
Off Grid communications with Android
Meshing the mobile world

Josh Thomas
The MITRE Corporation

Bedford, MA USA
jbthomas@mitre.org

Jeff Robble
The MITRE Corporation

Bedford, MA USA
jrobble@mitre.org

The SPAN project is an open source implementation of a
generalized Mobile Ad-Hoc Network framework. The project’s
goals are to bring dynamic mesh networking to smart phones and to
explore the concepts of Off-Grid communications.

Keywords: MANET; OLSRd; Mesh Network; Android;
Decentralized; Peer to Peer; Smartphone

I. INTRODUCTION TO SPAN

Recent worldwide events have showcased that our current
communications infrastructure is not as reliable as we would
like to believe. Cellular towers can be destroyed by natural
phenomena or simply overloaded beyond capacity and Wi-Fi
hotspots are reliant on power and network connectivity, two
things in short availability during a disaster or catastrophic
event. We’ve seen these issues surface time and time again
over the past years, from Katrina to Haiti to Fukushima. It's
always the same problem: no connectivity and no
communication.

The SPAN project (Smart Phone Ad-Hoc Networks)
attempts to ameliorate these issues by providing an alternate
means for information dispersal. The project utilizes MANET
(Mobile Ad-Hoc Network) technology to provide a resilient
backup framework for communication between individuals
when all other infrastructure is unavailable or unreliable. The
MANET based solution is a headless, infrastructure-less
network that allows common smart phones to link together in a
dynamic way. The SPAN project is harnessing the ubiquity of
smart phones to provide durable communications.

The MITRE based SPAN team has created an open source
framework for implementing MANET networks that will be
released to the public in late summer. The framework provides
not only a full “proof of concept” implementation of a
functional MANET but also allows for “plug and play” of
custom routing protocols. The routing protocols are the true
cornerstone of the MANET architecture as they adapt the
network for scalability, mobility and power constraints of
mobile devices. The SPAN team is currently working on an
adaptive routing protocol that will dynamically adjust itself
based on the current runtime metrics of the mesh network
itself.

Aside from resilient information sharing, the SPAN project
also allows for “Off Grid” communications. There are times
when data should be transferred around a network, but for

security, fear of monitoring or other reasons the participants do
not wish to utilize either the Internet or the cellular networks.

II. TECHNICAL DETAILS

A. Leveraging Open Source Projects

SPAN is based on the Wireless Tether for Root Users
application written by Harald Mueller. The app originally
started out as an open source project licensed under GPLv3
but eventually became closed source to prevent profiteers from
rebranding and selling it on the Android Market (now Google
Play) for personal gain. We leverage much of Harald’s
interface design and follow his method for configuring a
wireless chip to operate in ad-hoc mode using the iwconfig
Linux command line utility.

The SPAN project is also somewhat reminiscent of the
existing B.A.T.D.R.O.I.D. project which provides a simple
management wrapper to start/stop the B.A.T.M.A.N. daemon
on your rooted Android handset. The main differentiating
factor is the SPAN project allows for arbitrary routing
protocols to be used during MANET runtime. This is
accomplished by harnessing a generalized architecture
implemented as a framework instead of a simple proprietary
implementation of a specific protocol.

B. Architecture

The SPAN architecture is intentionally designed to allow
for arbitrary routing protocol use during runtime. This
generalized solution will allow for custom routing protocols to
be developed and investigated without incurring the overhead
of building a complete implementation. The intent is to
provide a MANET test bed for protocol developers to
experiment with real world behaviors and adapt the
implementation as required. Such a framework also allows for
the SPAN adaptive framework discussed later in this paper.

The framework is injected into the existing Android
network stack between OSI layers 2 & 3. Given this network
stack is based on the standard BSD implementation, our
framework is inherently portable across most platforms,
mobile or otherwise. The initial implementation of the
framework is designed as such:

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 12-2943

The injection point of the Global Handset proxy allows the
SPAN framework to control all network traffic seamlessly.
From the OS and application layer viewpoint the MANET is
simply another avenue for network access and its existence is
completely hidden. Once the framework is running on the
device, no software application or Android OS modifications
are necessary. This transparent nature allows for common
applications like Twitter or Facebook to simply work,
assuming a single node on the overall MANET has bridged the
mesh to the outside Internet.

C. Ad-Hoc Mode on Android Hardware

The Android framework is primarily designed to configure
the built-in wireless chip to operate in managed mode (a.k.a.
infrastructure mode) and monitor the state of the managed
network. In other words, the default behavior of the wireless
chip in an Android device is to authenticate with an external
access point and act as a client to connect to a pre-existing
wireless network. The user can control various options for
connecting to a managed network through the wireless and
network preferences available through the Settings app. Many
Android implementations store network information in a
wpa_supplicant.conf file and perform authentication using the
wpa_supplicant command line utility, which is the standard
Linux approach for connecting to a managed network.

An ad-hoc network does not consist of static access points
and does away with the need for dedicated devices for
managing the network. Instead, each device in an ad-hoc
network is capable of intelligently routing packets to other
peers in the network. In order to be successful, each device
must know about the network topology prior to planning
routes (i.e. proactive routing) or capable of learning the

network topology on demand to plan a route at the time of
packet transmission (i.e. reactive routing). Both approaches
have pros and cons, as we will discuss in a later section.

The pre-ICS (Ice Cream Sandwich / 4.0) Android
framework does not support configuring the built-in wireless
chip to operate in any other mode but managed mode. ICS
offers support for Wi-Fi Direct, but the ICS implementation of
the Wi-Fi Direct specification does not provide a complete ad-
hoc network solution, as we will discuss in a later section. In
order to configure the wireless chip in ad-hoc mode we dive
deeper than the Android framework and work with the
wireless chip drivers directly by using the iwconfig Linux
command line utility to set the parameters of the wireless
interface. In order to use iwconfig the Linux kernel must have
support for the Wireless Extensions API. The following table
shows which of the devices we used for development have
support for the Wireless Extensions API out of the box and
which do not:

Wireless Extensions
Support

No Wireless Extensions
Support

Samsung Nexus S 4G Samsung Galaxy Nexus
Samsung Galaxy Tab 10.1 ASUS Eee Pad Transformer

Prime
Samsung Galaxy S II Epic
Touch 4G

Motorola Razr Maxx

Note that all of the devices which support the Wireless
Extensions API use the Broadcom wireless chip, as shown in
the following table:

 Device Wireless Chip
Samsung Nexus S 4G Broadcom BCM4329
Samsung Galaxy Tab 10.1 Broadcom BCM4330
Samsung Galaxy S II Epic
Touch 4G

Broadcom BCM4330

Samsung Galaxy Nexus Broadcom BCM4329
ASUS Eee Pad Transformer
Prime

AzureWave AW-NH615
(rebranded Broadcom
BCM4329)

Motorola Razr Maxx Texas Instruments WL1285C
iPhone 4S Broadcom BCM4330
Nokia Lumia 900 Broadcom BCM4329

In addition to the devices which support the Wireless
Extensions API, we were able to compile support into the
Linux kernel for the Samsung Galaxy Nexus and ASUS Eee
Pad Transformer Prime. We are very thankful that both
Samsung and ASUS have provided their kernel source code to
the open source community.

Thus, we have had great success with the Broadcom
BCM4329 and BCM4330 wireless chipsets in Android
devices and strongly believe that it is possible to use the
Wireless Extensions API to configure the same wireless
chipsets in the iPhone 4S and Nokia Lumia to operate in ad-
hoc mode. On the other hand, we have had limited success
configuring the Motorola Razr Maxx TI wireless chip to

operate in ad-hoc mode using the tiwlan drivers. Motorola has
made pieces of the kernel available to the open source
community so it may be possible to compile Wireless
Extensions support into the Motorola Razr Maxx kernel.

D. Gateway

There are many reasons why devices in the ad-hoc network
may need to reach out to devices on managed network. For
example, many useful apps are based on the client-server
model and require access to a server hosted on a managed
network. In order to “bridge” the ad-hoc network and a
managed network a gateway device must be appointed. The
gateway device must have one network adapter configured to
operate in ad-hoc mode and another network adapter
configured to operate in managed mode. Then packets can be
forwarded across those two adapters.

Specifically, we use the ASUS Eee Pad Transformer Prime
for our primary gateway device. By compiling rtl8187 USB
driver support into the kernel we are able to use an ALFA
AWUS036H wireless USB adapter as a second network
interface. We configure the Eee Pad’s internal wireless adapter
to operate in managed mode and the ALFA to operate in ad-
hoc mode. We then use the iptables command line utility to
allow the Eee Pad to masquerade as devices on the ad-hoc
network and forward packets across the adapters. Thus, the
Eee Pad effectively performs Network Address Translation
between the ad-hoc subnet and the managed network.

We leverage the behavior of the Settings app and Android
framework for configuring the Eee Pad’s internal wireless
adapter to operate in managed mode. The user can connect the
device to an access point and the device will remain connected
to the access point regardless if the ALFA is enabled to
operate in ad-hoc mode or not. On the other hand, a non-
gateway device will disconnect from a managed network when
its internal wireless adapter is configured to operate in ad-hoc
mode.

Additionally, we have used both the Samsung Galaxy S II
Epic Touch 4G and Samsung Galaxy Nexus as gateway
devices by forwarding packets between their internal wireless
adapter configured to operate in ad-hoc mode and their
internal 3G/4G adapter. This allows every other device in the
ad-hoc network to access the Internet through the cell service
of those devices. Note that many cell service providers do not
condone “tethering” of this nature because many cell phone
users use it as a way to share one service plan across multiple
devices instead of paying for individual service plans.

Devices in the ad-hoc network can successfully browse the
Internet through the gateway device; however, we have
observed that on most devices the Browser app will prompt
the user with a dialog stating that no network is available,
although after dismissing the dialog the webpage will load
without a problem. This is evidence that our approach to
setting up the ad-hoc network works at a lower level then the
Android framework, which does not recognize the device has
a valid Internet connection because the wireless chip is not
operating in managed mode.

III. FIELD TEST RESULTS

A. Effiective Range

The initial field tests of the SPAN framework utilized both
the OLSRd protocol and a simple implementation of the
Dijkstra algorithm for packet routing and the tests were
preformed using an array of currently supported devices. It
was observed that each MANET node utilizing a Broadcom
BCM4329 Wi-Fi chipset could be a maximal distance of 106
feet (32 meters) from its closest neighbor and still maintain
MANET connectivity. For devices harnessing the Broadcom
BCM4330 chipset, the maximal distance was observed to be 98
feet (29 meters).

B. Upper Limits of Simple Multi-Hop Routing

The initial testing did not reveal an upper limit on multi-hop
communications, allowing a simple chat conversation to
traverse a 5 hop network with minimal delay and throughput
problems. The SPAN team intends to explore networks of 10
to 25 node traversals later this year. The team expects to
discover a maximal limit to multi-hop routing of VoIP data in
the range of 10-12 node traversals.

C. Node Density Limitations

Given the channel-based nature of the 802.11
specifications, the SPAN team expects to discover an upper
limit of devices that can exist in the same peer-to-peer
MANET enclave. This limit was not reached during our
initial test of 30 devices. The team expects to solve the
maximum channel utilization limit by creating clusters or
enclaves of proximal devices to allow for a scalable network
beyond the typical bounds of the specification.

IV. ROUTING

The single most challenging aspect of implementing a

robust and scalable mesh network is the design of the routing
protocol. Without centralized servers and standard networking
infrastructure to generate optimal paths across the network, the
nodes of the mesh themselves must determine how to deliver
the data in an efficient manner. The field thus far can be
subdivided into two distinct approaches: Proactive and
Reactive. Though neither approach can change raw
bandwidth both solutions can have a large impact on network
throughput.

A. Proactive Routing

The proactive approach (and its exemplar OLSRd)
attempts to mimic standard networking paradigms to
predetermine routes and store them prior to use or need. In
essence, the algorithm floods the mesh network with hello
messages in order to determine topology and routing data.
The routes are then stored per device for a specified time and
recreated once the temporal bound has expired. While this
approach ensures the network is responsive to packet transfers
at runtime, functionality is provided with a high cost. The

proactive paradigm can easily saturate the mesh network with
route discovery packets, building possibly unused and
unneeded routes at the cost of actual data transfer. In addition,
the highly mobile nature of mesh networks can alter the
physical topology prior to the expiration of the stored routes.
This issue forces the protocol to generate new routes
dynamically after the stored paths have been discarded.

B. Reactive Routing

Reactive protocols await an actual need for a network
traversal path prior to exploring the mesh for a route. This
ensures the network remains uncluttered with possibly
unnecessary hello packets. The inherent downside to this
approach is a sluggish behavior visible to the end user when
trying to utilize any new node on the network. Given the lack
of exploratory traffic, pure reactive networks also have known
issues with determining exactly what nodes are available for
potential use. This problem becomes apparent when you
consider issues with DHCP or other network identification
mechanisms.

C. New Routing Paradigms

B.A.T.M.A.N. (The Better Approach To Mobile Adhoc
Networking) is a routing protocol currently under
development by the Freifunk Community and is intended to
replace OLSRd. B.A.T.M.A.N.'s main differentiating design
aspect is the concept of route knowledge decentralization. The
paradigm attempts to ensure no single node needlessly collects
all the routing data in the network. Instead each individual
node only saves information about the “direction” it received
data from prior to packet forwarding. As the data gets passed
on from node to node around the mesh, packets get individual
dynamically created routes based on current network topology.
In essence, a network of collective routing intelligence is
created and dynamically harnessed at runtime.

D. Sensory Intelligence

In future versions of the SPAN framework, the team will
provide reference implementations for routing protocols based
on smart phone sensor data. The team expects vast
improvements in mesh network stability and speed when
harnessing location, speed and vector of movement
information into the packet headers of exploratory packets.
Nodes will be cognizant of neighbor node mobility when
selecting potential routes.

Aside from movement-based information, the SPAN team
will explore battery and power consumption leveling across
the mesh in the near future. In this paradigm, the routing
protocol will prioritize next hop nodes based on available
battery level and charging state of the device.

E. Self Evolving Algorithms

During the next 12 months, the SPAN team will explore an
automated adaptive routing protocol. The protocol will
preform self-analysis during runtime and adjust the routing
fingerprint based on current use of the network. Simply put,
the protocol will attempt to automatically adjust battery
leveling, network throughput and bandwidth based on how the
network itself is being utilized by the participants at any given
time. An optimal solution for a sparsely populated network
attempting to pass VoIP packets will be drastically different
than the solution for a highly dense, large network passing
simple text data

V. SECURITY

While far from a complete solution, the SPAN team has

generated a basic design for mesh network security. Each
node on the mesh will have a shared key for initial network
exploration. This key will be either prepackaged into the
mesh client or transferred to the device by Bluetooth / NFC
when joining the network. Once the node has joined the
network, it will share its own public key with any node
requesting communication. Once keys have been transferred,
the network will harness the standard encryption scheme for
secure client /server based communications. The network will
also support the expected collection of VPN tunnels, WEP &
WPA.

Apart from data protection, the SPAN team is cognizant of
DDOS issues with the OLSRd protocol. Given the protocol
itself can saturate the network with hello packets during
normal operation, it is not beyond comprehension that a
malicious attack could do the same. Our modifications to the
OLSRd protocol should, at a minimum, limit such
disturbances to a localized enclave of the mesh.

VI. CONCLUSIONS AND FUTURE WORK

The SPAN team expects to continue refining the

framework and developing routing protocols in the near term.
We expect to harden our security posture both for network and
data protection.

Please contact the SPAN team if you have any questions,

comments or concerns. Also, please contact us if you use the
framework and have interesting stories to tell.

	Introduction to SPAN
	Technical details
	Leveraging Open Source Projects
	Architecture
	Ad-Hoc Mode on Android Hardware
	Gateway

	Field Test Results
	Effiective Range
	Upper Limits of Simple Multi-Hop Routing
	Node Density Limitations

	Routing
	Proactive Routing
	Reactive Routing
	New Routing Paradigms
	Sensory Intelligence
	Self Evolving Algorithms

	Security
	Conclusions and Future Work

