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Abstract. Identifying the key nodes to target in a socidivuek is an important
problem in several application areas, including disruption of terrorist net-
works and the crafting of effective immunizationaségies. One important is-
sue that has received limited attention is how daceting strategies are af-
fected by erroneous data about network structunes Faper describes simula-
tion experiments which investigate that issue.
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1 Introduction

One of the most important applications of socidivoek analysis is the key player
problem (Borgatti, 2003). Identifying the criticabdes in a network is often the first
step in understanding who to target in order tougitsa terrorist network or who to
immunize in order to halt the spread of an epidemle most critical issue in this
regard is determining how vulnerable the networlcstire is to the removal of nodes
and links.

The importance of network topology in determinihg tvulnerability of networks
to errors and attacks was first pointed out by Alle¢ al. (Albert, et al., 2000). They
studied two network models — an exponential netvemtt a scale-free network — and
observed how the characteristic path length andgitteeof the largest cluster changes
as nodes are removed. When nodes are removed rbndusnin the case of node
failure or errors, the exponential network becomese fragmented as errors increase
while the scale-free network is only minimally affed. This error tolerance in scale-
free networks is due to the fact that random naseowval is most likely to take out
nodes with small connectivity, thereby having a lsinapact on the network topolo-
gy. On the other hand, when node removal is dorgeliberately inflict damage by
deterministically removing the highest degree npdlesre is a drastically different
outcome. The scale-free network quickly becomegnfiented, while the exponential
network shows much more resistance to fragmentation

Subsequent research has extended our understasfdiogy complex networks re-
spond to attacks and failures. Holme et al. (Holetegl., 2002) considered a variety
of strategies for attacking both nodes and edghey TUsed betweenness centrality
values as well as node degree to select which nodesnove, and also varied when

©2012-The MITRE Corporation. All rights reserved.


mailto:booker@mitre.org

those values were calculated: either once in thimlimetwork as done by Albert et
al., or repeatedly as each node is removed. Greti#ll. (Crucitti, et al., 2003) exam-
ined scale-free graphs with high clustering praperand measured both global and
local aspects of the network response to an attaakos et al. (Gallos, et al., 2005)
studied situations where nodes are removed based pobability distribution that
depends on node degree, rather than a determisisditegy that removes the highest
degree nodes. Wu et al. (Wu, et al., 2007) provadéukeoretical analysis of intention-
al attacks in scale-free networks, focusing on ades involving incomplete infor-
mation.

One issue that has not been addressed in prevésesnch on network attacks is
the impact of erroneous information. In real apgimns, network data is likely to
include incomplete or mistaken data about the né¢wtyucture. This paper addresses
that issue by using simulation experiments to itigate the impact of errors on the
effectiveness of network attacks.

2 M ethodology

The simulation experiments used in this researafe wiuctured along the lines of
previous studies that examined the effects of nolsservations on the measurement
of properties of social networks (Kossinets, 20@)rgatti, et al., 2006). The exper-
imental procedure starts with a collection of ramtiogenerated synthetic graphs
which are assumed to be complete. These graphssesyrthe “true” networks to be
attacked. For each true network, observation erapesintroduced in a controlled
manner (nodes/edges are added/removed) to gereerateresponding “observed”
network.

In this study, we add an additional step to mo@éhork attacks. Two attack strat-
egies are considered: a random attack where nodesebected for removal random-
ly*: and, a targeted attack where nodes are seleoteteioval deterministically
based on centrality scores. The centrality scaed, a list of nodes to remove, are
computed in the observed network. Since we aredsted in the effects of the attack
on the true network, we do not execute the attackhe observed network or make
any measurements comparing properties in the tndeoaserved networks. Instead,
the list of targeted nodes is deleted from the tre®vork where the effect of the at-
tack is measured.

In more detall, to construct a true network we cedetopology (erdos-renyi (Erdos
& Renyi, 1959), scale-free (Barabési & Albert, 1998mall world (Watts & Strogatz,
1998), or scale-free communities (Lancichinetti &tnato, 2009)), a size (25, 50 or
100 nodes) and a density (0.01, 0.02, 0.05, 031,005). To construct a corresponding
observed network, we introduce exactly one of tgpes of error into a true network:
node deletion, node addition, edge deletion, amy edidition. Errors are introduced
randomly at a selected rate (0.0, 0.01, 0.05,@25, 0.5). Network attacks are mod-

1 Random node removals are sometimes viewed as rietemors” or “failures”, but since our
experiments involve observation errors, we willl ¢thése random attacks to avoid confu-
sion.
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eled by selecting an attack type (random or tadjete node removal rate (0.0, 0.01,

0.02, 0.03, 0.04, 0.05, 0.1, 0.3, 0.5, 0.7, 0.6) tetermines the attack intensity, and,
for targeted attacks, a centrality measure (dedvelyeenness, closeness, or eigen-
vector) (Borgatti, et al., 2006) for identifying weh nodes to remove.

3 Attack Vulnerability Experiments

For each combination of network topology, netwoidesnetwork density, error
type, error level, attack type, and node removtd vee generate 1,000 pairs of syn-
thetic networks. For each network pair, the obsnetwork is used to plan an attack
and the targeted nodes are removed from the triweorle The effect of the attack on
the true network is assessed by measuring theveelaize of the largest connected
component (Motter & Lai, 2002). This performancetnieels normalized with respect
to values in the true network before the attackjtdmgins with value 1.0 and de-
creases as the attack effectiveness increasesemwnder of this section discusses
the results of these experiments.

3.1 Attackson Error-Free Networks

A look at the error-free case, where the data abetwork nodes and edges is ac-
curate, shows responses to random attacks andddrgétacks that are consistent
with previously published resultfig. 1 compares attack effectiveness on networks
having 100 nodes and 5% density, using betweencessality to identify which
nodes to target for deletion. Targeted attacksmaueh more effective than random
attacks for fragmenting graphs of all types, thoudten the removal rates are small
there is little difference between the two attatlategies. As expected, the largest
advantage for targeted attacks is seen in scatere¢éworks. The difference in per-
formance between random and targeted attacks tpisacomes significant when
the attack removes at least 10% of the nodes. Xtepéon is small world networks,
where the high clustering seems to make these niedwoore resistant to both kinds
of attacks. We observed similar results when usiegree centrality and closeness
centrality to identify nodes to target for deletidigenvector centrality tends to pro-
vide a much smaller advantage for targeted attae&s random attacks.
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Comparison of Random and Targeted Attacks
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Fig. 1. Comparison of random and targeted attacks, ushgd®enness to select targeted nodes.
This graph, like all subsequent ones, includesr dracs which are almost always smaller than
the plot symbols

3.2  Attackson Networkswith Observation Errors

The experiments studying the impact of observatioors on the effectiveness of
network attacks also looked at graphs of size 1id 5% density and used between-
ness centrality to select targeted nodes. The éxgpemitcome was that observation
errors would reduce the effectiveness of attacks,the impact would resemble a
noise effect that increased as the amount of @émoveased. It turns out that the type
of error makes a significant difference in the itpan attack effectiveness, and the
impact does not always vary with the amount ofremdhe manner expected.

For random attacks, the connectivity in the graph ho bearing on which nodes
are selected for deletion. Consequently, edge iadd#rrors and edge deletion errors
have no impact on the effectiveness of random kdtadode addition errors have no
impact on random attacks either, but for a diffemason. Adding nodes leads to a
larger observed network, which makes key nodebertrue network less likely to be
selected at random for deletion. However, sincack#t are defined in terms of the
fraction of nodes removed, a larger observed nétvadso means more nodes are
selected for deletion and therefore the chancesleting any particular true node is
increased. The net result of these two opposirecseh pressures is that node addi-
tion errors do not noticeably impact the effectess of random attacks.
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Node deletion errors, on the other hand, have g neticeable impact on effec-
tiveness (se€ig. 2). The reason for this impact is that if a key nodes not appear
in the observed network, the attack has no chamadelete it. The higher the likeli-
hood that such an event occurs, the less effetttavattack can be.

Node Deletion Errors and Random Attacls
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Fig. 2. The effect of node deletion errors on randoncata

For targeted attacks, connectivity has a big imfageon the centrality values used
to select which nodes to remove. This means thge eddition errors and edge dele-
tion errors have a noticeable impact on targetedties (sed-ig. 3). As the amount of
edge error increases, there is a correspondingaseiin the effectiveness of targeted
attacks. When the amount of edge error is suffitydarge, the centrality values be-
come so inaccurate that the targeted attacks beaudistinguishable from random
attacks. As the fraction of nodes removed by tiechktgets large and the key nodes
are more certain to be targeted, the impact orclattffectiveness begins to look the
same regardless of the amount of edge error.

The effect of node errors on targeted attacks ishmifferent. As the amount of
node deletion error increases, there is a steadsedee in attack effectiveness as
shown inFig. 4. This degradation continues even as the fractiorodes removed by
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the attack gets large since, as noted earlier kfyanode does not appear in the ob-
served network then the attack cannot remdve it

Edge Addition Errors and Targeted Attacks
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Fig. 3. The effect of edge addition errors on targeteaci#

The effect of node addition errors is more compéida(sed-ig. 5). Node addition
error has the smallest impact on the accuracy ofraity values (Borgatti, et al.,
2006), so there is only a small change in attafécéfreness as the amount of error
increases. The nature of that impact appears thiavanother interaction between
two tendencies as noted for node addition errocssrandom attacks, but with a dif-
ferent dynamic. As the fraction of nodes removgdhe attack gets larger, the key
nodes in the true network are more likely to bduded in the top ranked observed
nodes. This will increase attack effectivenessyean, since the number of nodes
targeted for deletion will be greater than the namthosen in the error-free case,
effectively increasing the likelihood that key nedwill be targeted. Eventually,
though, the larger number of targeted observedswiléinclude a larger proportion
of erroneous nodes. Targeting these nodes is a&wésffort since they are not ele-
ments of the true network. This diversion of thaek focus from true nodes tends to
decrease attack effectiveness.

2 Note that the behavior does not converge to sdntettesembling a random attack, in stark
contrast to the behavior observed for edge erfidis.effectiveness is eventually worse than
a random attack.
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Node Deletion Errors and Targeted Attacks
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Fig. 4. The effect of node deletion errors on targeteaci#

4 Summary and Conclusions

Different kinds of observation errors have diffgrimpact on the effectiveness of
random and targeted attacks. In most cases, wieefrabtion of nodes targeted for
removal is small, the differences in the impacthaf various error types is minimal.
The one exception is node deletion errors. Thesgsecan have a significant impact
even in small scale attacks. The unavoidable fattat when a key node in the true
network is never observed, an attack cannot rerito@nsequently, node deletion is
the source of error that has the most disruptivaaich on the effectiveness of network
attacks.
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