and Nokia Lumia to operaad-
hoc mode. On the other hand, we have had limitedess
configuring the Motorola Razr Maxx Tl wireless ch

er

C

operate in ad-hoc mode using the tiwlan driverstdvlda has
made pieces of the kernel available to the opercsou
community so it may be possible to compile Wireless
Extensions support into the Motorola Razr Maxx kérn

D. Gateway

There are many reasons why devices in the ad-hewre
may need to reach out to devices on managed network
example, many useful apps are based on the cleentis
model and require access to a server hosted omaged
network. In order to “bridge” the ad-hoc networldam
managed network a gateway device must be appoihted.
gateway device must have one network adapter amefibto
operate in ad-hoc mode and another network adapter
configured to operate in managed mode. Then packetbe
forwarded across those two adapters.

Specifically, we use the ASUS Eee Pad Transformiend®
for our primary gateway device. By compiling rtigZlBSB
driver support into the kernel we are able to us&laFA
AWUSO036H wireless USB adapter as a second network
interface. We configure the Eee Pad’s internal leg® adapter
to operate in managed mode and the ALFA to opémedd-
hoc mode. We then use the iptables command lifigyuti
allow the Eee Pad to masquerade as devices omnlthea
network and forward packets across the adapterss, The
Eee Pad effectively performs Network Address T ratitsh
between the ad-hoc subnet and the managed network.

We leverage the behavior of the Settings app ardtd\d
framework for configuring the Eee Pad’s internaleMss
adapter to operate in managed mode. The user careciothe
device to an access point and the device will rammannected
to the access point regardless if the ALFA is eedlbd
operate in ad-hoc mode or not. On the other handna
gateway device will disconnect from a managed ngtwden
its internal wireless adapter is configured to apein ad-hoc
mode.

Additionally, we have used both the Samsung Gafky
Epic Touch 4G and Samsung Galaxy Nexus as gateway
devices by forwarding packets between their intenmaeless
adapter configured to operate in ad-hoc mode agid th
internal 3G/4G adapter. This allows every otherickin the
ad-hoc network to access the Internet through ¢lieservice
of those devices. Note that many cell service glend do not
condone “tethering” of this nature because manlypteine
users use it as a way to share one service plassaotultiple
devices instead of paying for individual servicard.

Devices in the ad-hoc network can successfully beothie
Internet through the gateway device; however, weha
observed that on most devices the Browser apppvalnpt
the user with a dialog stating that no networkvailable,
although after dismissing the dialog the webpadklead
without a problem. This is evidence that our apphda
setting up the ad-hoc network works at a lowerlléven the
Android framework, which does not recognize theickehas
a valid Internet connection because the wirelegsismot
operating in managed mode.

. FIELD TESTRESULTS

A. Effiective Range

The initial field tests of the SPAN framework w#id both
the OLSRd protocol and a simple implementation loé t
Dijkstra algorithm for packet routing and the testgre
preformed using an array of currently supportediasy It
was observed that each MANET node utilizing a Booswl
BCM4329 Wi-Fi chipset could be a maximal distanfel@6
feet (32 meters) from its closest neighbor and stdintain
MANET connectivity. For devices harnessing the d&lwom
BCM4330 chipset, the maximal distance was obsetwéd 98
feet (29 meters).

B. Upper Limits of Smple Multi-Hop Routing

The initial testing did not reveal an upper limit multi-hop
communications, allowing a simple chat conversatiion
traverse a 5 hop network with minimal delay andtighput
problems. The SPAN team intends to explore netsvofkLO
to 25 node traversals later this year. The tegoeets to
discover a maximal limit to multi-hop routing of ¥®data in
the range of 10-12 node traversals.

C. Node Density Limitations

Given the channel-based nature of the 802.11
specifications, the SPAN team expects to discomarmper
limit of devices that can exist in the same peepder
MANET enclave. This limit was not reached during o
initial test of 30 devices. The team expects toesthe
maximum channel utilization limit by creating clest or
enclaves of proximal devices to allow for a scaatstwork
beyond the typical bounds of the specification.

IV. ROUTING

The single most challenging aspect of implemenging
robust and scalable mesh network is the desigheofduting
protocol. Without centralized servers and standatevorking
infrastructure to generate optimal paths acrosa¢teork, the
nodes of the mesh themselves must determine hoelitcer
the data in an efficient manner. The field thuscn be
subdivided into two distinct approaches: Proactind
Reactive. Though neither approach can change raw
bandwidth both solutions can have a large impaateiwork
throughput.

A. Proactive Routing

The proactive approach (and its exemplar OLSRd)
attempts to mimic standard networking paradigms to
predetermine routes and store them prior to useed. In
essence, the algorithm floods the mesh network kngtto
messages in order to determine topology and routéta.
The routes are then stored per device for a spddiiine and
recreated once the temporal bound has expiredleWHis
approach ensures the network is responsive to paekefers
at runtime, functionality is provided with a highst. The

proactive paradigm can easily saturate the mestonletwith
route discovery packets, building possibly unused a
unneeded routes at the cost of actual data transfexddition,
the highly mobile nature of mesh networks can dtter
physical topology prior to the expiration of therstd routes.
This issue forces the protocol to generate newesout
dynamically after the stored paths have been digchr

B. Reactive Routing

Reactive protocols await an actual need for a nétwo
traversal path prior to exploring the mesh for ateo This
ensures the network remains uncluttered with pbssib
unnecessary hello packets. The inherent downsitigs
approach is a sluggish behavior visible to the @s® when
trying to utilize any new node on the network. &ithe lack
of exploratory traffic, pure reactive networks al&ve known
issues with determining exactly what nodes arelalviai for
potential use. This problem becomes apparent wbhen
consider issues with DHCP or other network idecitfion
mechanisms.

C. New Routing Paradigms

B.A.T.M.A.N. (The Better Approach To Mobile Adhoc
Networking) is a routing protocol currently under
development by the Freifunk Community and is intshtb
replace OLSRd. B.A.T.M.A.N.'s main differentiatidgsign
aspect is the concept of route knowledge decerditédn. The
paradigm attempts to ensure no single node neédlaskects
all the routing data in the network. Instead eactividual
node only saves information about the “directidreiceived
data from prior to packet forwarding. As the dagésgpassed
on from node to node around the mesh, packetsaideidual
dynamically created routes based on current nettegridogy.
In essence, a network of collective routing intghice is
created and dynamically harnessed at runtime.

D. Sensory Intelligence

In future versions of the SPAN framework, the tesith
provide reference implementations for routing pcots based
on smart phone sensor data. The team expects vast
improvements in mesh network stability and speedrwh
harnessing location, speed and vector of movement
information into the packet headers of explorajmagkets.
Nodes will be cognizant of neighbor node mobilitigem
selecting potential routes.

Aside from movement-based information, the SPANntea
will explore battery and power consumption levelawoss
the mesh in the near future. In this paradigmytheing
protocol will prioritize next hop nodes based oaitable
battery level and charging state of the device.

E. Sdf Evolving Algorithms

During the next 12 months, the SPAN team will explan
automated adaptive routing protocol. The protedbl
preform self-analysis during runtime and adjustrtheing
fingerprint based on current use of the networknp®y put,
the protocol will attempt to automatically adjusttery
leveling, network throughput and bandwidth baseth@n the
network itself is being utilized by the participauatt any given
time. An optimal solution for a sparsely populatedwork
attempting to pass VolP packets will be drasticdifferent
than the solution for a highly dense, large netwmag&sing
simple text data

V. SECURITY

While far from a complete solution, the SPAN teaas h
generated a basic design for mesh network secuiégh
node on the mesh will have a shared key for initetivork
exploration. This key will be either prepackagetbithe
mesh client or transferred to the device by BludgtddNFC
when joining the network. Once the node has joihed
network, it will share its own public key with anpde
reguesting communication. Once keys have beenféraed,
the network will harness the standard encryptidreste for
secure client /server based communications. Tiveonk will
also support the expected collection of VPN tunn&lEP &
WPA.

Apart from data protection, the SPAN team is cogniof
DDOS issues with the OLSRd protocol. Given the grot
itself can saturate the network with hello packktsng
normal operation, it is not beyond comprehensian ¢h
malicious attack could do the same. Our modifaraito the
OLSRd protocol should, at a minimum, limit such
disturbances to a localized enclave of the mesh.

VI. CONCLUSIONS ANDFUTURE WORK

The SPAN team expects to continue refining the
framework and developing routing protocols in tieamterm.
We expect to harden our security posture both étwark and
data protection.

Please contact the SPAN team if you have any aquresti
comments or concerns. Also, please contact ustifuge the
framework and have interesting stories to tell.

	Introduction to SPAN
	Technical details
	Leveraging Open Source Projects
	Architecture
	Ad-Hoc Mode on Android Hardware
	Gateway

	Field Test Results
	Effiective Range
	Upper Limits of Simple Multi-Hop Routing
	Node Density Limitations

	Routing
	Proactive Routing
	Reactive Routing
	New Routing Paradigms
	Sensory Intelligence
	Self Evolving Algorithms

	Security
	Conclusions and Future Work

