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Abstract. Identifying the key nodes to target in a social network is an important 
problem in several application areas, including the disruption of terrorist net-
works and the crafting of effective immunization strategies. One important is-
sue that has received limited attention is how such targeting strategies are af-
fected by erroneous data about network structure, This paper describes simula-
tion experiments which investigate that issue. 
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1 Introduction 

One of the most important applications of social network analysis is the key player 
problem (Borgatti, 2003). Identifying the critical nodes in a network is often the first 
step in understanding who to target in order to disrupt a terrorist network or who to 
immunize in order to halt the spread of an epidemic. The most critical issue in this 
regard is determining how vulnerable the network structure is to the removal of nodes 
and links. 

The importance of network topology in determining the vulnerability of networks 
to errors and attacks was first pointed out by Albert et al. (Albert, et al., 2000). They 
studied two network models – an exponential network and a scale-free network – and 
observed how the characteristic path length and the size of the largest cluster changes 
as nodes are removed. When nodes are removed randomly, as in the case of node 
failure or errors, the exponential network becomes more fragmented as errors increase 
while the scale-free network is only minimally affected. This error tolerance in scale-
free networks is due to the fact that random node removal is most likely to take out 
nodes with small connectivity, thereby having a small impact on the network topolo-
gy. On the other hand, when node removal is done to deliberately inflict damage by 
deterministically removing the highest degree nodes, there is a drastically different 
outcome. The scale-free network quickly becomes fragmented, while the exponential 
network shows much more resistance to fragmentation. 

Subsequent research has extended our understanding of how complex networks re-
spond to attacks and failures. Holme et al. (Holme, et al., 2002) considered a variety 
of strategies for attacking both nodes and edges. They used betweenness centrality 
values as well as node degree to select which nodes to remove, and also varied when 
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those values were calculated: either once in the initial network as done by Albert et 
al., or repeatedly as each node is removed. Crucitti et al. (Crucitti, et al., 2003) exam-
ined scale-free graphs with high clustering properties and measured both global and 
local aspects of the network response to an attack. Gallos et al. (Gallos, et al., 2005) 
studied situations where nodes are removed based on a probability distribution that 
depends on node degree, rather than a deterministic strategy that removes the highest 
degree nodes. Wu et al. (Wu, et al., 2007) provided a theoretical analysis of intention-
al attacks in scale-free networks, focusing on scenarios involving incomplete infor-
mation. 

One issue that has not been addressed in previous research on network attacks is 
the impact of erroneous information. In real applications, network data is likely to 
include incomplete or mistaken data about the network structure. This paper addresses 
that issue by using simulation experiments to investigate the impact of errors on the 
effectiveness of network attacks. 

2 Methodology 

The simulation experiments used in this research were structured along the lines of 
previous studies that examined the effects of noisy observations on the measurement 
of properties of social networks (Kossinets, 2003) (Borgatti, et al., 2006). The exper-
imental procedure starts with a collection of randomly generated synthetic graphs 
which are assumed to be complete. These graphs represent the “true” networks to be 
attacked. For each true network, observation errors are introduced in a controlled 
manner (nodes/edges are added/removed) to generate a corresponding “observed” 
network.  

In this study, we add an additional step to model network attacks. Two attack strat-
egies are considered: a random attack where nodes are selected for removal random-
ly1; and, a targeted attack where nodes are selected for removal deterministically 
based on centrality scores. The centrality scores, and a list of nodes to remove, are 
computed in the observed network. Since we are interested in the effects of the attack 
on the true network, we do not execute the attack on the observed network or make 
any measurements comparing properties in the true and observed networks. Instead, 
the list of targeted nodes is deleted from the true network where the effect of the at-
tack is measured. 

In more detail, to construct a true network we select a topology (erdos-renyi (Erdos 
& Renyi, 1959), scale-free (Barabási & Albert, 1999), small world (Watts & Strogatz, 
1998), or scale-free communities (Lancichinetti & Fortunato, 2009)), a size (25, 50 or 
100 nodes) and a density (0.01, 0.02, 0.05, 0.1, 0.3, 0.5). To construct a corresponding 
observed network, we introduce exactly one of four types of error into a true network: 
node deletion, node addition, edge deletion, and edge addition. Errors are introduced 
randomly at a selected rate (0.0, 0.01, 0.05, 0.1, 0.25, 0.5). Network attacks are mod-
                                                           
1 Random node removals are sometimes viewed as network “errors” or “failures”, but since our 

experiments involve observation errors, we will call these random attacks to avoid confu-
sion. 
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eled by selecting an attack type (random or targeted), a node removal rate (0.0, 0.01, 
0.02, 0.03, 0.04, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9) that determines the attack intensity, and, 
for targeted attacks, a centrality measure (degree, betweenness, closeness, or eigen-
vector) (Borgatti, et al., 2006) for identifying which nodes to remove.   

3 Attack Vulnerability Experiments 

For each combination of network topology, network size, network density, error 
type, error level, attack type, and node removal rate we generate 1,000 pairs of syn-
thetic networks. For each network pair, the observed network is used to plan an attack 
and the targeted nodes are removed from the true network. The effect of the attack on 
the true network is assessed by measuring the relative size of the largest connected 
component (Motter & Lai, 2002). This performance metric is normalized with respect 
to values in the true network before the attack, so it begins with value 1.0 and de-
creases as the attack effectiveness increases. The remainder of this section discusses 
the results of these experiments. 

3.1 Attacks on Error-Free Networks 

A look at the error-free case, where the data about network nodes and edges is ac-
curate, shows responses to random attacks and targeted attacks that are consistent 
with previously published results. Fig. 1 compares attack effectiveness on networks 
having 100 nodes and 5% density, using betweenness centrality to identify which 
nodes to target for deletion. Targeted attacks are much more effective than random 
attacks for fragmenting graphs of all types, though when the removal rates are small 
there is little difference between the two attack strategies. As expected, the largest 
advantage for targeted attacks is seen in scale-free networks. The difference in per-
formance between random and targeted attacks typically becomes significant when 
the attack removes at least 10% of the nodes. The exception is small world networks, 
where the high clustering seems to make these networks more resistant to both kinds 
of attacks.  We observed similar results when using degree centrality and closeness 
centrality to identify nodes to target for deletion. Eigenvector centrality tends to pro-
vide a much smaller advantage for targeted attacks over random attacks. 
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Fig. 1. Comparison of random and targeted attacks, using betweenness to select targeted nodes. 
This graph, like all subsequent ones, includes error bars which are almost always smaller than 

the plot symbols 

3.2 Attacks on Networks with Observation Errors 

The experiments studying the impact of observation errors on the effectiveness of 
network attacks also looked at graphs of size 100 with 5% density and used between-
ness centrality to select targeted nodes. The expected outcome was that observation 
errors would reduce the effectiveness of attacks, but the impact would resemble a 
noise effect that increased as the amount of error increased. It turns out that the type 
of error makes a significant difference in the impact on attack effectiveness, and the 
impact does not always vary with the amount of error in the manner expected. 

For random attacks, the connectivity in the graph has no bearing on which nodes 
are selected for deletion. Consequently, edge addition errors and edge deletion errors 
have no impact on the effectiveness of random attacks. Node addition errors have no 
impact on random attacks either, but for a different reason. Adding nodes leads to a 
larger observed network, which makes key nodes in the true network less likely to be 
selected at random for deletion. However, since attacks are defined in terms of the 
fraction of nodes removed, a larger observed network also means more nodes are 
selected for deletion and therefore the chance of selecting any particular true node is 
increased. The net result of these two opposing selection pressures is that node addi-
tion errors do not noticeably impact the effectiveness of random attacks. 
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Node deletion errors, on the other hand, have a very noticeable impact on effec-
tiveness (see Fig. 2). The reason for this impact is that if a key node does not appear 
in the observed network, the attack has no chance to delete it. The higher the likeli-
hood that such an event occurs, the less effective the attack can be. 

 

Fig. 2.  The effect of node deletion errors on random attacks 

For targeted attacks, connectivity has a big influence on the centrality values used 
to select which nodes to remove. This means that edge addition errors and edge dele-
tion errors have a noticeable impact on targeted attacks (see Fig. 3).  As the amount of 
edge error increases, there is a corresponding decrease in the effectiveness of targeted 
attacks. When the amount of edge error is sufficiently large, the centrality values be-
come so inaccurate that the targeted attacks become indistinguishable from random 
attacks. As the fraction of nodes removed by the attack gets large and the key nodes 
are more certain to be targeted, the impact on attack effectiveness begins to look the 
same regardless of the amount of edge error. 

The effect of node errors on targeted attacks is much different.  As the amount of 
node deletion error increases, there is a steady decrease in attack effectiveness as 
shown in Fig. 4. This degradation continues even as the fraction of nodes removed by 
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the attack gets large since, as noted earlier, if a key node does not appear in the ob-
served network then the attack cannot remove it2. 

 

 

Fig. 3. The effect of edge addition errors on targeted attacks 

The effect of node addition errors is more complicated (see Fig. 5). Node addition 
error has the smallest impact on the accuracy of centrality values (Borgatti, et al., 
2006), so there is only a small change in attack effectiveness as the amount of error 
increases. The nature of that impact appears to involve another interaction between 
two tendencies as noted for node addition errors and random attacks, but with a dif-
ferent dynamic.  As the fraction of nodes removed by the attack gets larger, the key 
nodes in the true network are more likely to be included in the top ranked observed 
nodes. This will increase attack effectiveness early on, since the number of nodes 
targeted for deletion will be greater than the number chosen in the error-free case, 
effectively increasing the likelihood that key nodes will be targeted. Eventually, 
though, the larger number of targeted observed nodes will include a larger proportion 
of erroneous nodes. Targeting these nodes is a waste of effort since they are not ele-
ments of the true network. This diversion of the attack focus from true nodes tends to 
decrease attack effectiveness. 

                                                           
2 Note that the behavior does not converge to something resembling a random attack, in stark 

contrast to the behavior observed for edge errors. The effectiveness is eventually worse than 
a random attack. 
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Fig. 4. The effect of node deletion errors on targeted attacks 

4 Summary and Conclusions 

Different kinds of observation errors have differing impact on the effectiveness of 
random and targeted attacks. In most cases, when the fraction of nodes targeted for 
removal is small, the differences in the impact of the various error types is minimal. 
The one exception is node deletion errors. These errors can have a significant impact 
even in small scale attacks. The unavoidable fact is that when a key node in the true 
network is never observed, an attack cannot remove it. Consequently, node deletion is 
the source of error that has the most disruptive impact on the effectiveness of network 
attacks. 
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Fig. 5. The effect of node addition errors on targeted attacks 
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