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Correcting errors is a vital but expensive component of fault tolerant quantum computation.
Standard fault tolerant protocol assumes the implementation of error correction, via syndrome
measurements and possible recovery operations, after every quantum gate. In fact, this is not
necessary. Here we demonstrate that error correction should be applied more sparingly. We simulate
encoded single qubit rotations within the [7,1,3] code and show via fidelity measures that applying
error correction after every gate is not desirable. The simulations also shed light on what accuracy
can be expected for noisy error correction and thus to what accuracy arbitrary single qubit rotations
should be implemented.
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Quantum error correction (QEC) [1–3] is a necessary
protocol for quantum computation but one that is very
expensive in terms of number of qubits required and time
to implement. Standard approaches to quantum fault
tolerance (QFT), the computational framework that will
allow for successful quantum computation despite a fi-
nite probability of error in basic computational gates [4–
7], nevertheless assume that QEC is applied after every
operation. In this paper we demonstrate that applying
QEC after every operation is not necessary and in fact
should not be done. This assertion is corroborated by
simulating multiple single-logical-qubit operations on in-
formation encoded in the [7,1,3] QEC code [8].

When implementing gates on encoded information we
must ensure that the information does not leave the en-
coded space such that it may be subjected to errors. For
many QEC codes universal quantum computation can
be performed without leaving the encoded space if the
gate set is restricted to Clifford gates plus the T -gate,
a single qubit π/4 phase rotation. A method for imple-
menting an arbitrary single-qubit rotation (within pre-
scribed accuracy ǫ) with this restricted gate set was ini-
tially explored in [9, 10] and has recently become an area
of intense investigation [11–17]. For Calderbank-Shor-
Steane (CSS) codes, Clifford gates can be implemented
bit-wise while the T -gates require a specially prepared
ancilla state and a series of controlled-NOT gates. Thus,
the primary goal of these investigations has been to con-
struct circuits within ǫ of a desired (arbitrary) rotation
while limiting the number of resource-heavy T -gates. As
an example, RZ(.1) can be implemented with accuracy
better than 10−5 using 78 [16] or 56 [17] T -gates, inter-
spersed by at least as many single qubit Clifford gates.
QFT would suggest that QEC be applied after each one
of the more than 100 gates needed to implement such
a rotation requiring thousands of additional qubits and
hundreds of time steps. Thus, adhering to this tenet of
QFT is very resource intensive.

Recent work has been devoted to exploring the possi-
bility of relaxing certain tenets of QFT while retaining
to the ability to reliably compute [18–20]. In line with

this work, we demonstrate that QEC need not be applied
after every gate and, in fact, should not be applied after
every gate. Applying QEC less often will consume less
resources, while still enabling successful quantum compu-
tation. Note that by application of QEC we refer to the
implementation of syndrome measurements and possible
recovery operations that must actively be applied during
the computation. The entire computation, however, will
of course be performed within a QEC encoding.

The [7,1,3] QEC code will correct an error on one phys-
ical qubit out of the seven qubit system in which one
qubit of quantum information is encoded. If, however,
errors occur on two (physical) qubits QEC will be un-
able to restore the system to its proper state. Based on
this we will show that QEC need not be appliled after
every gate. Let us assume a perfectly encoded state and
Clifford gates that can be implemented bit-wise but with
probability p ≪ 1 will (independently) cause an error
on each qubit. The probability of an error on one qubit
is then 7p − O(p2) and on two qubits is 21p2 − O(p3).
Thus, we can then be reasonably sure that at most only
one qubit will have an error which will be corrected by
QEC. Implementing two gates without applying QEC in
between increases the probability that an error occurs to
one qubit to 14p − O(p2) and that errors occur to two
qubits to 84p2 − O(p3). Nevertheless, the probability of
errors on two qubits is still only second order in p and
thus QEC applied after both gates will almost certainly
correct the state of the system. When n gates are applied
the probability of an error on one qubit is 7n−O(p2) and
on two qubits 21(n+ 2

(

n
2

)

)p2. Still, the probability that
two (or more) errors occur remains of order p2 and QEC
will correct the single qubit errors which will occur with
probability of order p. From this we see that QEC is not
needed until the end of the gate sequence since at no point
will the probability of errors on two or more qubits be of
order p (a similar argument can be made when including
a two-qubit Clifford gate such as a controlled-NOT gate,
this will be explored elsewhere).

If T -gates are included the implementation becomes
more complex. However, assuming the T -gate is done
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following the rules of QFT, two qubit errors will still
occur with probability of order p2 and T -gates will thus
behave like the Clfford gates described above: QEC need
not be applied until the end of the gate sequence. Of
course, if QEC could be implemented perfectly, and we
were not concerned with resource consumption, it would
be worthwhile to apply QEC as much as possible. This
will lower even further the possibility of multiple errors.
However, QEC cannot be done perfectly in any realistic
system (and resource usage is a concern). Thus, we are
left to ask, how often should QEC be applied? Applying
noisy QEC too often will be expensive in terms of time
and qubits and may in fact decrease the fidelity of the
quantum information. However, not applying QEC often
enough will allow error probabilities to grow so large that
errors become likely.

To explore how often QEC should be applied we sim-
ulate single qubit gates appropriate for the [7,1,3] QEC
code in a nonequiprobable Pauli operator error environ-
ment [21] with non-correlated errors. As in [22], this
model is a stochastic version of a biased noise model that
can be formulated in terms of Hamiltonians coupling the
system to an environment. In the model used here, how-
ever, the probabilities with which the different error types
take place is left arbitrary: the environment causes qubits
to undergo a σj

x error with probability px, a σ
j
y error with

probability py, and a σj
z error with probability pz, where

σj
i , i = x, y, z are the Pauli spin operators on qubit j. We

assume that only qubits taking part in a gate operation
will be subject to error. Qubits not involved in a gate are
assumed to be perfectly stored. While this represents an
idealization, it is partially justified in that it is generally
assumed that idle qubits are less likely to undergo error
than those involved in gates (see for example [23]). In
addition, in this paper accuracy measures are calculated
only to second order in the error probabilities pi thus the
effect of ignoring storage errors is likely minimal. Finally,
we note that non-equiprobable errors occur in the initial-
ization of qubits to the |0〉 state and measurement (in the
z or x bases) of all qubits.

To simulate the effects of less error correction we start
with an arbitrary single qubit state, |ψ〉 = cosα|0〉 +
eiβ sinα|1〉, perfectly encoded into the [7,1,3] error cor-
rection code. We then implement a series of gates,
...U2U1, in the nonequiprobable error environment lead-
ing to a final state, ρf , of the 7 qubits. The final state
is a function of the initial state, parameterized by α and
β, and the error probabilities px, py, and pz. We utilize
two measures of accuracy comparing the simulated im-
plementations with the final state after perfectly applied
gates, ρi. The first is a state fidelity Tr[ρiρf ]. The second
is the logical gate fidelity, a state independent measure
comparing the logical operation on the single qubit of en-
coded information to the ideal single qubit gate. To de-
termine the logical gate fidelity we must first construct

logical process matrices for the ideal and implemented
operations. This is done by perfectly decoding ρf and
tracing over all qubits except the first giving the logical
single qubit output state. We then substitute α and β
for the four specific states needed to calculate the process
matrix as outlined in [1, 24]. The gate fidelity of the log-
ical gate is then simply Tr[χiχf ] where χi is the process
matrix of the perfect gate and χf is the process matrix
of the implemented logical gate.

After the gates, perfect (with no errors) or noisy (in
the nonequiprobable error environment) QEC is applied
to ρf giving final states ρfp and ρfn respectively. Based
on our above argument we expect perfect QEC to affirm
the ‘correctability’ of the errors that occur during imple-
mentation of multiple gates by raising the state or gate
fidelity to unity (to at least second order in all pi). In a
realistic experiment, however, perfect QEC is not possi-
ble. Thus, we apply QEC to ρf in the nonequiprobable
error environment in order to compare the application of
QEC at different intervals in a more realistic scenario.
To apply noisy QEC in a fault tolerant fashion we utilize
four qubit ancilla Shor states [5] for syndrome measure-
ment. The Shor states are themselves constructed in the
nonequiprobable error environment and thus require ver-
ification. Based on the simulations of [25] we apply one
verification step to each Shor state. Because every gate
implemented in the nonequiprobable error environment
has an error probability pi the fidelity of ρfn will contain
terms first order in pi. Nevertheless, comparing ρfn for
single and multiple gates will alert us if there is a signif-
icant decrease in fidelity due to lack of error correction
after every gate.

We first look at gate sequences of Clifford gates only.
Implementing a Clifford gate, C on the [7,1,3] QEC code
requires implementing C† on each of the 7 qubits. We
simulate sequences of Clifford gates found interspersed
between T -gates in typical approximations of arbitary
rotations including H , PH and HPH , where H is the
Hadamard gate and P = T 2 is a π/2 phase gate [11,
12, 16]. Results are shown in Table I up to first order
in error probability (calculations were performed up to
second order). Looking at both the state and logical gate
fidelities for gate sequences with no error correction we
see the expected steady decrease in fidelity as more gates
are implemented. The decrease of the state fidelity is
proportional to 7pi the probability of single qubit errors,
as discussed above. As expected, applying perfect error
correction after one, two, or three Clifford gates gives
state and logical gate fidelities of 1 (to third order).

Applying noisy QEC after the sequence of gates we
find that the state and gate fidelities are exactly the
same for one and two Clifford gates. This demonstrates
that there is no need to apply QEC after only one gate.
Noisy QEC applied after three gates gives a lower fidelity
state than when applied after two gates. In both the
two and three gate case, noisy QEC causes a decrease in
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FIG. 1: Implementation of [7,1,3] QEC code T -gate.

the state and gate fidelities when compared to the un-
corrected state with respect to σx errors and an increase
with respect to σz errors. Thus, if σx errors are dominant
it is better to implement even more gates before apply-
ing QEC. The decrease with respect to σx errors can be
attributed both to the fact that we have measured the
bit-flip syndromes first (and thus additional, uncorrected
σx errors occur during the phase-flip syndrome measure-
ments), and to the use of noisy Shor states with one
verification as demonstrated in [25]. The fidelity due to
σy errors may increase or decrease upon application of
noisy error correction.

The simulations of two or three Clifford gates followed
by QEC should be compared to the case of applying QEC
after each Clifford gate. The results of this latter simula-
tion are shown in the last line of Table I. When the sec-
ond gate is applied after the first application of QEC the
fidelity is decreased with respect to px and py. The sec-
ond application or QEC, however, increases the fidelity
back to the same level as after the first QEC applica-
tion. This implies that constant application of QEC will
keep the fidelity steady. These simulations also under-
score that there is no need to perform QEC after every
gate as, after two gates, the gate and state fidelities are
exactly the same whether or not QEC has been applied
after the first gate.

We now look at sequences of two and three gates that
include a T -gate. To implement a logical T -gate on a
state encoded in the [7,1,3] QEC code we first construct
the ancilla state |Θ〉 = 1√

2
(|0L〉 + ei

π

4 |1L〉), where |0L〉

and |1L〉 are the logical basis states on the [7,1,3] QEC
code. Bitwise CNOT gates are then applied between the
state |Θ〉 and the encoded state with the |Θ〉 state qubits
as control. Measurement of zero on the encoded state
projects the encoded state with the application of a T -
gate onto the qubits that had made up the |Θ〉 state.

To ensure fault tolerance in the construction of |Θ〉 re-
quires the following steps: (1) A logical zero state is en-

FIG. 2: Left: Circuit for phase syndrome measurement on
the [7,1,3] QEC code, used here to initialize logical zero state.
Right: Four qubit Shor state construction with one verifica-
tion.

coded by applying error correction to 7 qubits all initially
in the state |0〉 [4]. We choose to use Shor state ancilla
for syndrome measurements [5] each of which undergoes
one verification step [25]. (2) A seven qubit Shor state [5]
in constructed and proper verifications are applied. (3)
Seven controlled-ZPX gates, given by:

C − ZPX =









1 0 0 0
0 1 0 0
0 0 0 ei

π

4

0 0 e−iπ4 0









, (1)

are applied each between a qubit of the Shor state and a
qubit of the logical zero state with the Shor state qubits
as control. (4) Measurement of the Shor state (with even
parity outcome) completes the projection and the con-
struction of the logical state |Θ〉. Circuits for these steps
are shown in Figs. 1 and 2.
For our simulations, done in the nonequiprobable error

environment, the following should be noted [20]. First,
each attempted initialization of the state |0〉, for the log-
ical zero state and Shor states, instead initializes to the
state ρi = (1 − px − py)|0〉〈0| + (px + py)|1〉〈1|. Second,
were initialization perfect there would be no need to per-
form the bit-flip syndrome measurements when encoding
the logical zero state. Here, though initialization is not
perfect, we apply only the phase-flip syndrome measure-
ments (each syndrome measurement is performed twice
to conform with the strictures of fault tolerance). Third,
because logical zero state encoding is done ‘off-line’ we
choose to post-select only the encoded states where all
syndrome measurements are zero. Finally, the projec-
tion into the state |Θ〉 is done until the same measure-
ment outcome is attained twice in a row to ensure no
errors have taken place during the projection itself.
Our simulations of a T -gate, when implemented in the

fault tolerant way described above, work as expected.
Namely, when followed by perfect QEC the gate fidelity
is unity up to second order [20]. In Table II we compare
the simulation of the T -gate alone with that of a T -gate
with one, two, or three Clifford gates. Once again, the
question we are trying to address is how often noisy QEC
should be applied.
The first point of interest is the difference in fideli-
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TABLE I: Fidelity measures of Clifford gates implemented in the nonequiprobable error environment with and without noisy
error correction applied. We define s1 = cos(4α) and s2 = cos(2β) sin(2α)2.

State Fidelity no QEC noisy QEC Gate Fidelity no QEC noisy QEC

H or P 1 − 7px − 7py − 7pz 1 − 73px − 19py − 7pz H or P 1 − 3px − 5py − 3pz 1 − 19px − 5py − 3pz

PH 1 − 14px − 14py − 14pz 1 − 73px − 19py − 7pz PH 1 − 8px − 8py − 6pz 1 − 19px − 5py − 3pz

HPH 1 − 21px − 21py − 21pz 1 − (155−s1−2s2)px
2 HPH 1 − 11px − 13py − 9pz 1 − 23px − 11py − 8pz

− (97−3s1−6s2)py
4 − (61−3s1−6s2)pz

4
P-QEC-H 1 − 80px − 26py − 14pz 1 − 73px − 19py − 7pz P-QEC-H 1 − 54px − 15py − 6pz 1 − 19px − 5py − 3pz

TABLE II: Fidelity measures of Clifford gates implemented in the nonequiprobable error environment with and without noisy
error correction applied.

State Fidelity no QEC noisy QEC Gate Fidelity no QEC noisy QEC

T 1 − 7px − 7py − 26pz 1 − 73px − 19py − 7pz T 1 − 3px − 5py − 14pz 1 − 19px − 5py − 3pz

PT 1 − 14px − 14py − 33pz 1 − 73px − 19py − 7pz PT 1 − 8px − 8py − 17pz 1 − 19px − 5py − 3pz

HT 1 − 14px − 14py − 33pz 1 − 73px − 19py − 7pz HT 1 − 6px − 10py − 17pz 1 − 19px − 5py − 3pz

TPH 1 − 7px − 7py − 40pz 1 − 73px − 19py − 7pz TPH 1 − 3px − 5py − 20pz 1 − 19px − 5py − 3pz

THPH 1 − 14px − 14py − 33pz 1 − 73px − 19py − 7pz THPH 1 − 6px − 8py − 17pz 1 − 19px − 5py − 3pz

P-QEC-T 1 − 73px − 19py − 7pz 1 − 73px − 19py − 7pz P-QEC-T 1 − 19px − 5py − 3pz 1 − 19px − 5py − 3pz

ties between the T -gate and that of the Clifford gates P
and H . When looking at the implementation of single
gates without error correction we see that the fidelity as
a function of px and py are the same. The T -gate, how-
ever, has significantly increased sensitivity to σz errors.
In other words, the accuracy ‘cost’ (there is, of course,
a prohibitive cost in the number of extra qubits utilized
and in the time of implementation) of applying a T -gate
as opposed to a single qubit Clifford gate is only with
respect to phase errors. Applying noisy QEC to the sin-
gle gates gives equal fidelities for the T -gate and Clifford
gates. This is likely because the first order error terms
arising from the implementation of the gate are corrected
by QEC and thus the remaining first order error terms
are due to the QEC itself.

Implementing a single Clifford gate after a T -gate de-
creases the fidelity by the same amount as applying a
Clifford gate after another Clifford gate. Implementing a
T -gate after two Clifford gates decreases the fidelity com-
pared to the T -gate alone only with respect to pz and,
in fact, the fidelity with respect to px and py is higher
than that of two Clifford gates alone. Implementing the
T gate after three Clifford gates gives fidelity equal to
applying a Clifford gate after the T gate. Thus, the sim-
ulations show some complexity in terms of which gates
will decrease or increase the fidelity with respect to the
different error types.

Applying perfect QEC after any of the above gate se-
quences gives unit fidelity to second order in pi (as op-
posed to third order for the Clifford only gate sequences).
As expected, the errors are correctable and QEC need not
be applied at any additional point during the sequence.

We mentioned above that the fidelity measures after
noisy QEC appear to be insensitive to the gates applied
before QEC. This is clearly seen in Table II. Presum-
ably this arises because the QEC corrects the errors of
the previous gates or at least increases their order in er-
ror probability (in line with the perfect error correction

simulations), and the noise inherent in the QEC is solely
responsible for the first order error terms.

These simulations should also be compared to the case
of applying QEC after an intial T -gate and then again
after a Clifford gate. The results of this latter simula-
tion with the P gate are shown in the last line of Ta-
ble II. Implementation of P after the initial QEC does
not change the fidelity and the fidelity remains constant
upon the second application of QEC. This implies that
constant application of QEC will keep the fidelity steady
and again underscores that there is no need to perform
QEC after every gate.

When implementing an arbitrary rotation from the
gate set Clifford plus T one must trade off accuracy, ǫ,
versus number of gates. The more gates used the bet-
ter the accuracy but the higher cost in qubits and time.
The need to apply (noisy) QEC bounds the accuracy with
which the arbitrary rotation can be implemented. There-
fore, it may not be worth spending resources to achieve
highly accurate rotations if the accuracy will be destroyed
by the application of noisy QEC. To determine how ac-
curate the gate sequence should be and how often QEC
should be applied will require futher detailed simulations.

In conclusion, we have explored the question of how
often quantum error correction needs to applied during
a sequence of logical single qubit gates from the gate set
Clifford plus T as would be necessary for the implemen-
tation of arbitrary single qubit rotations. We have shown
why QEC is actually necessary only at the end of such a
sequence and demonstrated that for practical implemen-
tations in which QEC is imperfect, there is likely to be a
loss in fidelity if QEC is applied too often. All of our sim-
ulations were done within the [7,1,3] QEC code but the
results should be directly applicable to other CSS codes
and, perhaps, to other QEC codes as well.

In addition, we have utilized logical χ-matrices in eval-
uating the logical gate fidelity of the Clifford and T -gates.
The χ-matrix is easily transformed into Kraus operators
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which properly describe the one-qubit sequence: perfect
encoding into the [7,1,3] code, implementation of gate,
possible implementation of QEC, perfect decoding. Such
Kraus operators may be useful for simulations of quan-
tum fault tolerance.
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