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Abstract

In an effort to secure the northern and southern United States borders, MITRE has been
tasked with developing Modeling and Simulation (M&S) tools that accurately capture the map-
ping between algorithm-level Measures of Performance (MOP) and system-level Measures of
Effectiveness (MOE) for current/future surveillance systems deployed by the the Customs and
Border Protection Office of Technology Innovations and Acquisitions (OTIA). This analysis is
part of a larger M&S undertaking. The focus is on two MOPs for magnetometer-based Unat-
tended Ground Sensors (UGS). UGS are placed near roads to detect passing vehicles and estimate
properties of the vehicle’s trajectory such as bearing and speed. The first MOP considered is the
probability of detection. We derive probabilities of detection for a network of sensors over an
arbitrary number of observation periods and explore how the probability of detection changes
when multiple sensors are employed. The performance of UGS is also evaluated based on the
level of variance in the estimation of trajectory parameters. We derive the Cramér-Rao bounds
for the variances of the estimated parameters in two cases: when no a priori information is
known and when the parameters are assumed to be Gaussian with known variances. Sample
results show that UGS perform significantly better in the latter case.
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1 Introduction

As part of the sensor package deployed by the Customs and Border Protection Office of
Technology Innovation and Acquisitions (OTIA), Unattended Ground Sensors (UGS) monitor
and report on vehicle traffic in remote areas that are unaccessible to radio, electro-optical and
infrared sensors. This analysis focuses on vehicle traffic using two-axis fluxgate magnetometers
whose operating characteristics are well documented [1, 2]. Such magnetometers measure two
perpendicular magnetic components of the external field. When a motorized ground vehicle
passes relatively close to the sensor (. 40 m), the vehicle exhibits a magnetic moment because
it is (traditionally) comprised of nontrivial quantities of magnetic materials. At ranges much
greater than its size, the vehicle behaves like a magnetic dipole and thus can be modeled as
such. The magnetometer measures the magnetic field components of the dipole, from which it
determines if a vehicle is present and then estimates its position, velocity, and magnetic moments.

This analysis is part of a larger Modeling and Simulation effort to estimate algorithm-level
Measures of Performance (MOP) and map them to system-level Measures of Effectiveness
(MOE). We concentrate on two MOPs: probability of detection and variance in trajectory es-
timation. The probability of detection for a single magnetometer was derived by Jacyna and
Christou [3]. We extend this work to include a network of magnetometers as well as detection
over multiple observation periods. The performance of UGSs are also evaluated based on the
level of variance in the estimation of the vehicle’s heading, position, and magnetic moments.
Two cases are considered. First, the parameters are assumed to be unknown random variables;
next, they are assumed to be Gaussian random variables with a priori known variances. Lower
bounds on the variances for all parameters are derived in both cases.

The report is organized as follows. The vehicle model is formulated in Section 2. The vehicle
is assumed to move with constant velocity over an observation period (< 1 sec); it is modeled
as a prolate homogeneous ellipsoid of revolution that behaves like a magnetic dipole. Next, the
probability of detection for a network of UGS over an arbitrary number of observation periods is
computed in section 3. In section 4, the Cramér-Rao bounds for the variances of the estimation
parameters are derived for the two cases described above. The bounds for the variances are also
found for the general case where some parameters may be completely unknown, others may
be known exactly, and the rest are assumed to be Gaussian with some known variance. Lastly,
section 5 contains sample UGS evaluation scenarios. The probability of detection for a set of five
magnetometers is compared with a single magnetometer. Further, we show that the probability
of detection can be raised from 60% (one observation period) to nearly unity by considering the
overall probability of detection over multiple observation periods. Next, bounds on the variances
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Figure 1: Schematic of a vehicle moving past a magnetometer

of parameters are calculated for a vehicle passing a magnetometer. It is shown that by assuming
the parameters are Gaussian random variables with plausible variances, the estimation quality
is much better than when the parameters are unknown random variables. The effect of velocity
on estimation performance is also explored.

2 Model Formulation

Consider a vehicle traveling with velocity v near an UGS. Over sufficiently short observation
periods, one can assume the vehicle moves in a straight line with constant speed. In particular,
if (x, y) = (x0−xm, y0− ym) is the position of the vehicle relative to the sensor at time t0, then
its positions over an observation period T are (xk, yk) = (x + ktvx, y + ktvy), for k ∈ (0, N),
where N = 2bT , t = 1/(2b), and b is the sensor bandwidth.

As the UGS utilize two-axis magnetometers, one must compute the magnetic field com-
ponents of the vehicle in the longitudinal and transverse directions. For this calculation, the
vehicle’s shape is approximated as a prolate homogeneous ellipsoid of revolution with axes
A ≥ B = C. Such an approximation is viewed as a reasonable approximation for a variety of
vehicle types[4]. The induced moments of the vehicle are derived by Christou and Jacyna[3]
based on work by Osborn[5] and Jackson[6]. They determine the magnetic field components of
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the dipole to be[6]:

B1 = 10−7
M1(3x

2 −R2) + 3M2xy

R5
(teslas) (1)

B2 = 10−7
M2(3y

2 −R2) + 3M1xy

R5
(teslas), (2)

where M = (M1,M2) is the induced moment of vehicle, R is the range from the sensor, and
(x, y) is the position of the vehicle relative to the sensor. The induced moment of the vehicle is
a function of vehicle, location and trajectory characteristics. The derivation of M may be found
in Appendix A.

3 Detection

To determine the probability of detection, a matched filter is used to compute the deflection
ratio d[3].The calculation details may be found in Appendix B. The probability of detection (PD)
and the probability of a false alarm (PFA) for a single magnetometer over one observation period
are

PFA = Φ(η) (3)

PD = Φ(η − d), (4)

where Φ is the modified complimentary error function 1 and η is a threshold. In order to find the
probability of detection, equation (3) is solved for η and the resulting value is substituted into
equation (4).

In general, we are interested in the case of n magnetometers and K observation periods.
First consider the case of a single observation period. Let (xmag,ymag) be the positions of the
sensors. Then the positions of the vehicle at the start of the observation period relative to the
n sensors are (x,y) = (x0 − xmag, y0 − ymag) ∈ R2,n. Then, the probability that sensor j
detects the vehicle, PDj , is given by equation (4). Assuming magnetometer measurements are
independent, the probability that at least one sensor detects the vehicle during the observation
period is

p(D > 0) = 1−
n∏
j=1

(1− PDj). (5)

1The modified complimentary error function is c(x) =
1√
2π

∫ ∞
x

e−t
2/2dt
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Multiple observation periods may be handled in the same manner. Let PDj,k be the proba-
bility sensor j detects the vehicle during observation period k. Then, assuming the observation
periods are independent, the probability of detection over K observation periods using n mag-
netometers is

p(D > 0) = 1−
n∏
j=1

K∏
k=1

(1− PDj,k). (6)

4 Bounds on Variance in Parameter Estimation

Now consider a scenario in which one or more UGS are used to estimate a vehicle’s trajectory
such as position and velocity. In this case, we want to determine bounds for the estimation
variance; this is achieved by calculating the Cramér-Rao bound on the covariance matrix[7].
The Cramér-Rao bound is derived for the cases where there is no a priori knowledge of the
parameters and when the parameters are assumed to be Gaussian random variables with known
variances.

4.1 Setup

Let B = {Bk}, k = 0, . . . N − 1, be a set of sample magnetic field components for a
single sensor. Then define rk = Bk + nk to be the signal at the magnetometer, where {nk}
is zero-mean independent Gaussian 1/f noise. where {nk} is zero-mean Gaussian 1/f noise.
Without loss of generality, it is assumed that {nk} is statistically independent for this analysis.
By assumption, the vehicle moves in a straight line with constant speed over an observation
period. Hence, the parameters to be estimated (see Figure 1) are z = (x0, y0, v, θ,M1,M2), or
equivalently, w = (r, φ, vx, vy,M1,M2) . We will compute the covariance matrix for the first
set of parameters and use a transformation to obtain the second set. The positions of the vehicle
over the observation period are

xk = (x0 − xm)− ktv sin θ (7)

yk = (y0 − ym) + ktv cos θ, (8)

where t = T/N is the fixed time between measurements.
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4.2 Cramér-Rao Bound: No a priori information

To estimate zwhen no a priori information exists, one uses the maximum likelihood estimator

ẑ⇐ max
z
p(r|z). (9)

We now compute p(r|z). Let rjk and Bj
k denote the components of rk and Bk, respectively

(j = 1, 2). Bj
k can be written as a function of z and k because

Bj
k = Bj

k(x0 − xm − ktv sin θ, y0 − ym + ktv cos θ) = Bj(z, k). (10)

Then, since rjk is Gaussian with variance σ,

p(r|z)) =
2∏
j=1

N−1∏
k=0

1√
2πσ2

exp

[
−(rjk −Bj(z, k))2

2σ2

]
. (11)

Note that if we wanted to compute the minimizer, we would take the four derivatives of p(r|z)

and solve for (x0, y0, v, θ) as functions of r; however, our interest is in evaluating the estimator
using the Cramér-Rao Bound CR(z):

Cov{z(r)} ≥
[
I +

∂b(z)

∂z

]T
F−1mle(z)

[
I +

∂b(z)

∂z

]
4
= CR(z), (12)

where b is the bias of the estimator and Fmle the Fisher information matrix:

Fmle = −E
[
∂2

∂z2
{ln p(r|z)}

]
. (13)

Assuming the estimator is unbiased, the Cramér-Rao Bound is F−1mle. In this case, the first
component of Fmle can be computed by evaluating

∂2

∂x20
[ln p(r|z)] =

1

σ2

2∑
i=1

[
N−1∑
k=0

∂2Bi(z, k)

∂x20
rik −

(
∂Bi(z, k)

∂x0

)2

−Bi(z, k)
∂2Bi(z, k)

∂x20

]
(14)
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and noting that the only non-constant quantity is rik, which has mean Bi
k(z, k). Thus,

E
[
∂2

∂x20
[ln p(r|z)]

]
=

1

σ2

2∑
i=1

N−1∑
k=0

∂2Bi(x, k)

∂x20
E
[
rik
]
−
(
∂Bi(z, k)

∂x0

)2

−Bi(z, k)
∂2Bi(z, k)

∂x20

(15)

= − 1

σ2

2∑
i=1

N−1∑
k=0

(
∂Bi(z, k)

∂x0

)2

. (16)

The other components of Fmle are computed similarly. In general, the (a, b) component is

−E
[

∂2

∂za∂zb
[ln p(r|z)]

]
=

1

σ2

2∑
i=1

N−1∑
k=0

(
∂Bi(z, k)

∂za

)(
∂Bi(z, k)

∂zb

)
. (17)

Thus, the Cramér-Rao bound on the covariance matrix is

Cov(z) ≥

[
1

σ2

2∑
i=1

N−1∑
k=0

(
∂

∂z
Bi(z, k)

)
⊗
(
∂

∂z
Bi(z, k)

)]−1
= CR(z) (18)

where ⊗ represents the outer product of the two vectors.
We also seek to bound the variance with respect to w = (r, φ, vx, vy,M1,M2). The bound

is computed from CR(z) using the Jacobian of the transformation J:

CR(w) = JCR(z)JT . (19)

The Jacobian has components Jij = dwi

dzj
and may be written as

J =



x/r y/r 0 0 0 0

−y/r2 −x/r2 0 0 0 0

0 0 − sin θ −v cos θ 0 0

0 0 cos θ −v sin θ 0 0

0 0 0 0 1 0

0 0 0 0 0 1


. (20)

4.3 Cramér-Rao Bound: with a priori information

Now suppose we have a priori information about z = (x0, y0, v, θ,M1,M2). In particular,
suppose the parameters are independent Gaussian random variables (note that the magnetic
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moments may be treated as Gaussian as the vehicle is approximated by an ellipsoid) with standard
deviations σ = (σx0 , σy0 , σv, σθ, σM1 , σM2); the magnetic moments may be treated as Gaussian
as the vehicle is approximated by an ellipsoid. The desired estimator is the maximum a posteriori
estimator

ẑ⇒ max
z
p(z|r) = max

z

p(r|z)p(z)

p(r)
. (21)

To evaluate this estimator we proceed as in the last section: compute the Cramér-Rao bound
under the assumption that there is no bias

Cov(z) = F−1post. (22)

Now, the Fisher information matrix is

Fpost = −E
[
∂2

∂z2

[
ln
p(r|z)p(z)

p(r)

]]
(23)

= −E
[
∂2

∂z2
[ln p(r|z) + ln p(z)− p(r)]

]
(24)

= Fmle − E
∂2

∂z2
[ln p(z)] . (25)

Next, since the parameters are independent normally distributed random variables,

p(z) =
4∏
i=1

1√
2πσ2

i

exp

[
−(zi − µi)2

2σ2
i

]
, (26)

which implies that

∂

∂zi

∂

∂zj
[ln p(z)] =

0 : if i 6= j

−1/σ2
i : if i = j

. (27)

Thus,

Fpost = Fmle + diag(1/σ2
1, . . . 1/σ

2
6), (28)

where diag(1/σ2
1, . . . 1/σ

2
6) represents a diagonal matrix with diagonal elements 1/σ2

i .

If any of the variances tend to infinity, this corresponds to no a priori knowledge of that
parameter. Indeed, if all variances are infinity, Fpost = Fmle, as expected. Alternatively, if a
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variance tends toward zero, this represents having complete knowledge of that parameter. Hence,
the derived framework may be used in cases where some parameters are known exactly, some
whose variance may be bounded, and some for which we have no information.

4.4 Multiple Sensors and Multiple Observation Periods

As we did in section 3, the estimation framework can be generalized to multiple sensors over
multiple observation periods. First consider the case of n magnetometers, a single observation
period with N samples, and no a priori information. Then, as in section 3, the positions of
the vehicle at the start of an observation period are (x,y) = (x0 − xm, y0 − ym). Let R =

[r1, r2, . . . rn] ∈ RN,n, where rj is the signal at the jth magnetometer. Now, assuming the
magnetometers are independent, the maximum likelihood estimator is

ẑ⇐ max
z
p(R|z) = max

z

n∏
j=1

p(rj|z). (29)

Let B1
j (z, k) and B2

j (z, k) denote the magnetic field components for the jth sensor. It is then
straightforward to show that the Cramér-Rao bound is

Cov(z) ≥

[
1

σ2

n∑
j=1

2∑
i=1

N−1∑
s=0

(
∂

∂z
Bi
j(z, s)

)
⊗
(
∂

∂z
Bi
j(z, s)

)]−1
= F−1mle = CR(z), (30)

where⊗ represents the Kronecker product. Next let there beK observation periods and letB1,k
j

and B2,k
j be the magnetic field components for the jth sensor during the kth observation period.

Then

Cov(z) ≥

[
1

σ2

K∑
k=1

n∑
j=1

2∑
i=1

N−1∑
s=0

(
∂

∂z
Bi,k
j (z, s)

)
⊗
(
∂

∂z
Bi,k
j (z, s)

)]−1
= F−1mle = CR(z).

(31)

Finally, when parameters are assumed to be Gaussian with standard deviations (σ1, . . . , σ6),

Cov(z)post ≥
[
Fmle + diag(1/σ2

1, . . . , 1/σ
2
6)
]−1

= F−1post = CR(z). (32)
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Light vehicle dimensions l = 4m,w = 2m,h = 2m

ATV dimensions l = 2m,w = 1.2m,h = 1.2m

Magnetic inclination angle (Tucson, AZ) 59◦

Magnetic declination angle (Tucson, AZ) −11◦
Magnetic field (Tucson, AZ) 57 µTesla

Material magnetic susceptibility 10
Noise spectral level 100 pTesla/sqrt(Hz)

High-pass filter cut-off 3 Hz
Magnetometer bandwidth 11 Hz
Magnetometer sensitivity 9× 10−10 Tesla

False Alarm Probability (PFA) 1× 10−6

Table 1: Detection Simulation Parameters

5 Sample Results

Probabilities of detection and bounds on the kinematic variances are computed for light
vehicles (cars) and off road vehicles (ATVs). Table 1 summarizes the parameters used in the
simulations. For the following calculations, the magnetometer observation time interval and the
overall time interval were both taken to be 0.5 sec.

5.1 Detection Results

Figure 2 displays a scenario in which a vehicle (either a car or an ATV) passes a single mag-
netometer placed near a roadway. The distance from the middle of the road to the magnetometer
is the closest point of approach (CPA). The magnetometer attempts to detect the vehicle twice
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Figure 2: Detection Probabilities for a car and an ATV traveling at 25 mph passing a single magnetometer
for various closest points of arrival (CPA).
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Figure 3: Detection Probabilities for a car and an ATV traveling at 25 mph passing a set of five magne-
tometers for various closest points of arrival.

a second; the probability of detection over each observation interval is displayed relative to the
position of the vehicle at the start of the interval. For the car, the sensor will almost always
detect the vehicle at least once provided the sensor is placed within 25m of the road, while if it is
placed further than 35m from the road the sensor almost always fails to detect the vehicle. The
ATV displays similar results although that the magnetometer must be placed within 10m of the
road for a high probability of detection; this is due to the size of the ATV. Being significantly
smaller, the ATV has a weaker magnetic field.

In figure 3, five magnetometers are placed 20m apart along the road. When the CPA is 30m,
there is an interval where, as the car travels along the road, each magnetometer has a nontrivial
probability of detecting the vehicle. For the parameters used, the magnetometers are spaced
sufficiently far apart that, in general, at any given time only one magnetometer is contributing
significantly to the probability of detection. Likewise, the probability of detection for the ATV
is similar for a CPA of 20m.

Another case of interest is the probability that a vehicle is detected by at least one magne-
tometer during any of the observation periods; this is shown in Figure 4, where the dots are the
points calculated in Figures 2 and 3. By adding four more magnetometers, we greatly increase
the probability of detection over the intermediate range. For example, consider a car and a single
magnetometer with a CPA of 30m. The maximum probability of detection over a single obser-
vation period is 59.3%, while the probability that it is detected at least once is 90%. Further,
when the single magnetometer is replaced by an array of five, the probability of detection is
nearly one.
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Figure 4: Probabilities that a car or an ATV is detected at least once by a magnetometer as a function of
the closest point of arrival (CPA).

5.2 Estimation Results

Recall that the Cramér-Rao bound is the minimum variance for an efficient estimator. We
consider two cases. First, no information is known about the parameters to be estimated and
the Cramér-Rao bound is given by equation (18). In the second case, we assume the parameters
z = (x0, y0, v, θ,M1,M2) are Gaussian random variables with standard deviations given in Table
2.

Let us revisit the scenario of a vehicle passing a single magnetometer with a fixed speed
of 25 mph. Figure 5 shows a log plot of the lower bounds on the standard deviations of the
parameters (x0, y0, v, θ,M1,M2) in each case. In either case, note that, for positions to the left
of the sensor, the bound on the stand deviation is low for the parameters x0, y0, v, and θ; with
no a priori information the bounds quickly grow so that any estimate is worthless. Witha priori
information, curves are bounded above by the a priori standard deviations. This can be observed
for σθ where the curve asymptotes to the a priori standard deviation (e.g., the dashed orange
curve at 15 degrees). Because the Cramér-Rao bound is a lower bound on the variance, to

Variable A priori standard deviation
x0 30m
y0 5m
v 10 mph
θ 15 degrees
M1 100 ampere-m2

M2 100 amperem2

Table 2: A priori standard deviations
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Figure 5: Variance versus position for the cases: no a priori information (left); a priori information (right)

evaluate magnetometers we are interested in identifying regions where the variances are above
some threshold.

The Cramér-Rao bound can be used in other instances such as when a vehicle is passing
a magnetometer with different speeds. Figure 6 is a log plot of the bounds on the standard
deviation of the estimates for a single observation interval where the vehicle starts at the CPA.
In both cases there is a singularity when the speed equals zero. With no a priori information,
increases in speed result in substantial growth in variance so that estimation is no longer possible.
In contrast, with a priori information„ there is a wider interval of velocities for which estimation
may be possible.

6 Conclusions

The MITRE Corporation has developed a framework through which to estimate algorithm
level Measures of Performance for a variety of surveillance scenarios. As part of that work,
this analysis focuses on UGS utilizing of two-axis fluxgate magnetometers. Two MOPs are
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Figure 6: Variance versus speed for a car (top) and an ATV( bottom) starting from its closest point of
arrival (x0, y0) = (0, 25) for the cases where there is no a priori information (left) and where there is a
priori information (right).

considered: the probability of detection and the Cramér-Rao bound for the variance of estimated
parameters. A vehicle moving past a network of magnetometers is modeled as an ellipsoid and
acts as a magnetic dipole. Assuming uniform linear motion over each observation period, the
probability that a network of UGS detects the vehicle is calculated as a function of the vehicle,
magnetometer, and location characteristics. We show that a series of sensors performs better
than a single sensor and that the performance over a series of observation periods may be much
greater than that of a single period. UGS may also be evaluated in terms of estimation ability.
A lower bound on the variance of the vehicle’s location, velocity and magnetic moments is
computed for the cases where no a priori knowledge of the parameters exists as well as when
the parameters are assumed to be Gaussian random variables with known variances. We show
that UGS perform significantly better in the latter case and consider how vehicle speed affects
estimation. An area for subsequent work is the development MOPs for a classification problem
(i.e. classifying vehicles as heavy, medium size, or very light).
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Appendix

A. Vehicle Induced Moment

The induced moment for the vehicle may be written as

M = V PH, (A.1)

where V = 4πAB2/3 is the volume of the ellipsoid, P is the magnetic polarizability tensor, and
H is the earth’s magnetic field strength rotated to the body axis frame of the vehicle.

To find P , let L1 and L2 be the demagnetization factors of the vehicle in the longitudinal and
transverse directions. Then

L1 =
t1
c2
, L2 =

t2m

2c2
, (A.2)

where

m = A/B, c =
√
m2 − 1, (A.3)

t1 =
m

2c
log

(
m+ c

m− c

)
− 1, t2 = m− t1 − 1. (A.4)

The demagnetization factors are used to construct the magnetic polarizability tensor

P =

 κ
1+κL1

0 0

0 κ
1+κL2

0

0 0 κ
1+κL2

 (A.5)

where κ is the material magnetic susceptibility.
Now, to find H , let B0 be the terrestrial magnetic induction, θ the vehicle’s course with

respect to true north, ϕi the magnetic inclination angle at the current location, and ϕd the
magnetic declination angle at the current location. Then H is given by

H =
2.5B0

π

 sin(θ) cos(θ) 0
− cos(θ) sin(θ) 0

0 0 1

 sin(ϕd) cos(ϕi)
cos(ϕd) cos(ϕi)

sin(ϕi)

 . (A.6)

The induced moment may now be written as

M = V PH, (A.7)

where V = 4πAB2/3 is the volume of the ellipsoid[3].
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B. Matched Filter Derivation

First consider the geomagnetic noise spectrum Sn that was derived in [8]. Let Nh be the
noise spectral level in pTesla/sqrt(Hz) and f` be the frequency. The frequency is derived from
the magnetometer sampling rate Fs = 2B, where B is the magnetometer bandwidth, and the
observation time Tobs = N/Fs. The geometric noise spectrum may then be written as

Sn(f`) =
(10−12Nh)

2

f`
. (B.8)

Noise spectrum levels range from near 1 pTesla/sqrt(hz) in rural land areas, to greater than 100
pTesla/sqrt(Hz) in urban areas, and roughly 10 pTesla/sqrt(Hz) near water.

Next consider the sensor sensitivity noise spectrum, which we treat as quantization noise.
Let ∆ be the resolution of the device. Then, assuming the signal is uniformly distributed within
a resolution cell, the variance can be shown to be[3]

σ2 =
∆2

12
. (B.9)

The spectral density is flat and given by

Ss(fl) =
∆2

24B
; −B ≤ fl ≤ B. (B.10)

The combined noise spectrum is thus the sum of the sensor sensitivity spectrum and the back-
ground noise spectrum, Snoise = Sn + Ss.

A band pass filter is needed to remove the large terrestrial magnetic field component near
DC as well as frequencies above the bandwidth of the sensor. This is implemented by removing
frequencies less than Fcut and greater than B. Let B̃1 and B̃2 denote the band-passed filtered
Fourier Transforms of the signals B1 and B2. The matched filter is then

d21 =
Fs
N

N∑
`=1

|B̃1(fl)|2

Snoise(fl)
(B.11)

d22 =
Fs
N

N∑
`=1

|B̃2(fl)|2

Snoise(fl)
(B.12)

from which the deflection ratio is[3]

d =
(
d21 + d22

) 1
2 . (B.13)
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