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The turbulent kinetic energy (κ), and eddy dissipation rate (ε) for an axisymmetric turbulent
buoyant jet are numerically determined. An outline of the derivation of the governing equations for
these quantities from the time-averaged Navier-Stokes Equations is given. The Boussinesq approx-
imation is adopted. An integral model is used to reduce the system of partial differential equations
to one of ordinary differential equations by assuming Gaussian cross sections and quantities corre-
sponding to the flux of κ and ε are found. This turbulence model is coupled with a well known model
for the mean-field behavior of buoyant jets. Results from the integration of the system of equations
are given as well as comparisons to experimental data for air/air jets which show agreement with
the predicated output of the model.

PACS numbers:

I. INTRODUCTION

The dynamics of the effluent air from the exhaust stack
of a powerplant, manufacturing facility, or other struc-
ture can have an impact on the environment, municipal
planning, as well as aviation [1]. In the latter half of the
last century, up through today, much work has been done
to model this behavior. An excellent summary can be
found in [2]. While many techniques have been adopted
to examine this phenomena, of primary interest to this
report are the integral models that have been created to
model the behavior of jets and plumes [3, 4]. Through the
past couple decades, these integral models have become
more complex and have evolved to deal with increasingly
general environmental conditions [5, 6].

Integral models can be derived by assuming a cross-
sectional profile for the average quantities. Typical pro-
files leveraged are either the Gaussian distribution [2],
which fits well with observation or a top-hat profile [7],
which in many cases is less complicated. These models
typically only calculate mean fluxes and report turbulent
quantities by using constitutive equations. The experi-
ments of Papanicolaou and List [8] show that turbulent
kinetic energy accounts for 16% of the momentum and
Jirka [2] points out that turbulent momentum and scalar
fluxes are typically about 10% of the mean fluxes.

Many studies do not directly evolve the turbulent
quantities using their respective transport equations.
The justification for this is that the turbulent quanti-
ties are proportional to the mean quantities so there is
no need for a separate representation [2]. However, Wang
[9] argues that the turbulent quantities may vary between
different regions of the buoyant jet and with different
environmental conditions. Wang accounts for the turbu-
lent quantities by treating them as an empirically varying
percentage of the mean quantities, whereas other studies
have used a fixed percentage [10].

The purpose of this paper is to extend the integral
method of Reference [2] by adding evolution equations
for the turbulent kinetic energy (κ) and eddy dissipation
rate (ε). These equations are coupled to those of the

mean flow to provide accurate predictions of the turbu-
lent kinetic energy and the eddy dissipation rate in a va-
riety of conditions. To the authors knowledge no integral
model exists in the literature that evolves the turbulent
kinetic energy separately or calculates the eddy dissipa-
tion rate using an integral flux formulation. In Section II,
the problem statement will be given and relevant equa-
tions, coefficients, and boundary conditions will be devel-
oped. For the sake of brevity, many of the details are left
to the cited literature (in particular the equations for the
mean flow behavior), leaving the novel turbulence equa-
tions to this presentation. In Section III the results of the
integration of the evolution equations will be compared
to experimental data.

II. PROBLEM FORMULATION

Consider a cylindrical exhaust stack from a facility
such as a power plant or manufacturing installation which
has diameter D depicted in Figure 1. For the purposes
of this study the height of the exhaust stack is of no
relevance. For the remainder of this paper, this will be
referred to as ”the stack”.
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FIG. 1: A schematic of the problem.
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The discharge from the stack is moving at a velocity U0,
and has a uniform density of ρ0. An ambient uniform
velocity field may be present (ua) which will orient the
plume at an angle of θ(s) with respect to the x-axis where
s is a coordinate representing the length of the centerline
of the plume. The ambient conditions are given by den-
sity ρa(z), pressure pa(z), and temperature Ta(z). There
exists a regions directly above the stack, known as the
Zone Of Flow Establishment (ZOFE) described in [2],
where the uniform efflux flow turns to fully developed jet
flow. The top of the ZOFE is where boundary conditions
are to be specified.

A. Governing equations

The flow of fluid out of the exhaust stack is governed
by conservation of mass, momentum, and thermal energy,
along with an equation of state relating density and tem-
perature. In order to make this problem tractable, the
convention is to separate the steady (Ui) and fluctuating
(ui) components of the velocity field. The Latin sub-
script i indicates spatial components of a vector; unless
otherwise noted, summation is assumed for all repeated
indices. For completeness, some of the relevant equations
will be given here. Much of the derivation of the govern-
ing equations will be omitted from this presentation; the
reader is referred to [11, 12] for complete details. The re-
sulting time-averaged equations for conservation of mass,
momentum, and thermal energy respectively are

∂ρUi
∂xi

= 0, (1)

ρ
D

Dt
(Ui) =

∂

∂xj

(
µ
∂Ui
∂xj
− ρuiuj

)
− ∂p

∂xi
+ ρgi, (2)

and

cpρ
D

Dt
(T ) =

∂

∂xi

(
λ
∂T

∂xi
− cpρuiT ′

)
(3)

where D/Dt is the material derivative. In Eq. (2) µ is the
molecular viscosity of the fluid. In Eq. (3) cp is the spe-
cific heat at constant pressure and λ is the diffusivity of
the medium. The term uiuj represents an unknown cor-
relation between fluctuating velocities originating from
the nonlinearity of the Navier-Stokes equations and the
averaging process. This term is commonly known as the
turbulent Reynolds’ stress. The thermal energy equation
also contains an unknown term representing the trans-
port of heat due to turbulent processes, ρuiT ′. Here T ′

is the turbulent fluctuation in the temperature.

In order to close this system, governing equations for
the quantities uiuj and uiT ′ must be formulated.

1. Equations for κ and ε

The turbulent kinetic energy (κ), and eddy dissipation
rate (ε) are defined as,

κ =
1

2
uiui, (4)

and

ε = −ν ∂ui
∂xl

∂ui
∂xl

, (5)

where ν is the molecular kinematic viscosity. After ma-
nipulation of the time-averaged and time-dependent gov-
erning equations [11, 13], the following evolution equa-
tions are found for κ and ε,

D

Dt
(κ) =

∂

∂xi

(
cs
κ

ε
uiul

∂κ

∂xl

)
− P +G− ε, (6)

and

D

Dt
(ε) =

∂

∂xi

(
cε
κ

ε
uiul

∂ε

∂xl

)
+ cε1

ε

κ
(P +G)− cε2

ε2

κ
(7)

The terms P and G respectively represent the production
of Reynolds’ stress and the production or destruction of
buoyancy and are given by

P = −uiuj ∂Ui∂xj
, (8)

G = −βgiuiT ′. (9)

where β = (1/ρ)(∂ρ/∂T ) is the volumetric expansion co-
efficient where the derivative is taken at constant pres-
sure. The reader should note that in writing Eq. (7)
without a flux Richardson number, a vertical shear layer
is assumed. In Eqs. (6) and (7) several empirical param-
eters are present which are determined from experiments.
The values of these parameters are discussed in Appendix
B. In addition to Eqs. (6) and (7), three algebraic ex-

pressions for uiuj , uiT ′, and T ′2 can be found in [11] and
are given in Appendix A.

B. Round Buoyant Jets

In this section, the equations governing the mean flow
and turbulent dynamics will be specialized for the case
when the buoyant jet is round and the initial flux is op-
posite the direction of gravity. The model developed
here is valid beyond the ZOFE, where it is assumed
that both the Reynolds (Re = U0D/ν) and Grashof
(Gr = g(ρa − ρ0)D3/ρ0ν

2) numbers are sufficiently high
so that the flow is entirely turbulent and all viscous ef-
fects can be neglected. Characteristic velocity and length
scales have been chosen as U0, and D, respectively. A
cylindrical coordinate system is adopted where s is the
vertical coordinate and r is the radial coordinate. U will
denote the component of the velocity in the direction of
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the main flow, and V in the radial direction. Buoyant jets
contain regions depending on whether the flow is inertia
or buoyancy dominated. The jet region is dominated by
inertia while the plume region is dominated by buoyancy.
With uniform velocity and density profiles at the efflux
point, the Froude number is Fr = U2

0 ρ0/gD(ρa − ρ0)
and gives the relative importance of buoyancy and iner-
tia. The characteristics of the environment into which
the effluent air is released plays a role in determining the
balance of inertia and buoyant forces.

Due to the nature of this shear layer flow the following
boundary layer approximations is made,

V � U,
∂

∂s
� ∂

∂r
(10)

Both static pressure and the pressure gradient in the
mean flow direction are independent of the radial coordi-
nate and hence dp/ds = −ρag. Additionally, only steady
processes are considered here and turbulent transport
dominates over molecular transport. These assumptions
greatly reduce the complexity of the governing equations
for the mean flow and turbulent quantities.

1. Flux Formulation

At this point in the development, the system is com-
posed of five partial differential equations and five auxil-
iary algebraic expression needed to close the system (the
three in Appendix A broken into u and v components).
These partial differential equations are converted to a
set of ordinary differential equations by first assuming a
Gaussian profile across each cross section of the flow,

U = uce
−r2/b2 + ua cos(θ), T = Tce

−r2/(σT b2)

κ = κce
−r2/(σκb2), ε = εce

−r2/(σεb2),
(11)

where the subscript c denotes the value on the centerline
of the flow, and integrating each term across the flow,∫

A

(·)dA (12)

where A is the cross section area element and dA =
rdrdθ. The quantity b(s) denotes the radial distance
where the velocity has decreased by a factor of e−1uc,
where uc is the centerline velocity of the plume. Apply-
ing the assumptions from the previous section and inte-
grating each term using Eq. 12 the following equations
are found which govern the dynamics of the flux of κ,
and ε

d

ds
(Σ) =CµK1

κ2c
εc
u2c +K2βg

κ3c
ε2c
ucTc−

K3β
2g2

κ4c
ε3c
t2c −

1

2
b2εc,

(13)

and

d

ds
(Φ) =Cµcε1M1κcu

2
c −M2cε1

κ2c
εc
uc−

M3cε1
κ3c
ε2c
− cε2M4b

2 ε
2
c

κc
.

(14)

The quantities Σ and Φ represent the flux of κ and ε
through a cross section of the flow. The point-wise quan-
tities are computed using

Σ = b2
(
uc

σκ
1 + σκ

+ uaσκ cos(θ)

)
κc, (15)

Φ = b2
(
uc

σε
1 + σε

+ uaσε cos(θ)

)
εc. (16)

The expressions for the quantities Cµ, {Ki}, and {Mi}
can be found in Appendix B. The algebraic expressions
from Appendix A have been incorporated in Eqs. (13)
and (14). The equations governing the dynamics of the
mass, momentum, and temperature flux from which the
mean centerline velocity (uc) and temperature (Tc) are
derived can be found in [2] and are not reproduced here.

2. Initial Conditions

In general, initial conditions for a buoyant jet at a
power plant or manufacturing facility are given at the top
of the stack. This is the beginning of the ZOFE however
the domain of the system in question here begins at the
end of the ZOFE. Conditions for the mean flow quantities
at the top of the ZOFE are given in [2]. What is needed
therefore are conditions for the turbulent quantities once
the fully turbulent flow is established. Following the dis-
cussion in [8], the quantities u/U = b1 and v/U = b2 are
constant throughout the flow. This yields the following
constant quantity

κ =
1

2
(b21 + 2b22)U2 = CκU

2 (17)

where Cκ = 0.06. The initial conditions for κ at the
beginning of the turbulent flow is therefore κ0 = 0.06U2

0 .
According to the work of [14], the dimensionless quantity

Cε = 3b0.5ε/(2κ)3/2 (18)

is constant throughout the flow where b0.5 is the half-
velocity radius. The quantities b and b0.5 are related by
the constant b3 = b/b0.5 ≈ 1.2. Leveraging Eq. 17 and
rearranging the expression for Cε yields

ε =
23/2

3
Cεb3C

3/2
κ

(
U3

b

)
= 0.018

(
U3

b

)
. (19)

The initial condition for ε at the beginning of the fully
established turbulent flow is ε0 = 0.018U3

0 /b0. It should
be noted that the authors of [14] referenced multiple
values of Cε; this may change the initial value of ε to
ε0 = 0.019U3

0 /b0.
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III. RESULTS

In this section, results from integration of the equa-
tions for the mean flow [2] coupled to Eqs. 13 and 14
using MATLAB’s ODE45 routine and the initial condi-
tions discussed in the previous section are obtained. The
evolution of κ, and ε are shown with varying initial condi-
tions. Experiments have been performed which measure
the turbulent fluctuations of the mean velocity field (u′i)
which can be used as a point of comparison for numerical
solutions to the governing equations.

A. Dynamics of κ and ε

Parameters of interest are the diameter of the exhaust
stack, the velocity of the effluent at the exit point of the
stack, and the difference in temperature of the effluent
and the ambient conditions. Calm ambient conditions
will be assumed. Figure 2 shows the effect of varying
the stack diameter on the evolution of κ and ε. Varying
the stack diameter has a greater effect on ε than it does
on κ. The variance scaled by the square of the mean
of the distributions of κ and ε at a height of 100 diam-
eters above the stack are 0.0049 and 1.11, respectively,
indicating that the eddy dissipation rate of the system
is more sensitive to changes in exit stack diameter than
the turbulent kinetic energy. To further investigate the

κ

ε

s/D

FIG. 2: Evolution of κ and ε (inset) with a varying stack
diameter. The stack diameter was varied from 2m to 47m in
steps of 5m. The arrows indicate the direction of increasing
stack diameter. Relevant model parameters were cε1 = 1.44,

cε2 = 2.02, c1T = 3.0, c2T = 0.5, c3T = 0.8, R = 0.8, σ
1/2
κ =

1.343, σ
1/2
ε = 1.505, and σ

1/2
T = 1.20.

response of the system to changes in stack diameter, Fig-
ure 3 shows changes in κ and ε, scaled by their initial
values at the top of the ZOFE, at a downstream distance
of 100D as a function of stack diameter. With respect to
the scaled variables, the anticipated tradeoff of decreas-
ing κ with increasing ε is seen here.

κ/κ0 ε/ε0

D

FIG. 3: Values of κ (solid) and ε (dashed) scaled by their ini-
tial values at an downstream distance of 100 stack diameters
above the exit point for varying stack diameters. Relevant
model parameters and initial values are the same as those in
Figure 2.

Figure 4 illustrates the system’s response to a varying
effluent velocity at the stack exit point. It is seen that in-
creasing the exit velocity increases the turbulent kinetic
energy and eddy dissipation rate. Increasing excess efflu-
ent temperature causes an monotonic increase in κ at all
elevations above the stack. This is not the case with ε.
Figure 5 shows the change in κ and ε at two elevations
above the exit point of the stack. At a particular (and
sufficient) height above the stack, ε exhibits a local max-
imum as a function of excess temperature. Figure 6 gives
the excess initial temperature where the local maximum
occurs as a function of vertical location. For the values
of the model parameters chosen for this study (see cap-
tion from Figure 2), the minimum location where a local
maximum exists is approximately s/D ≈ 16.

B. Comparison to experimental data

Burattini et al [14] created a jet by passing air through
a round orifice into a large laboratory room with no cross-
flow (ua = 0). The experiment was set up in such a way
that there was no buoyancy difference between the jet
and the ambient environment. This ensures that the vol-



5

κ

ε

s/D

FIG. 4: Evolution of κ and ε (inset) with a varying effluent
exit velocity, which was varied from 5m/s to 50m/s in steps
of 5m/s. The arrows indicate the direction of increasing exit
velocity. Other relevant model parameters and initial values
are the same as those in Figure 2.

umetric expansion coefficient (β) is constant. Velocity
measurements were taken using a hot wire anemometer
and a single set of initial conditions was used for all of
the data. The diameter of the orifice was 55mm, the
efflux velocity was 35.1m/s and the viscosity of the air
was 1.5 × 10−5m2/s. The effect of varying initial condi-
tions on experimental outcomes can be found in Refer-
ence [15]. Figure 7 shows the measured values of κ, and
ε from [14] as well as the result of the model solution
for these quantities. The difference between the model
results and experimental measurements for κ and ε was
on average 0.69% and 1.56% with standard deviations of
3.08% and 6.37%, respectively. For both parameters the
error never went over 9.8%.

The absence of a transport equation for ε in Reference
[12] left the system incomplete without an empirical re-
lationship for ε. An example of such a relationship is

ε = cκ
κ3/2

Lκ
(20)

where Lk is the integral length scale for κ [12]. As ε is
known from the solution of its transport equation, Eq.
20 it can be leveraged to yield cκ or Lκ. Integral length
scales for u, and v are determined from similar equations
to that in Eq. 20, Li = ciκ

3/2/ε. The empirical constants
ci are chosen to best fit the data. The data taken from
Ref. [14] and the result from the model solutions are
shown in Figure 8.

κ

κ

ε

ε

T/Ta

s/D = 10

s/D = 20

FIG. 5: Values of κ (solid) and ε (dashed) with a varying
excess effluent temperature (T/Ta), at 10 (bottom) and 20
(top) stack diameters above the top of the stack. Other rel-
evant model parameters and initial values are the same as
those in Figure 2.

T/Ta

s/D

FIG. 6: Excess initial temperature (scaled by the ambient)
of local maximum value of ε as a function of altitude above
the exit point of the stack. Relevant model parameters and
initial values are the same as those in Figure 2.

IV. CONCLUSIONS

This study investigated the evolution of turbulent ki-
netic energy and eddy dissipation rate of a round turbu-
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κ, ε

s/D

FIG. 7: A comparison of κ− ε model and the measured data
from Reference [14]. The solid line and square symbols are
the modeled and measured κ, respectively. The dashed line
and triangle symbols are the modeled and measured ε, re-

spectively. Relevant model parameters were σ
1/2
κ = 1.343,

σ
1/2
ε = 1.505, and σ

1/2
T = 1.20

lent buoyant jet, commonly formed above exhaust stacks
at power plants or manufacturing facilities. Large enough
Reynolds and Grashof numbers were assumed such that
the flow can be treated as being entirely turbulent. A
boundary layer approximation was made, and it was
assumed that turbulent transport dominates molecular
transport. Lastly, the system was reduced from partial
to ordinary differential equations by assuming the form
of the relevant fields is Gaussian and integrating across
a cross section to yield an integral flux model. The re-
sult was a set of two coupled differential equations which
couple as well with a model for the mean characteristics
of the flow adopted with modification from Reference [2].

Integration of the system of equations yields results
for the mean flow consistent with previous works [2].
The response of the system to changes in initial condi-
tions (effluent temperature and velocity), as well as phys-
ical conditions (stack diameter) were investigated for il-
lustrative purposes. Scenarios were devised to compare
with experimental measurements of turbulent quantities.
The results of Burattini et al [14] experiments for turbu-
lent fluctuations in the velocity field and derived integral
length scales compared favorably against the predicted
output of the derived model.

While employing empirical calculations to compute the
turbulent quantities from the mean flow can give insight
into the dynamics of the turbulent motion, use of the
evolution equations by employing an integral flux model

Li

s/D

FIG. 8: A comparison of integral length scales Lu, Lv, and
Lκ from the κ− ε model and the measured data from Refer-
ence [14]. The solid line and square symbols are the modeled
and measured Lu, respectively. The dashed line and trian-
gle symbols are the modeled and measured Lv, respectively.
The dotted line and diamond symbols are the modeled and
measured Lκ, respectively. Relevant model parameters are
the same as those in Figure 7. The constants are cu = 0.40,
cv = 0.24, and cκ = 0.024.

reduces their complexity to the point where the problem
is very tractable to most numerical ODE routines.
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APPENDIX A: ALGEBRAIC EXPRESSIONS

The following three algebraic expressions for uiuj ,

uiT ′, and T ′2 are given here for completeness. Derivation
of these expressions begins with general transport equa-
tions for these quantities. This study focuses on vertical
buoyant jets which represent a vertical shear layer. As
an approximation of these flows, convective and diffusive
transport of turbulent flux and stress can be neglected
due to slowly evolving nature of the flow. Complete de-
tails of this derivation can be found in [11]. The expres-
sions are

uiuj = κ

[
2

3
δij
c1 + c2 − 1

c1
− 1− c2

εc1

(
uiul

∂Ui
∂xl

+

ujul
∂Ui
∂xl

+ βgiujT ′ + +βgjuiT ′
)]
,

(A1)

ujT ′ =
1

c1T

κ

ε

[
uiul

∂T

∂xl
− (1− c2T )ulT ′

∂Ui
∂xl
−

(1− c3T )βgT ′2
]
,

(A2)

and

T ′2 = −2R
κ

ε
ulT ′

∂T

∂xl
. (A3)

APPENDIX B: AUXILIARY QUANTITIES

There are several quantities in Eqs. 13 and 14 which
arise from integration and manipulation of the governing

equations and are given in this section. The expressions
for Ki are

K1 = 2
σ2
κ

(2− (σκ/σε) + 2σκ)2
(B1)

K2 = 2h2
(σ2
κ/σT )

(3− 2(σκ/σε) + (σκ/σT ) + σκ)2
(B2)

K3 = 2h3
(σκ/σT )2

(4− 3(σκ/σε) + 2(σκ/σT ))2
(B3)

K4 =
1

2
σε (B4)

and Mi are

M1 = 2
σ2
k

(1 + 2σk)2
(B5)

M2 = 2h2
(σ2
κ/σT )

(2 + (σκ/σT )− (σκ/σε) + σκ)2
(B6)

M3 = 2h3
(σκ/σT )2

3 + 2(σκ/σT )− 2(σκ/σε)2
(B7)

M4 =
σκ

2 [2(σκ/σε)− 1]
(B8)

The values of hi are

h2 = Cµ
1

c1T

[
1 +

1

c1T
(1−W )

1

W

]
, (B9)

h3 =
4

3

1

c21T
R(1− c3T )(1−W ) (B10)

where R is the gas constant, W = (1 − c2)/c1, Cµ =
2W (1−W )/3, and the empirical constants ciT , Ciε and
ci are given in Reference [11]. However, as a result of
applying Eq. 12 to Eqs 6 and 7, several of the experi-
mentally determined parameters no longer remain in the
governing equations (13) and (14).
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