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The Synchrosqueezing algorithm for time-varying

spectral analysis: robustness properties and new

paleoclimate applications
Gaurav Thakur, Eugene Brevdo, Neven S. Fučkar, and Hau-Tieng Wu

Abstract

We analyze the stability properties of the Synchrosqueezing transform, a time-frequency signal analysis method

that can identify and extract oscillatory components with time-varying frequency and amplitude. We show that

Synchrosqueezing is robust to bounded perturbations of the signal and to Gaussian white noise. These results justify

its applicability to noisy or nonuniformly sampled data that is ubiquitous in engineering and the natural sciences. We

also describe a practical implementation of Synchrosqueezing and provide guidance on tuning its main parameters.

As a case study in the geosciences, we examine characteristics of a key paleoclimate change in the last 2.5 million

years, where Synchrosqueezing provides significantly improved insights.

I. INTRODUCTION

Synchrosqueezing is a time-frequency signal analysis algorithm designed to decompose signals into constituent

components with time-varying oscillatory characteristics. Such signals f(t) have the general form

f(t) =

K∑
k=1

fk(t) + e(t), (1)

where each component fk(t) = Ak(t) cos(2πφk(t)) is a Fourier-like oscillatory mode, possibly with time-varying

amplitude and frequency, and e(t) represents noise or measurement error. The goal is to recover the amplitude

Ak(t) at the instantaneous frequency (IF) φ′k(t) for each k.
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Signals of the form (1) arise naturally in numerous scientific and engineering applications, where it is often

important to understand their time-varying spectral properties. Many time-frequency (TF) transforms exist to analyze

such signals, such as the short-time Fourier transform (STFT), continuous wavelet transform (CWT), and the

Wigner-Ville distribution (WVD) [2], [10], [16], [34]. Synchrosqueezing is related to the class of time-frequency

reassignment (TFR) algorithms, used in the estimation of IFs from the modulus of a TF representation. TFR

methods originate from a study of the STFT, which ”smears” the energy of the superimposed IFs around their

center frequencies in the spectrogram. TFR methods apply a post-processing “reassignment” map that focuses the

spectrogram’s energy towards the IF curves and results in a sharpened TF plot. However, standard TFR methods

do not allow for reconstruction (synthesis) of the components fk(t). [3], [16], [17]

Originally introduced in the context of audio signal analysis [13], Synchrosqueezing was recently studied further

in [12] and shown to be an alternative to the Empirical Mode Decomposition (EMD) method [21] with a more firm

theoretical foundation. EMD has been found to be a useful tool for analyzing and decomposing natural signals and,

like EMD, Synchrosqueezing can extract and delineate components with time-varying spectrum. Furthermore, like

EMD, and unlike classical TFR techniques, it allows for the reconstruction of these components. Synchrosqueezing

can be adapted to work ”on top of” many of the classical TF transforms. In this paper, we focus on the original,

CWT-based approach studied in [13] and [12], although an STFT-based alternative was developed in [40] and other

variants are also possible.

The purpose of this paper is threefold. First, in Section II, we study the stability properties of Synchrosqueezing.

We build on the theory presented in [12] and prove that Synchrosqueezing is stable under bounded, deterministic

perturbations in the signal as well as under corruption by Gaussian white noise. This justifies the use of the

algorithm in real-world cases where different sources of error are present, such as thermal noise incurred from

signal acquisition or quantization and interpolation errors in processing the data.

Second, in Section III, we explain how Synchrosqueezing is implemented in practice and reformulate the approach

from [12] into a discretized form that is more numerically viable and accessible to a wider audience. We also provide

practical guidelines for choosing several parameters that arise in this process. A MATLAB implementation of the

algorithm has been developed and is freely available as part of the Synchrosqueezing Toolbox [7]. In Section IV,

we illustrate the algorithm on several numerical test cases. We study its performance and compare it to some of

the well known TF and TFR techniques.
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Finally, in Section V, we visit an open question in the Earth’s climate of the last 2.5 million years ( Myr).

We analyze a calculated solar flux index and paleoclimate records of the oxygen isotope ratio δ18O, an index of

climate state, over this period. We demonstrate that Synchrosqueezing clearly delineates the orbital cycles of the

solar radiation and provides a greatly improved representation of the projection of orbital signals in δ18O records. In

comparison to previous spectral analyses of δ18O time series, the Synchrosqueezing representation provides more

robust and precise estimates in the time-frequency plane, and improves our understanding of the link between solar

forcing and climate response on very long time scales (on the order of 10 kyr - 1 Myr).

II. THE STABILITY OF SYNCHROSQUEEZING

In this section, we state and prove our main theorems on the stability properties of Synchrosqueezing. We first

review the existing results on wavelet-based Synchrosqueezing and some associated notation and terminology from

the paper [12]. We define a class of functions (signals) on which the theory is established.

Definition II.1. [Sums of Intrinsic Mode Type (IMT) Functions] The space Aε,d of superpositions of IMT functions,

with smoothness ε > 0 and separation d > 0, consists of functions having the form f(t) =
∑K

k=1 fk(t) with

fk(t) = Ak(t)e
2πiφk(t), where for each k, the Ak and φk satisfy the following conditions.

Ak ∈ L∞ ∩ C1, φk ∈ C2, φ′k, φ
′′
k ∈ L∞, inf

t
φ′k(t) > 0,

∀t
∣∣A′k(t)∣∣ ≤ ε ∣∣φ′k(t)∣∣ , ∣∣φ′′k(t)∣∣ ≤ ε ∣∣φ′k(t)∣∣ , and

φ′k(t)− φ′k−1(t)

φ′k(t) + φ′k−1(t)
≥ d.

Functions in the class Aε,d are composed of several Fourier-like oscillatory components with slowly time-varying

amplitudes and sufficiently smooth frequencies. The IF components φ′k are strongly separated in the sense that high

frequency components are spaced exponentially further apart than low frequency ones.

We normalize the Fourier transform by ĥ(ξ) =
∫∞
−∞ h(x)e−2πiξxdx and use the notation ε̃ = ε1/3. Now for a

given mother wavelet ψ, the continuous wavelet transform (CWT) of f at scale a and time shift b is given by

Wf (a, b) = a−1/2
∫∞
−∞ f(t)ψ( t−ba )dt. If f̂ is supported in (0,∞), then the inversion of the CWT can be expressed

as f(b) = 1
Rψ
∫∞

0 a−3/2Wf (a, b)da, where we let Rψ =
∫∞

0 ξ−1ψ̂(ξ)dξ [12, p. 6]. We use the CWT to define the

phase transform ωf (a, b) by

ωf (a, b) =
∂tWf (a, b)

2πiWf (a, b)
. (2)

ωf (a, b) can be thought of as an “FM demodulated” frequency estimate that cancels out the influence of the wavelet
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ψ on Wf (a, b) and results in a modified time-scale representation of f . We can use this to consider the following

operator.

Definition II.2. [CWT Synchrosqueezing] Let f ∈ Aε,d and h ∈ C∞0 be a smooth function such that ‖h‖L1 = 1.

The Wavelet Synchrosqueezing transform with accuracy δ and thresholds ε̃ and M is defined by

Sδ,Mf,ε̃ (b, η) =

∫
ΓMf,ε̃

Wf (a, b)

a3/2

1

δ
h

(
η − ωf (a, b)

δ

)
da, (3)

where ΓMf,ε̃ =
{

(a, b) : a ∈ [M−1,M ], |Wf (a, b)| > ε̃
}

. We also denote Sδf,ε̃(b, η) := Sδ,∞f,ε̃ (b, η), with the condition

a ∈ [M−1,M ] replaced by a > 0.

For sufficiently small δ, this operator can be thought of as a partial inversion of the CWT of f (over the scale a),

but only taken over small bands around level curves in the time-scale plane (where ωf (a, b) ≈ η) and ignoring

the rest of the plane. As we let δ → 0, the domain of the inversion becomes concentrated on the level curves

{(a, b) : ωf (a, b) = η}. The idea is that this localization process will allow us to recover the components fk more

accurately than inverting the CWT over the entire time-scale plane. The following theorem was the main result of

[12].

Theorem II.1. (Daubechies, Lu, Wu) Let f =
∑K

k=1Ake
2πiφk ∈ Aε,d and ε̃ = ε1/3. Pick a function h ∈ C∞0 with

‖h‖L1 = 1, and pick a wavelet ψ ∈ C1 such that its Fourier transform ψ̂ is supported in [1−∆, 1 + ∆] for some

∆ < d
1+d . Then the following statements hold for each k:

1) Define the “scale band” Zk = {(a, b) : |aφ′k(b)− 1| < ∆}. For each point (a, b) ∈ Zk with |Wf (a, b)| > ε̃,

we have

|ωf (a, b)− φ′k(b)| ≤ ε̃,

and if (a, b) 6∈ Zk for any k, then |Wf (a, b)| ≤ ε̃.

2) There is a constant C1 such that for all b ∈ R,∣∣∣∣∣limδ→0

(
1

Rψ

∫
{η:|η−φ′k(b)|≤ε̃}

Sδf,ε̃(b, η)dη

)
−Ak(b)e2πiφk(b)

∣∣∣∣∣ ≤ C1ε̃.

This result shows how Synchrosqueezing can identify and extract the components {fk} from f . The first part

of Theorem II.1 says that the plot of |Sδf,ε̃| is concentrated around the instantaneous frequency curves {φ′k}. The

second part of Theorem II.1 tells us that we can reconstruct each component fk by completing the inversion of

the CWT, locally over small frequency bands surrounding φ′k. In particular, it implies that we can recover the

amplitudes Ak by taking absolute values. Theorem II.1 also suggests that components fk of small magnitude may

be difficult to detect (as their CWTs become smaller than ε̃).
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We can now state our new results on the robustness properties of Synchrosqueezing. The following theorem

shows that the results in Theorem II.1 essentially still hold if we perturb f by a small (deterministic) error term e.

Theorem II.2. Let f ∈ Aε,d and suppose we have a corresponding ε, h, ψ and ∆ as given in Theorem II.1.

Suppose that g = f + e, where e ∈ L∞ is a small error term that satisfies ‖e‖L∞ ≤ ε/max(‖ψ‖L1 , ‖ψ′‖L1). For

each k, let Mk ≥ 1 be the “maximal frequency range” given by

Mk =max
(

1
1−∆ ‖φ

′
k‖L∞ , (1 + ∆)

∥∥∥ 1
φ′k

∥∥∥
L∞

)
. Then the following statements hold for each k:

1) Assume a ∈ [M−1
k ,Mk]. For each point (a, b) ∈ Zk with |Wg(a, b)| > M

1/2
k ε+ ε̃, we have

|ωg(a, b)− φ′k(b)| ≤ C2ε̃

for some constant C2 = O(Mk). If (a, b) 6∈ Zk for any k, then |Wg(a, b)| ≤M1/2
k ε+ ε̃.

2) There is a constant C3 = O(Mk) such that for all b ∈ R,∣∣∣∣∣limδ→0

(
1

Rψ

∫
{η:|η−φ′k(b)|≤C2ε̃}

Sδ,Mk

g,M
1/2
k ε+ε̃

(b, η)dη

)
−Ak(b)e2πiφk(b)

∣∣∣∣∣ ≤ C3ε̃.

Proof: It is clear that

|Wf (a, b)−Wg(a, b)| ≤ ‖f − g‖L∞ a
1/2

∫ ∞
−∞

∣∣∣∣∣ψ
(
t− b

a

)∣∣∣∣∣ dt ≤ a1/2ε. (4)

Similarly, we also have |∂bWf (a, b) − ∂bWg(a, b)| ≤ a−1/2ε. Now if (a, b) 6∈ Zk for any k, then using Thm. II.1

gives

|Wg(a, b)| ≤ |Wg(a, b)−Wf (a, b)|+ |Wf (a, b)| ≤M1/2
k ε+ ε̃. (5)

On the other hand, if for some k, (a, b) ∈ Zk and |Wg(a, b)| > M
1/2
k ε+ ε̃, then by (4) and Thm. II.1,

|ωg(a, b)− φ′k(b)| ≤ |ωg(a, b)− ωf (a, b)|+ |ωf (a, b)− φ′k(b)|

≤
∣∣∣∣Wg(a, b)−Wf (a, b)

Wg(a, b)Wf (a, b)
∂bWf (a, b) +

∂bWf (a, b)− ∂bWg(a, b)

Wg(a, b)

∣∣∣∣+ ε̃

≤
M

1/2
k ε

(M
1/2
k ε+ ε̃)ε̃

(
M

1/2
k ‖f‖L∞

∥∥ψ′∥∥
L1

)
+

M
1/2
k ε

M
1/2
k ε+ ε̃

+ ε̃

≤ C2ε̃, (6)

where C2 depends only on f , ψ and Mk. For the second part of Thm. II.2, we fix k and b and use the following
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calculation [12, p.12]:

lim
δ→0

∫
|η−φ′k(b)|≤ε̃

Sδf,ε̃(b, η)dη =

∫
D(b,f,ε̃,ε̃,∞)

a−3/2Wf (a, b)da, (7)

where

D(b, f, ε1, ε2,M) := {a : |Wf (a, b)| > ε1, |ωf (a, b)− φ′k(b)| ≤ ε2, a ∈ [M−1,M ]}. (8)

It is also shown in [12, p. 12] that if a ∈ D(b, f, ε̃, ε̃,∞), then (a, b) ∈ Zk, so M−1
k ≤ a ≤ Mk. This means that

in (7), we can replace Sδf,ε̃(b, η) by Sδ,Mk

f,ε̃ (b, η) and D(b, f, ε̃, ε̃,∞) by D(b, f, ε̃, ε̃,Mk). We can also get a result

identical to (7) for g by simply repeating the argument in [12]. First, note that as δ → 0, the expression∫
|η−φ′k(b)|≤C2ε̃

a−3/2Wg(a, b)
1

δ
h

(
η − ωg(a, b)

δ

)
dη (9)

converges to a−3/2Wg(a, b)χ{|ωg(a,b)−φ′k(b)|<C2ε̃}(a) for almost all a ∈ [M−1
k ,Mk], where χ is the characteristic

function of a set. This shows that

lim
δ→0

∫
|η−φ′k(b)|≤C2ε̃

Sδ,Mk

g,M
1/2
k ε+ε̃

(b, η)dη

=

∫
(a,b)∈Γ

Mk

g,M
1/2
k

ε+ε̃

lim
δ→0

∫
|η−φ′k(b)|≤C2ε̃

a−3/2Wg(a, b)
1

δ
h

(
η − ωg(a, b)

δ

)
dηda (10)

=

∫
D(b,g,M

1/2
k ε+ε̃,C2ε̃,Mk)

a−3/2Wg(a, b)da. (11)

We can justify exchanging the order of integrations and limits in (10) by the Fubini and dominated convergence

theorems, since (9) is bounded by |a−3/2Wg(a, b)| ∈ L1({a : |Wg(a, b)| > M
1/2
k ε + ε̃, a ∈ [M−1

k ,Mk]}) for

all δ. We also note that (4) and (6) show that in the set D(b, f, ε̃, ε̃,Mk)\D(b, g,M
1/2
k ε + ε̃, C2ε̃,Mk), we have

|Wf (a, b)| ≤ 2M
1/2
k ε+ ε̃. We can now use the result of Thm. II.1 along with (5), (7) and (11) to find that∣∣∣∣∣limδ→0

∫
|η−φ′k(b)|≤ε̃

Sδ,Mk

f,ε̃ (b, η)dη − lim
δ→0

∫
|η−φ′k(b)|≤C2ε̃

Sδ,Mk

g,M
1/2
k ε+ε̃

(b, η)dη

∣∣∣∣∣
=

∣∣∣∣∣
∫

D(b,f,ε̃,ε̃,Mk)
a−3/2Wf (a, b)−

∫
D(b,g,M

1/2
k ε+ε̃,C2ε̃,Mk)

a−3/2Wg(a, b)da

∣∣∣∣∣
≤
∫

D(b,g,M
1/2
k ε+ε̃,C2ε̃,Mk)

∣∣∣a−3/2(Wf (a, b)−Wg(a, b))
∣∣∣ da

+

∫
D(b,f,ε̃,ε̃,Mk)\D(b,g,M

1/2
k ε+ε̃,C2ε̃,Mk)

∣∣∣a−3/2Wf (a, b)
∣∣∣ da

≤
∫ Mk

M−1
k

a−1εda+

∫ Mk

M−1
k

a−3/2
(

2M
1/2
k ε+ ε̃

)
da

≤ (2 logMk)ε+ 2
(
M

1/2
k −M−1/2

k

)(
2M

1/2
k ε+ ε̃

)
≤ C3ε̃.
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Combining this with the result of Thm. II.1 finishes the proof.

Thm. II.2 shows that each component fk can be recovered with an accuracy proportional to the perturbation e and

its maximal frequency range Mk, with mid-range IFs (Mk close to 1) resulting in the best estimates. In addition,

Thm. II.2 implies that we can replace a continuous-time function f with discrete approximations of it. In many

applications, we only have a collection of samples {f(tn)} available instead of the whole function f , where {tn}

is a sequence of (possibly nonuniformly spaced) sampling points. We can address this situation in the following

way.

Corollary II.3. Let fs ∈ C2 be the cubic spline interpolant formed from {f(tn)} and define Λ = sup
n
|t′n+1 − t′n|.

Then the errors in the estimating φ′k(b) and fk(b) from fs are both O(MkΛ
4/3) for all b.

Proof: This follows from Thm. II.2 and the following standard estimate on cubic spline approximations [38,

p. 97]:

‖fs − f‖L∞ ≤
5

384Λ4‖f (4)‖L∞

This means that we can work with the spline fs instead of f , and as long as the minimum sampling rate Λ−1 is

high enough, the results will be close. In practice, we find that the errors are localized in time to areas of low

sampling rate, low component amplitude, and/or high component frequency (see, e.g., §IV).

The second result of this paper is that Sychrosqueezing is also robust to additive Gaussian white noise. We

start by defining Gaussian white noise in continuous-time. Let S be the Schwartz class of smooth functions with

rapid decay (see [25]). A (real) stationary generalized Gaussian process G is a random linear functional on S

such that all finite collections {G(fi)} with fi ∈ S are jointly Gaussian variables and have the same distribution

for all translates of fi. Such a process is characterized by a mean functional E(G(f1)) = T (f1) and a covariance

functional E((G(f1)−T (f1))(G(f2)− T (f2))) = 〈f1, Rf2〉 for some operators T : S → S and R : S → S, where

〈f1, f2〉 =
∫∞
−∞ f1(t)f2(t)dt is the L2 inner product. Gaussian white noise N with power σ2 is such a process with

T = 0 and R = σ2I , where I is the identity operator. We refer to [25] for more details on these concepts and to

[18] for basic facts on complex Gaussian variables that are used below.

Theorem II.4. Let f ∈ Aε,d and suppose we have a corresponding ε, h, ψ, ∆ and Mk as given in Thm II.1

and II.2, with the additional assumptions that ψ ∈ S and |〈ψ,ψ′〉| < ‖ψ‖L2‖ψ′‖L2 . Let g = f + N , where N is

Gaussian white noise with spectral density ε2+p for some p > 0. Then the following statements hold for each k:

1) Assume a ∈ [M−1
k ,Mk]. For each point (a, b) ∈ Zk with |Wf (a, b)| > ε̃, there are constants E1 and C2’
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such that with probability 1− e−E1ε−p ,

|ωg(a, b)− φ′k(b)| ≤ C ′2ε̃.

If (a, b) 6∈ Zk for any k, then with probability 1− e−E2ε−p for some constant E2, |Wg(a, b)| ≤ ε̃+ 1
2ε.

2) There is a constant C ′3 such that with probability 1− e−E1ε−p , we have for all b ∈ R that∣∣∣∣∣∣∣limδ→0

 1

Rψ

∫
{η:|η−φ′k(b)|≤C′2ε̃}

Sδ,Mk

g,M
1/2
k ε+ε̃

(b, η)dη

−Ak(b)e2πiφk(b)

∣∣∣∣∣∣∣ ≤ C ′3ε̃.
Proof: The CWT of g, Wg(a, b), is understood as the Gaussian variable Wf (a, b) +N(ψa,b), where ψa,b(x) =

a−1/2ψ
(
x−b
a

)
. We have E(N(ψa,b)) = 0,

E(N(ψa,b)N(ψa,b)) =
ε2+p

a

∫ ∞
−∞

ψ
(x
a

)
ψ
(x
a

)
dx = ε2+p 〈ψ,ψ〉 = ε2+p‖ψ‖2L2 ,

and since supp(ψ̂) is positive,

E(N(ψa,b)
2) = ε2+p

〈
ψ,ψ

〉
= ε2+p

∫ ∞
−∞

ψ̂(ξ)ψ̂(−ξ)dξ = 0.

Similarly, ∂bWg(a, b) is the random variable ∂bWf (a, b) +N(ψ′a,b), where ψ′a,b(x) = a−3/2ψ′
(
x−b
a

)
. By the same

arguments as before and noting that supp(ψ̂′) ⊂ supp(ψ̂), we obtain the formulas:

E(N(ψ′a,b)) = E(N(ψ′a,b)
2) = E(N(ψa,b)N(ψ′a,b)) = 0

E(N(ψ′a,b)N(ψ′a,b)) = ε2+pa−2
∥∥ψ′∥∥2

L2

E(N(ψa,b)N(ψ′a,b)) = ε2+pa−1
〈
ψ,ψ′

〉
.

This shows that the Gaussian variables N(ψa,b) and (N(ψa,b), N(ψ′a,b)) ∈ C2 have zero pseudo-covariance matrices,

so they are circularly symmetric. If we define the matrix

V =

 ‖ψ‖2L2 a−1 〈ψ,ψ′〉

a−1 〈ψ′, ψ〉 a−2 ‖ψ′‖2L2

 ,

then the distribution of (N(ψa,b), N(ψ′a,b)) is given by

e−
1

ε2+p
(w,z)·V −1(w,z)

π2ε4+2p detV
dwdz.

Since V is invertible and self-adjoint, we can write V −1 = U∗DU , where D is diagonal and U is unitary. We have

D11D22 = det(V −1) = det(V )−1 and D11 +D22 = trace(V −1) = (‖ψ‖2L2 + a−2 ‖ψ′‖2L2) det(V )−1.
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For a point (a, b), we now define the events G1 = {|N(ψa,b)| < ε
2}, G2 = {|N(ψ′a,b)| <

ε
2} and Hk = {|ωg(a, b)−

φ′k(b)| ≤ C ′2ε̃} for each k. We want to estimate P (G1) and P (G1 ∩G2). Using the above calculations and taking

E2 = 1
4‖ψ‖

−2
L2 , we find that

P (G1) =
1

πε2+p‖ψ‖2L2

∫
|z|< ε

2

e−
|z|2

ε2+p
‖ψ‖−2

L2dz

=
2

ε2+p‖ψ‖2L2

∫ ε/2

0
re−

r2

ε2+p
‖ψ‖−2

L2dr

= 2

∫ (4εp‖ψ‖2
L2 )−1/2

0
re−r

2

dr

= 1− e−E2ε−p .

Let E1 = mina∈[M−1
k ,Mk]

1
8 (D11 +D22) > 0. We note that any rotated polydisk of radius r in (w, z) ∈ C2

contains a smaller polydisk of radius 2−1/2r that is aligned with the w and z planes, and use the transformation

(w′, z′) = U(w, z) to estimate

P (G1 ∩G2) =

∫
{|w|< ε

2
,|z|< ε

2
}

e−
1

ε2+p
(w,z)·V −1(w,z)

π2ε4+2p detV
dwdz

=

∫
{|(0,1)·U∗(w′,z′)|< ε

2
,|(1,0)·U∗(w′,z′)|< ε

2
}

e−
1

ε2+p
(D11|w′|2+D22|z′|2)

π2ε4+2p detV
dw′dz′

≥
∫
{|w′|2+|z′|2< ε2

4
}

e−
1

ε2+p
(D11|w′|2+D22|z′|2)

π2ε4+2p detV
dw′dz′

≥
∫
{|z′|<2−3/2ε,|w′|<2−3/2ε}

e−
1

ε2+p
(D11|w′|2+D22|z′|2)

π2ε4+2p detV
dw′dz′

=
4

D11D22 detV

∫ (8εpD−1
22 )−1/2

0

∫ (8εpD−1
11 )−1/2

0
re−r

2

se−s
2

drds

=
(

1− e−
1

8
ε−pD11

)(
1− e−

1

8
ε−pD22

)
> 1− e−E1ε−p .

Now let C ′2 = 2M
1/2
k ‖f‖L∞ ‖ψ′‖L1 + 3. If (a, b) 6∈ Zk for any k, then Theorem II.1 shows that G1 implies

|Wg(a, b)| < ε̃ + 1
2ε. Conversely, if (a, b) ∈ Zk for some k, we follow the same arguments as in Theorem II.2 to

find that

P (Hk) ≥P (Hk|G1 ∩G2)P (G1 ∩G2)

≥P
(

1

|Wg(a, b)|

∣∣∣∣∂bWf (a, b)

Wf (a, b)
(Wg(a, b)−Wf (a, b))− (∂bWg(a, b)− ∂bWf (a, b))

∣∣∣∣
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+ ε̃ ≤ C ′2ε̃
∣∣∣∣G1 ∩G2

)
P (G1 ∩G2)

≥P

(
1

ε̃− 1
2ε

(∣∣∣∣∂bWf (a, b)

Wf (a, b)

∣∣∣∣ ε+ ε

)
+ ε̃ ≤ C ′2ε̃

)
P (G1 ∩G2)

≥P
(

2M
1/2
k ‖f‖L∞

∥∥ψ′∥∥
L1 + 3 ≤ C ′2

)
P (G1 ∩G2)

=P (G1 ∩G2) .

The second statement in Theorem II.4 can be shown in an analogous way. Let C ′3 = 2M
1/2
k ((M

1/2
k +1)ε̃2 +1)+C1

and recall the definition (8). We fix k and use the above result to estimate

P

(∣∣∣∣limδ→0

∫
|η−φ′k(b)|≤C′2ε̃S

δ,Mk

g,ε̃− 1

2
ε
(b, η)dη −Ak(b)eiφk(b)

∣∣∣∣ < C ′3ε̃

)
≥P
( ∣∣∣∣limδ→0

∫
|η−φ′k(b)|≤ε̃S

δ,Mk

f,ε̃ (b, η)dη − lim
δ→0

∫
|η−φ′k(b)|≤C′2ε̃S

δ,Mk

g,ε̃− 1

2
ε
(b, η)dη

∣∣∣∣+
C1ε̃ < C ′3ε̃

∣∣∣∣Hk ∩G1 ∩G2

)
P (Hk ∩G1 ∩G2)

=P

( ∣∣∣∣∣
∫

D(b,g,ε̃− 1

2
ε,C′2ε̃,Mk)

a−3/2N(ψa,b)da+

∫
D(b,f,ε̃,ε̃,Mk)\D(b,g,ε̃− 1

2
ε,C′2ε̃,Mk)

a−3/2Wf (a, b)da

∣∣∣∣∣+
C1ε̃ < C ′3ε̃

∣∣∣∣Hk ∩G1 ∩G2

)
P (Hk ∩G1 ∩G2)

≥P

(∫ Mk

1/Mk

a−3/2 ε

2
da+

∫ Mk

1/Mk

a−3/2(M
1/2
k ε+ ε̃+

ε

2
)da+ C1ε̃ < C ′3ε̃

∣∣∣∣Hk ∩G1 ∩G2

)
P (Hk ∩G1 ∩G2)

=P

(
2(M

1/2
k −M−1/2

k )((M
1/2
k + 1)ε̃2 + 1) + C1 < C ′3

∣∣∣∣Hk ∩G1 ∩G2

)
P (Hk|G1 ∩G2)P (G1 ∩G2)

=P (G1 ∩G2),

which completes the proof.

Note that this argument can be repeated for more general Gaussian processes such as “1/f” noise. In this case,

the covariances will change (to e.g. E(N(ψa,b)N(ψa,b)) = ε2+p 〈ψ,Rψ〉), but the pseudo-covariances will still be

zero by the translation-invariance of the operator R, and the rest of the argument will be identical.

III. IMPLEMENTATION OVERVIEW

We now describe the Synchrosqueezing transform in a discretized form that is suitable for efficient numerical

implementation. We also discuss several issues that arise in this process and how various parameters are to be

chosen in practice. We are given a vector f̃ ∈ Rn, n = 2L+1, where L is a nonnegative integer. Its elements,

f̃m,m = 0, . . . , n− 1, correspond to a uniform discretization of f(t) taken at the time points tm = t0 +m∆t. To

prevent boundary effects, we pad f̃ on both sides (using, e.g., reflecting boundary conditions). Figure 1 shows a
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graphical example of each step of the procedure outlined in this section.

Fig. 1. Synchrosqueezing example for f(t) = (1+0.6 cos(2t)) cos(4πt+1.2t2) and additive noise e(t) ∼ N (0, 0.52). Panels in clockwise
order: a) f(t) and f(t) + e(t) sampled, n = 1024 points. b) CWT of f , |Wf |. c) Phase transform ωf . d) Synchrosqueezing transform |Tf |;
with γ = 10−5 (see §III-E).

A. DWT of sampled signal: W̃f̃

We first choose an appropriate mother wavelet ψ. We pick ψ such that its Fourier transform ψ̂(ξ) (normalized

as in Theorem II.1) is concentrated in absolute value around some positive frequency ξ = ω0, and is small and

rapidly decaying elsewhere (i.e. lim|t|→∞ P (t)ψ(t) = 0 for all polynomials P ). Many standard mother wavelets

satisfy these properties, and we compare several examples in §IV-D.

The DWT samples the CWT Wf at the locations (aj , tm), where aj = 2j/nv∆t, j = 1, . . . , Lnv, and the ”voice

number” nv [19] is a user-defined parameter that controls the number of scales we work with (we have found that

nv = 32 works well in practice). The DWT of f̃ can be calculated in O(nvn log2
2 n) operations using the FFT. We

outline the steps below.

First note that Wf (a, ·) = a−1/2ψ(− ·a) ? f , where ? denotes the convolution. In the frequency domain, this

relationship becomes Ŵf (a, ξ) = a1/2f̂(ξ)ψ̂(aξ). We use this to calculate the DWT, W̃f̃ (aj , tm). Let Fn (F−1
n ) be

the standard (inverse) circular Discrete Fourier Transform. Then

W̃f̃ (aj , ·) = F−1
n

(
(Fnf̃)� ψ̂j

)
. (12)
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Here � denotes elementwise multiplication and ψ̂j is an n-length vector with (ψ̂j)m = a
1/2
j ψ̂(ajξm); ξm are

samples in the unit frequency interval: ξm = 2πm/n, m = 0, . . . , n− 1.

B. The phase transform: ω̃f̃

The next step is to calculate the phase transform frequency estimate (2). We first require a slight modification

of the definition (2),

ωf (a, b) =
1

2π
Im
(
(Wf (a, b))−1∂bWf (a, b)

)
. (13)

In theory Eqs. (13) and (2) are equivalent, and in practice (13) is a convenient way to obtain a real-valued frequency

from (2). We denote the discretization of ωf by ω̃f̃ .

In practice, signals have noise and other artifacts due to, e.g., sampling errors, and computing the phase of Wf is

unstable when |Wf | ≈ 0. Therefore, we choose a hard threshold parameter γ > 0 and disregard any points where

|Wf | ≤ γ . The exact choice of γ is discussed in Sec. III-E. We use this to define the numerical support of W̃f̃ ,

on which ωf can be estimated:

S̃γ
f̃

(m) =
{
j :
∣∣∣W̃f̃ (aj , tm)

∣∣∣ > γ
}

, for m = 0, . . . , n− 1.

The derivative in (13) can be calculated by taking finite differences of W̃f̃ with respect to m, but Fourier

transforms provide a more accurate alternative. Using the property ∂̂bWf (a, ξ) = 2πiξŴf (a, ξ), we estimate the

phase transform, for j ∈ S̃γ
f̃

(m), as

ω̃f̃ (aj , tm) = 1
2π Im

((
W̃f̃ (aj , tm)

)−1
∂bW̃f̃ (aj , tm)

)
,

with the derivative of Wf estimated via (e.g., [39])

∂bW̃f̃ (aj , ·) = F−1
n

(
(Fnf̃)� ∂̂ψj

)
,

where (∂̂ψj)m = 2πia
1/2
j ξmψ̂(ajξm)/∆t for m = 0, . . . , n− 1.

Note that the normalization of ω̃ corresponds to a dominant, constant frequency of α when f(t) = cos(2παt).

This allows us to transition from the time-scale plane to a time-frequency plane according to the reassignment map

(a, b)→ (ω(a, b), b).

C. Synchrosqueezing in the time-frequency plane: Tf (ω, b)

We now compute the Synchrosqueezing transform using the reassigned time-frequency plane. Suppose we have

some “frequency divisions” {wl}∞l=0 with w0 > 0 and wl+1 > wl for all l. Let the frequency bin Wl be given by

{w′ ∈ R : |w′ − wl| < |w′ − wl′ | ∀l′ 6= l}, or in other words, the set of points closer to wl than any other wl′ . We
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define the discrete-frequency Wavelet Synchrosqueezing transform of f by

Tf (wl, b) =

∫
{a:ωf (a,b)∈Wl,|Wf (a,b)|>γ}

Wf (a, b)a−3/2da. (14)

This is essentially the limiting case of the definition (3) as δ → 0 (note the argument in (9) and see also [12, p.

5-6]), but with the frequency variable η ∈ R replaced by the discrete intervals Wl. Note that the discretization

W̃f̃ is given with respect to na = Lnv log-scale samples of the scale a, so we correspondingly discretize (14)

over a logarithmic scale in a. The transformation a(z) = 2z/nv , da(z) = a log 2
nv
dz, leads to the modified integrand

Wf (a, b)a−1/2 log 2
nv
dz in (14).

To choose the frequency divisions wl, note that the time step ∆t limits the range of frequencies that can be

estimated. One form of the Nyquist sampling theorem shows that the maximum frequency is w = wna−1 = 1
2∆t .

Since f is discretized over an interval of length n∆t, the fundamental (minimum) frequency is w = w0 = 1
n∆t .

Combining these bounds on a logarithmic scale, we get the divisions wl = 2l∆ww, l = 0, . . . , na − 1, where

∆w = 1
na−1 log2(n/2).

We can now calculate a fully discretized estimate of (14), denoted by T̃f̃ . Since we have already tabulated ω̃f̃

and ω̃f̃ (aj , tm) lands in at most one frequency bin Wl, the integral in (14) can be computed efficiently by finding

the associated Wl for each (aj , tm) and adding it to the appropriate sum. This results in O(nan) computations for

the entire Synchrosqueezed plane T̃f̃ . We summarize this approach in pseudocode in Alg. 1.

Algorithm 1 Fast calculation of T̃f̃ for fixed m

for l = 0 to na − 1 do {Initialize T̃ for this m}
T̃f̃ (wl, tm)← 0

end for
for all j ∈ S̃γ

f̃
(m) do {Calculate (14)}

{Find frequency bin via wl = 2l∆ww, and ω̃f̃ ∈ Wl}
l← ROUND

[
1

∆w log2

(
ω̃f̃ (aj ,bm)

w

)]
if l ∈ [0, na − 1] then
{Add normalized term to appropriate integral; ∆z = 1}
T̃f̃ (wl, tm)← T̃f̃ (wl, tm) + log 2

nv
W̃f̃ (aj , tm)a

−1/2
j

end if
end for

D. Component reconstruction

We can finally recover each component fk from T̃f̃ by inverting the CWT (integrating) over the frequencies wl

that correspond to the kth component, an approach similar to filtering on a conventional TF plot. Let l ∈ Lk(tm)

be the indices of a small frequency band around the curve of kth component in the phase transform space (based

on the results of Thm. II.2 and Thm. II.4 parts 2). These frequencies can be selected by hand or estimated via a
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standard least-squares ridge extraction method [8], as done in the Synchrosqueezing Toolbox. Then, using the fact

that fk is real, we have

fk(tm) = 2R−1
ψ Re

 ∑
l∈Lk(tm)

T̃f̃ (wl, tm)

, (15)

where Rψ is the normalization constant from Theorem (II.1).

E. Selecting the threshold γ

The hard wavelet threshold γ effectively decides the lowest CWT magnitude at which ω is deemed trustworthy.

In an ideal setting wherein the signal is not corrupted by noise, this threshold can be set based on the machine

epsilon (we suggest 10−8 for double precision floating point systems). In practice, γ can be seen as a hard threshold

on the wavelet representation (shrinking small magnitude coefficients to 0), and its value determines the level of

filtering.

In [15], a nearly minimax optimal procedure was proposed for denoising sufficiently smooth signals corrupted by

additive white noise. This algorithm consists of soft- or hard-thresholding the wavelet coefficients of the corrupted

signal, followed by inversion of the filtered wavelet representation. In [14], this estimator was also shown to be

nearly optimal in terms of root mean square error. The asymptotically optimal threshold is
√

2 log n · σ, where

n is the signal length and σ2 is the noise power. Following [15], the noise power can be estimated from the

Median Absolute Deviation (MAD) of the finest level wavelet coefficients. This is the threshold we suggest and

use throughout our simulations:

γ = 1.4826
√

2 log n ·MAD(|W̃f̃ |1:nv)

where 1.4826 is the multiplicative factor relating the MAD of a Gaussian distribution to its standard deviation, and

|W̃f̃ |1:nv are the wavelet coefficient magnitudes at the nv finest scales (the first octave).

IV. NUMERICAL SIMULATIONS

In this section, we provide several numerical examples that illustrate the ideas in Sec. II and III and show how

Synchrosqueezing compares to a variety of other time-frequency transforms in current use. The MATLAB scripts

used to generate the figures for these examples are available at [7].

A. Comparison of Synchrosqueezing with the CWT and STFT

We first compare Synchrosqueezing to the continuous wavelet transform (CWT) and the short-time Fourier

transform (STFT) [31]. We show its superior precision, in both time and frequency, at identifying the components
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of complicated oscillatory signals. We also show its ability to reconstruct (via filtering) individual components from

curves in the time-frequency plane.

Fig. 2. Comparison of Synchrosqueezing with the STFT and CWT. (a) Synthetic signal s(t) (bold), corrupted with noise (dashed), shown
for t ∈ [2, 8]. (b) STFT of signal s(t). (c) CWT of signal s(t). (d) Synchrosqueezing plot Ts(ω, t).

In Fig. 2 we consider a signal s(t) = s1(t) + s2(t) + s3(t) +N(t) defined on t ∈ [0, 10] that contains different

kinds of time-varying AM and FM modulation. It is composed of the following components:

s1(t) = (1 + 0.2 cos(t)) cos(2π(2t+ 0.3 cos(t))),

s2(t) = (1 + 0.3 cos(2t))e−t/15 cos(2π(2.4t+ 0.5t1.2 + 0.3 sin(t)))

s3(t) = cos(2π(5.3t+ 0.2t1.3)).

The signal is discretized to n = 2048 points and corrupted by additive Gaussian white noise N(t) with noise power

σ2 = 2.4, leading to an SNR of −2.6 dB.

To make the comparison consistent (as the γ threshold in Synchrosqueezing has a denoising effect), we first

denoise the signal using the Wavelet hard-thresholding methodology of §III-E. We then feed this denoised signal to

the STFT, CWT, and Synchrosqueezing transforms. We use the shifted bump wavelet (see §IV-D) and nv = 32 for

both the CWT and Synchrosqueezing transforms, and a Hamming window with length 400 and overlap of length
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399 for the STFT. These STFT parameters are selected to have a representation visually balanced between time

and frequency resolution [31].

The component s3 is close to a Fourier harmonic and is clearly identified in the Synchrosqueezing plot Ts (Fig.

2(d)) and the STFT plot (Fig. 2(b)), though the frequency estimate is more precise in Ts. The other two components

have time-varying instantaneous frequencies and can be clearly distinguished in the Synchrosqueezing plot, while

there is much more smearing and distortion in them in the STFT and CWT. The temporal resolution of the CWT

and STFT is also significantly lower than for Synchrosqueezing due to the selected parameters. A shorter time

window or wavelet will provide higher temporal resolution, but lower frequency resolution and more smearing

between the three components.

Fig. 3. Reconstruction of the component s2 on [2, 8] performed by inverting Synchrosqueezing, CWT and STFT, shown as dotted curves.
The original component is shown in solid curves for reference.

Fig. 3 shows the component s2 reconstructed from the TF plots in Fig. 2 by inverting each transform in a small

band around the curve of s2. All three methods provide comparable results and pick up the component reasonably

accurately, although the AM behavior around t ∈ [5, 7] is slightly smothered out as a result of the noise.
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B. Comparison of Synchrosqueezing with Reassignment Techniques

We next compare the analysis part of Synchrosqueezing to two of the most common time-frequency reassignment

(TFR) methods, based on the spectrogram and the Wigner-Ville distribution (see [16], ch. 4 for details). We apply

these techniques to s(t), the signal from the last example, for t ∈ [2, 8] and with the noise increased to σ2 = 5

(−5.8 dB SNR). The results are shown in Fig. 4.

Fig. 4. (a) Synchrosqueezing T̃f̃ of f̃ . (b) Reassigned spectrogram / STFT of f̃ (RSP). (c) Reassigned smoothed pseudo-WVD of f̃
(RWVD).

Synchrosqueezing can be understood as a variant of the standard TFR methods. In TFR methods, the directional

reassignment vector is computed in both time and frequency from the magnitude of the STFT or WVD, which is

then used to remap the energies in the TF plane of a signal. In contrast, the Synchrosqueezing transform can be

thought of as a reassignment vector only in the frequency direction. The fact that there are no time shifts in the TF

plane is what allows the reconstruction of the signal to be possible. We note that in Fig. 4, the Synchrosqueezing
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TF plot contains fewer spurious components than the other TFR plots. The other TFR methods exhibit additional

clutter in the TF plane caused by the noise, and the reassigned WVD also contains traces of an extra curve between

the second and third components, a result of the quadratic cross-terms that are characteristic of the WVD [16].

C. Nonuniform Samples and Spline Fitting

We now demonstrate how Synchrosqueezing analysis and extraction works for a three-component signal that has

been irregularly sampled. For t ∈ [2, 8], let

f(t) = (1 + 0.5 cos(t)) cos(4πt) (16)

+ 2e−0.1t cos(2π(3t+ 0.25 sin(1.4t)))

+ (1 + 0.5 cos(2.5t)) cos(2π(5t+ 2t1.3)),

and let the sampling times be perturbations of uniformly spaced times having the form t′m = ∆t1m + ∆t2um,

where {um} is sampled from the uniform distribution on [0, 1]. We take ∆t1 = 11/300 and ∆t2 = 11/310, which

leads to approximately 165 samples on the interval [2, 8] and an average sampling rate of 27.2, or about three

times the maximum instantaneous frequency of 9.85. As indicated in Cor. II.3, we account for the nonuniform

sample spacing by fitting a cubic spline through (t′m, f(t′m)) to get the interpolant fs(t), discretized on the finer

grid tm = m∆t with ∆t = 10/1024 and m = 0, . . . , 1023. The resulting vector, f̃s, is a discretization of the

original signal plus a spline error term e(t).

Fig. 5(a-e) shows the Synchrosqueezing TF plot f̃s and the three reconstructed components. The spline interpolant

approximates the original signal closely, except for a few oscillations for t > 7.3 where the highest frequencies of f

occur. The Synchrosqueezing results are largely unaffected by the errors and have no spurious spectral information

in the TF plot. The effect of the interpolation errors for t > 7.3 is also localized in time and only influences the

AM recovery of the third component, which contains the highest frequencies and is the most difficult to recover

as indicated by Thm. II.2.

D. Invariance to the underlying transform

As a final example, we show the effect of the underlying mother wavelet on the Synchrosqueezing transform.

As discussed in [12], Synchrosqueezing is largely invariant to the choice of the mother wavelet, and the main

differences one sees in practice are due to the wavelet’s relative concentrations in time and frequency (in particular,

how far away its frequency content is from zero), as opposed to its precise shape.
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Fig. 5. (a) Nonuniform samples of f , with spline interpolant f̃s (solid), and original signal f (dashed). (b) Synchrosqueezing TF plane
T̃f̃s

. (c-e) Extracted components f̃∗
k for k = 1, 2, 3 (solid) compared to originals f̃k (dashed).

Fig. 6 shows the effect of Synchrosqueezing on the discretized spline signal f̃s from the last example, using

three different complex CWT mother wavelets. These wavelets are:

a. Morlet (shifted Gaussian)

ψ̂a(ξ) ∝ exp(−2π2(µ− ξ)2), ξ ∈ R

b. Complex Mexican Hat

ψ̂b(ξ) ∝ ξ2 exp(−2π2σ2ξ2), ξ > 0
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c. Shifted Bump

ψ̂d(ξ) ∝ exp
(
−(1− ((2πξ − µ)/σ)2)−1

)
,

ξ ∈ [σ(µ− 1), σ(µ+ 1)]

where for ψa we use µ = 1, for ψb we use σ = 1, and for ψc we use µ = 5 and σ = 1. These respectively

correspond to about ∆ = 0.5, 0.25 and 0.16 in Thm. II.1. We find that, as indicated by Thm. II.1, the most accurate

representation is given by the bump wavelet ψc, whose frequency support is the smallest and exactly (instead of

approximately) positive and finite.

Fig. 6. Wavelet and Synchrosqueezing transforms of f̃s. Columns (a-c) represent choice of mother wavelet ψa . . . ψc. Top row: |2ψ̂(4ξ)|.
Center row: |Wfs |. Bottom row: |Tfs |.
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V. ASPECTS OF THE MID-PLEISTOCENE TRANSITION

In this section, we apply Synchrosqueezing to analyze the characteristics of a calculated index of the incoming

solar radiation (insolation) and paleoclimate records of repeated transitions between glacial (cold) and interglacial

(warm) climates, i.e., ice age cycles, primarily during the Pleistocene epoch: from ≈ 1.8 Myr to ≈ 12 kyr before

the present. The analysis of time series is crucial for paleoclimate research becuase its empirical base consists of

a growing collection of long deposited records.

The Earth’s climate is a complex, multi-component, nonlinear system with significant stochastic elements [32].

The key external forcing field is the insolation at the top of the atmosphere (TOA). Local insolation has predomi-

nantly harmonic characteristics in time (diurnal cycle, annual cycle and Milanković orbital cycles) enriched by the

solar variability and time-varying orbital geometry. The response of the planetary climate, which varies at all time

scales [23], also depends on random perturbations (e.g., volcanism), nonstationary solid boundary conditions (e.g.,

plate tectonics and global ice distribution), internal variability and feedback (e.g., global carbon cycle). Various

paleoclimate records or proxies provide us with information about past climates beyond observational records. These

proxies are biogeochemical tracers, i.e. molecular or isotopic properties, imprinted into various types of deposits

(e.g., deep-sea sediment, ice cores, etc.), and they indirectly represent physical conditions (e.g. temperature) at the

time of deposition. We focus on climate variability during the last 2.5 Myr (that also includes the late Pliocene and

the Holocene) as recorded by δ18O in foraminiferal shells at the bottom of the ocean (benthic forams). Benthic

δ18O is the deviation of the ratio of 18O to 16O in sea water with respect to the present-day standard, as imprinted

in benthic forams during their growth. It increases with glaciation during cold climates because 16O evaporates

more readily and accumulates in ice sheets leaving surface water enriched with 18O. Thus, benthic δ18O can be

interpreted as a proxy for either global ice volume (primarily high-latitude ice sheets) or the temperature of the

deep-ocean water formed at the high-latitude surface mixed layer [26].

We first examine a calculated element of the daily TOA solar forcing field. Fig. 7(a) shows fSF , the mid-June

insolation at 65oN at 1 kyr intervals [5]. This TOA forcing index is successfully used to gain insight into the

timing of advances and retreats of ice sheets in the Northern Hemisphere during this period, based on the classic

Milanković hypothesis that summer solstice insolation at 65oN paces ice age cycles (e.g., [4], [20]). The CWT and

Synchrosqueezing spectral decompositions (using the shifted bump mother wavelet as in the rest of the paper), in

Fig. 8(a) and Fig. 8(e) respectively, show the key time-varying oscillatory components of fSF . Both panels clearly

reveal the presence of strong precession cycles (at periodicities τ=19 kyr and 23 kyr), obliquity cycles (primary at

41 kyr and secondary at 54 kyr), and very weak eccentricity cycles (primary periodicities at 95 kyr and 124 kyr,
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Fig. 7. (a) Calculated June 21 TOA insolation flux at 65oN : fSF . Climate response as recorded by benthic forams δ18O (b) in the DSDP607
core fCR1, (c) in the LR05 stack fCR2, and (d) in the H07 stack fCR3.

and secondary at 400 kyr). However, the Synchrosqueezing spectral structure is far more concentrated along the

frequency (periodicity) direction than the CWT.

We next analyze the North Altantic and global climate response during the last 2.5 Myr as deposited in benthic

δ18O in long sediments cores (in which deeper layers contain forams settled further back in time). Fig. 7(b) shows

fCR1: benthic δ18O, sampled at irregular time intervals from a single core, DSDP Site 607, in the North Atlantic

[36]. Fig. 7(c) shows fCR2: the orbitally tuned benthic δ18O stack of [29] (LR05). It is an average of 57 globally

distributed records placed on a common age model using a graphic correlation technique [28]. Fig. 7(d) shows

fCR3: the benthic δ18O stack of [22] (H07) calculated from 14 cores (mostly in the Northern Hemisphere) using
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the extended depth-derived age model free from orbital tuning [24]. The δ18O records included in these stacks

vary over different ranges primarily due to different ambient temperatures at different depths of the ocean floor at

core drill sites. Also, prior to combining the cores in the H07 stack, the record mean between 0.7 Myr ago and the

present was subtracted from each δ18O record, so we have different vertical ranges in Fig. 7(b) through Fig. 7(d).

All δ18O records are spline interpolated to 1 kyr intervals prior to the spectral analysis.

The Synchrosqueezing decomposition in the right panels in Fig. 8 is a far more precise time-frequency rep-

resentation of signals from DSDP607 and the stacks than the CWT decomposition in left panels in Fig. 8 or

an STFT analysis of the H07 stack [22, Fig. 4]. Noise due to local characteristics and measurement errors of

each core is reduced when we shift the spectral analysis from DSDP607 to the stacks, and this is particularly

visible in the finer scales and higher frequencies. In addition, the stacks in Fig. 8(g) and Fig. 8(h) show far less

stochasticity above the obliquity band compared to DSDP607 in Fig. 8(f). This enables the 23 kyr precession cycle

to appear mostly coherent over the last 1 Myr, especially in comparison to the CWT decompositions. Thanks to

the stability of Synchrosqueezing, the spectral differences below the obliquity band (lower frequencies) are less

pronounced betweeen the stacks and DSDP607. Overall, the stacks show less noisy time-periodicity evolution than

DSDP607 or any other single core possibly could and the Synchrosqueezing decompositions are much sharper than

the corresponding CWT decompositions. The time average of the Synchrosqueezing magnitudes (normalized by

1/Rψ) is also directly comparable with the Fourier spectrum, but delineates the harmonic components much more

clearly (not shown).

During the last 2.5 Myr, the Earth experienced a gradual decrease in the global long-term temperature and CO2

concentration, and an increase in mean global ice volume accompanied with glacial-interglacial oscillations that have

intensified towards the present (shown in Fig. 7(b) through Fig. 7(d)). The mid-Pleistocene transition, occurring

abruptly or gradually sometime between 1.2 Myr and 0.6 Myr ago, was the shift from 41 kyr-dominated glacial

cycles to 100 kyr-dominated glacial cycles recorded in deep-sea proxies (e.g., [11], [30], [35]). The cause of the

emergence of strong 100 kyr cycle in the late-Pleistocene climate and incoherency of the precession band prior to

about 1 Myr (evident in Fig. 8(g) and Fig. 8(h)) are still unresolved questions. Both types of spectral analyses of

selected δ18O records indicate that the climate system does not respond linearly to external solar forcing.

The Synchrosqueezing decomposition precisely reveals key modulated signals that rise above the stochastic

background. The gain (the ratio of the climate response amplitude to insolation forcing amplitude) at a given

frequency or period, is not constant due to the nonlinearity of the climate system. The 41 kyr obliquity cycle of
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the global climate response is present almost throughout the entire Pleistocene in Fig. 8(g) and Fig. 8(h). The

key for the mid-Plesitocene transition is the initiation of a lower frequency signal (≈ 70 kyr) about 1.2 Myr ago

that gradually evolves into the dominant 100 kyr component in the late Pleistocene (starting about 0.6 Myr ago).

Finding the exact cause for this transition in the dominant ice age periodicity is beyond the scope of our paper, but

the Synchrosqueezing analysis of the stacks shows that it is not a direct cause-and-effect response to eccentricity

variability (very minor variation of the total insolation).

The precision of the Synchrosqueezing decomposition allows us to achieve a more accurate inversion across any

limited frequency band of interest than the CWT spectrum. Inverting the Synchrosqueezing plot over the key orbital

periodicity bands (i.e. filtering) in Fig. 9 again emphasizes the nonlinear relation between the TOA insolation and

climate evolution. The top panels in Fig. 9, left to right, show rapidly diminishing contributions to the insolation

from precession to eccentricity. However, all of the panels below the top row in Fig. 9 show a moderately increasing

amplitude of variability, i.e., the inverse cascade of climate response from the precession to the eccentricity band

in the late-Pleistocene (after ≈ 0.6 Myr). On average, the obliquity band contains more power than the precession

band in DSDP607 and both stacks. Internal feedback mechanisms, most likely due to the long-term cooling of the

global climate, amplify the response of the eccentricity band after the early-Pleistocence (after ≈ 1.2 Myr). The

cross-band differences in Fig. 9 indicate that a superposition of precession cycles can modulate the climate response

in lower frequency bands, particularly in the eccentricity band, as the climate drifts into a progressively colder and

potentially more nonlinear state (e.g., [6], [33]).

The Synchrosqueezing analysis of the solar insolation index and benthic δ18O records makes a new contribution

in three important ways. First, it produces sharper spectral traces of a complex system’s evolution through the high-

dimensional climate state space than the CWT or STFT (compare with, e.g., [11, Fig. 2]). Second, it delineates the

effects of noise on specific frequency ranges when comparing a single core to a stack. Low frequency components

are mostly robust to noise induced by local climate variability, deposition processes and measurement techniques.

Third, Synchrosqueezing allows for a more accurate reconstruction of the signal components within frequency bands

of interest than the CWT or STFT. Questions about the key processes governing large-scale climate variability over

the last 2.5 Myr can be answered by using high-precision data analysis methods such as Synchrosqueezing, in

combination with a hierarchy of dynamical models at various levels of complexity that reproduce the key aspects

of the Pliocene-Pleistocene history. The resulting understanding of past climate epochs may benefit predictions of

the future climate. [37]
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VI. CONCLUSIONS AND FUTURE DIRECTIONS

Synchrosqueezing can be used to spectrally analyze and decompose a wide variety of signals with high precision

in time and frequency. An efficient implementation runs in O(nvn log2 n) time and is stable against errors in the

signals, both in theory and in practice. We have shown how it can be used to gain further insight into the climate

evolution of the past 2.5 million years.

The authors are also using the Synchrosqueezing transform to study additional topics in climate dynamics,

meteorology and oceanography (climate variability and change, and large-scale teleconnection), as well as topics

in ECG analysis (respiration and T-end detection, [9]). Synchrosqueezing is also being used by others to address

problems in the analysis of mechanical transmissions [27] and the design of automated trading systems [1].
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Fig. 8. The CWT time-scale decomposition of (a) the solar forcing index fSF , and the climate response in benthic δ18O of (b) the DSDP607
core fCR1, (c) the LR05 stack fCR2, and (d) the H07 stack fCR3. The Synchrosqueezing time-periodicity decomposition of (e) the solar
forcing index fSF , and the climate response in benthic δ18O of (f) the DSDP607 core fCR1, (g) the LR05 stack fCR2, and (h) the H07
stack fCR3.
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Fig. 9. Milanković orbital components extracted by inverting the Synchrosqueezing transforms of the insolation index fSF (a, e, and i),
and the climate response in benthic δ18O from the DSDP607 core fCR1 (b, f, and j), the LR05 stack fCR2 (c, g, and k) and the H07 stack
fCR3 (d, h, and l). The transforms are inverted over the precession band from 17 kyr to 25 kyr (left column), the obliquity band from 40 kyr
to 55 kyr (middle column), and the eccentricity band from 90 kyr to 130 kyr (right column).




